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ON THE MAXIMUM OF SCALED MULTINOMIAL
VARIABLES

D. FREEDMAN

Suppose Sn is a sum of n independent, identically distri-
buted, integer-valued random variables. Let p} — P(Sn=j).
Take k independent copies of Sn9 and let Nj be the number
of these sums which are equal to j . In previous papers
Persi Diaconis and I studied

max, {Nj - kpj) ,

where pj is the normal approximation to PJ. Likewise, we
have studied the histogram as a density estimator. These
problems all have a common structure, namely, determining
the asymptotic behavior of the maximum of scaled multi-
nomial variables. The object here is to present a general
theorem, flexible enough to cover all the cases mentioned
above. The form of this theorem may seem a bit arbitrary
at first, but it is suggested by the special cases.

1* Introduction* In this section, the theorem will be stated;
the proof is deferred to § 3. Section 2 presents the analogous theo-
rem for normal variables, so as to bring out the main ideas in the
proof.

For the main theorem, consider a sequence of multinomial dis-
tributions, indexed by n. However, this index may be suppressed
in later sections, to lighten the notation. At every stage n, there
are boxes indexed by the integers i. Associated with each box is
a probability pd = pnj; and

Σ Vni = 1

The pn3 '& will tend to 0 as n grows. At stage n, there are k — kn

balls; kn —> oo as ^-^oo. The balls are dropped independently in
turn into the boxes; a ball lands in box j with probability pnj. Let
Nj = Nnj be the number of balls which land in box j at stage n.
Thus, each Nnj is binomial with small success probability pnj and
large number of trials kn. Jointly, the variables Nnj for j — 0,
± 1 , have a multinomial distribution.

Next, introduce coefficients aά — anj ^ 0 and βό — βnj. The
primary interest is in max,,- VnύJ where
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n3 = anjZni

( 1 χ )

Znj = (Nni - knpnί)/]/knpnj

In (1.1),
(1.2) ε = εn >0

is a scale factor for the coefficients, which also have a center c — cn.
To make this precise, introduce

(1.3) tΛj = επ(j - cn) .

and assume:

(1.4) ani = an(tnί) +

(1.5) /3ni = A ( U + oίlβogl) ;

the functions αn ̂  0 and βn are defined and continuous on a
proper compact interval I, which does not depend on n.

Conditions (1.4) and (1.5) are required to hold uniformly over j with
tnjel. Assume further that

(1.7) an > at*, and βn • β^ as n > oo, uniformly on I.

For 1 ̂  n ^ ©o, the function αTO + /3n has a unique global
(1.8) maximum at an interior point tn of I, and an(tn) > 0; fur-

thermore, tn -» ίoo.

Conditions (1.7) and (1.8) imply that

(1.9) #n(£j is bounded below by a positive number.

Assume further that an and βn are locally quadratic at ίn: namely,
as ί-»ίΛ,

(1.10) α.(ί) = α n (ί j + «:•(«- O + ±a':*{t - tj + o(t - tj

(1.11) A(ί) = £ . ( 0 + /s: (* - o + ̂ β':<t - tnγ + o(t - tnγ

where the "o" is uniform in n. Note that

< >aL, cίi >aZ
K ' } β'« >&, β': >βZ

In (1.10) and (1.11), it is not necessary to assume differentiability
anywhere except at tn: the primes just denote numbers. Neces-
sarily
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(1.13) a'n + β'n = 0 .

Also, a" + β" sΞ 0. More is assumed:

(1.14) a'; + β'; < 0 for 1 <, n :g ~

Abbreviate

(1.15) (O2

n = -(a: + βΊ)lan{tn) > 0; set p = px .

The following growth conditions will be assumed, as n—» »=>:

(1.16) lim sup Σ {?>„:*„• 6 / } < 1

(1.17) P« (log—) >0

(1-18) (KP,

To avoid "large deviation" terms, a condition stronger than (1.18)
is needed:

(1.19) (knpr

Conditions (1.17)-(1.19) are to hold uniformly in j w i t h ί κ ί e 7 . Note
that (1.17)-(1.18) imply

(1.20)

To state the main result, let

/ I "I \l/2

(1.21) wn(x) = (2 log i - 2 log log-±- + α?) .

Let Φ be the standard normal distribution function, with density φ:

(1.22) Φ(y) = Γ φ{u)du, where 0(ιι) = — L = e x p f - — ^ 2 ) .

As usual, exp (v) = e\ Let

(1.23) Mn = mB.xs{Vnj: tnjel}, occurring at index Ln .

Here, Vnj is defined by (1.1).
In brief, the main result is that Ln and M.n are asymptotically

independent, Ln being asymptotically normal and Mn being asymp-
totically double-exponential.

THEOREM 1.24. Assume (1.1)-(1.23). Let n->oo. With proba-
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bility approaching one, Mn — max^ί Vnf tnj e 1} is assumed at a
unique index Ln. Furthermore, the chance that

and

converges to

Mn<

2log±.[e.(Ln

C an(tn)wn(x) •

-cn)

+- /S.(ί,

- t n ] < y

Now for some heuristic comments about the theorem, especially
the assumed error rate o(l/logl/sj in (1.4)-(1.5). This error rate is
critical. Basically, all the action in Mn is over j's with tnj close to
tn. So, Mn can be crudely approximated as the sum of two terms:

αn(ίw) max,- {Znj: tnj near tn}

and

Both terms are of order i/log l/en. Changing the coefficients by
o(l/logl/εj changes Mn by o(l/j/logl/ej. Next, consider the asymp-
totic distribution function for Mn in (1.24):

αw(*»)w»( ) + βn(tn) J2 log-i .

This is centered just to the left of

[«.(«,) + βn(tn)]j2log±-,

which may be large. But the spread is of order

which is small. So the distribution may move off to infinity, but
gets more and more concentrated. And only terms which are
o(l/|/log 1/eJ can be dropped from Mn without affecting its asymp-
totic behavior.

Now for a comment on Ln. The action in Mn occurs for y's
with tnj near tn. At first, it might seem that O(l/en) indices j should
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be involved, but this is slightly exaggerated: the right order is

Thus, it is necessary to work within shrinking neighborhoods of
t^. Then, it might seem that a and β can be treated as constants.
Not so, however; the quadratic terms in (l.lθ)-(l.ll) really matter
in the asymptotics, as the presence of p in the statement of (1.24)
should indicate: in effect, however, the linear terms cancel.

Next, a comment on the asymptotic independence. This is a bit
surprising. In the vicinity of t, the maximum is around

which diminishes as t moves away from ίn. Intuition suggests that
large values of Ln should be accompanied by small values of Mn.
However, this is too hasty. Keeping tnj away from tn makes Vnj

smaller; but saying that Ln — j makes Vnj larger. So there is some
tension here, and (1.24) shows that the two effects balance.

Finally, a comment on the connection between the multinomial
problem and the normal problem discussed in § 2. Formula (1.1)
involves the scaled variables

Znj = (Nnj - knpnj)/}/knpnj

which are essentially standard normal, and practically independent.
So a theorem for normal variables should—and does—go over to the
multinomial case. The argument in § 2 is organized so that the
estimates can be re-used in § 3. This depends, however, on the
growth condition (1.19). If only (1.18) is assumed, the binomials
are no longer quite so normal: "large deviations" corrections become
relevant. For a discussion of this point, see [2].

Acknowledgment. This paper is an offshoot from an extended
collaboration with Persi Diaconis on related problems, and it is a
pleasure to acknowledge his help.

2* The normal case* Conditions (1.2)-(1.15) are assumed on
the coefficients. Let Uό be independent standard normal variables,
and

(2.1) Vό = Vnj - anj Uά + βnj p log i - .

Define Mn and Ln as before, by (1.23). Recall (1.8).
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THEOREM 2.2. Assume (1.2)-(1.15). Define Vnj by (2.1). Assume
(1.21)-(1.23). As n—>oo9 the chance that

and

converges to

P^2 log Mεn(Ln

< an(tn)wn(x) +

-o - ί J < y

^2 logi-

-2̂ >

Without loss of generality, assume

(2.3) an{tn) = 1 and 0n(O = 0

Let δ be a small positive number. It will be shown that j 's with
I tnj — tn I ̂  δ make essentially no contribution to the max, because
with probability near one, the corresponding F/s are all less than

( 1 - 0 ) ^2 log A .

To make this this precise, only a very weak estimate is needed.

LEMMA 2.4. Let Zlf •• ,ϋΓTO be standard normal variables, not
necessarily independent. Let 0 < a < °o. T%e%

P{max£=1,...,m Z{ ^ V2 log (am)} > 0 .

Proof. The probability in question is bounded above by

mP{Z1 ^ τ/2 log (am)}^m -^= y

 1 - exp ί-— 2 log (am)

K27Γ v 2 log am I 2

Notation. yn ^ xn means i/n/α5n —> 1, while yn — α?n means

0 < Km inf yjxn <; lim sup yjxn < oo .

LEMMA 2.5. .Fiίc αtιτ/ small, positive d. Let

I, = {Utel and \t - tw\ ^ δ} .

For some sufficiently small positive θ, the probability that
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max, {Vnj: tnj e I,} < (1 - 0) ̂ 2 log j -

approaches one as n —» oo.

Proof. Recall that α n (ί j = 1 and βn(tn) = 0 by the normalization
(2.3). From (1.6)-(1.8), there is some θ > 0 such that for all large'w,

(1 - 50) ^ max {αn(ί) + βn(t): teIB] .

Now use compactness to express /δ as a finite union of intervals J
so short that

aί + βί^l - 4Θ ,

where

α£ = max {an(t): teJ}
t

and likewise for βi.

Fix J. By (1.4)-(1.5), for all n ^ n09

anj ^aί + θ and /3wi ^ βl + θ

for all i with tnj e J. Then

is bounded above by

(aί + θ) max {tf,; tni eJ} + (βl + 0) Jϊ log i - .

By 2.4, with probability near one, the last display is at most

(aL + θ + βi + Θ)J2 log-i ^ (1 - 2Θ) ^2 log-! ,

there being only 0(l/εJ indices j with tnj e J. Since there only
finitely many J's, the proof terminates. •

Note. In this part of the argument, the error terms in (1.4)-
(1.5) need only be assumed to be o(l). Also, since £„->£», for
large n, if \tnj - tJ ^ 8 then |ίw i - U ^ 5/2. Only i?s with \tnj -
ίw| < δ contribute to the max.

Turn now to the j's with \tnί — tn\ < δ. Here, the argument
is more complicated, and a sketch of the idea is given.

For — co<;α<δ^°o, let Iab be the set of j's with \tnj—tn\<
(2.6) δ and a ^ ρV2 log (l/βn)(ίΛi - ί j < 6, and let Afβ6 = maxi{Vni:

ί e /β6}.
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Despite the notation, Iab and Mab depend on n and δ. It will be
proved, among other things, that

(2.7) P{Vnj > wn{x)) = o(l) .

Here and later, "o" and "0" errors are as n—>co9 and are uniform
over j with \tnj — tn\ < δ.

Clearly, for — oo^a<b^c<d^oot

P{Mab ^ wn(x) and Mcd ̂  wn(y)} = P{Mab ^ wn{x))-P{Mcd S wn(y)} .

The factors will be estimated, and appeal made to 2.35 below. For
now, only a heuristic argument is given. By (2.7),

logP{Mα6 g wM) = - Σ P{Vni > wM) .

The symbol = means approximately equal, and is used only infor-
mally. Now

P{Vnj > wn{x)} = P{U, > ^2 \ogj-Xnj(x)} ,

where

(2.8) Xnί(x) =

This Xnj(x) is a key technical object in future arguments. To proceed,

(2.10)

xexp J-(log—)

It is necessary to estimate Xnj(x): as it turns out,

λnί(«) = 1 - -i-(log log i . ) / log A + i - x / log i -

Now (1 + q)2 == 1 + 2<j for small g, so

-(logi)λn i(a?)2 = -log i + log log -ί - i X
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Now combine (2.9)-(2.11): the factor 1/Xnj(x) on the right in (2.9)
is essentially 1, so

(2.12) p\ Uά > J2 log ±\nJ(x)\ = ±-(Γ^ ε' φ{n3)
K $n } &P

where

and φ was defined in (1.22) as the standard normal density. Some
algebra has been omitted here: the l/2ρ on the right of (2.12) is
needed to offset the p\/"2 in ε' and get back the 1/ι/lΓon the right
in (2.9). Continuing from (2.12),

j > J2 logi-λni(4 = ±e
(2 13) JeIab Sn P

l

because uj+1 — nά — ε'.
This argument will now be made rigorous: it is (2.10) and (2.11)

which take most of the work. Notice that Xnj(x) must be estimated
to within o(l/logl/εn), because its square gets multiplied bylogl/εn.
The assumptions are (1.2)-(1.15), (2.1) and (2.3). Two estimates will
be needed on an and βn; these estimates must be uniform in n.
The proofs are omitted as routine.

LEMMA 2.14. Fix ηt > 0. There is a small positive δ such that
for all n, and \t — tn\ < δ,

1 - «„(«) - βn(t) = -i-p2(l ± ηXt - tj .
Δ

More explicitly, the display means

i ^ ( l - Vi)(t - tj < 1 - an(t) - ^.(ί) < \p\l + Vl)(t - tny .
Δ Δ

LEMMA 2.15. Let (1/2)K > 1 + supn \a'n\ + 1/2supn \a'»\. There
is a small positive δ such that for all n, and \ t — tn | < δ,
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It is now time to estimate the Xnj(x) defined in (2.8), making
(2.10)-(2.11) precise.

LEMMA 2.16. Fix rj > 0. For small positive δ, the following
estimates will apply as n-+ ©o, uniformly over j with \tnj — tn\<δ,
and uniformly over x in compact intervals.

(a) | λ n i ( α 0 - l | < i 7 + o(l)
(b) (log l/εn)Xnj(xY ^ log l/εn - log log l/εn + (x + V)/2 + (p2/2)(l]+

7])X2logl/εn)(tnj-tny + o(l)
(c) (log l/en)Xni(xγ ^ log l/εn - log log l/εn + (x - V)/2 +

Proof. Choose d so small that the estimates in (2.14)-(2.15)
apply, with η1 to be chosen later. Also choose δ so small that

(2.17) A < «»(*) < 4 a n d — Γ < /9»(*)<-f f o r l« - « » l < *4 4 4 4

And so, for n ^ n0,

(2.18) i - < αTOi < - f and - i - < /3n i < i - for |*ni - * n | < δ .
Δ Δ Δ Δ

In (2.8), replace /3n, by /3n(tai) and «„• by «,(ίw ). This gives a
new quantity, to be denoted by λ*3 (x). The first job is to show
that

(2.19) Ks(x) = Kj(x) + o(l/log 1 ) .

However, the first move only caused an error of

[β,i ~ βn(tni)]/anj = o(l/log 1

by (2.18) and assumption (1.5). Likewise, the second move only
caused an error of

ώsL.
J21ogi-

= o(i/iog 1 ) .

This completes the proof of (2.19).
To proceed, let

rn = (log log i.y(log-i) and «.(») = x/(2 log 1.)
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_ [1 - r. + sn(x)Γ ~ &.(*.,) x
α«(*.y)

This trivial bit of algebra is the key to the proof. Expand the
square root and use (2.14):

qnj(x) =
an(tπj) - βn(tnj) - \τn + ±-sn(x)

±p*(l ± vύ(t,, - tj - ±rn + ±

Now use (2.15) to estimate a^t^)'1 — 1:

m¥) = -f|0*(l ± ViXtnj ~ tj -

+ r3 + o I/log —

where

\Tl\< ± P \ I + vύ(tnj
Δ

\τ,\<\rn K\tnj-tn\
Δ

Now \tnί — ίn| < δ by assumption, and iίδ gets small with δ, so τ t

merges into the first term: for small enough δ,

jP2(l ± Vύ(tnj - tJ + Γx = i-|02(l ± 2371)(ί,ί - tj .

This uses (1.14)-(1.15) to force p > 0. Likewise, r3 merges into

•5-β,(x) + τ3 = i-sja; ± 77) .

This leaves τ2. With respect to this error, the claim is

(2.20) τ2 = o(tni » t J + o(l/ log A ) .
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Indeed, if \tnj - tJ ^ l/(log 1/eJ1/2 then

|τ t | ίS \κ( log log -!)/( log I T 2 = o(l/ log A-) .

On the other hand, if | tnS - tJ > l/(log l/ej1/2 then

log i ) / ( log I ) 1 ' 2 = o(l) .

This completes the proof of (2.20). But (2.20) shows that r, merges
into the lead term as well:

±p\l ± 2Vl)(tn, - tj + r2 = qt}{x) + o(l/log -ί

where

(2.21) (&(&) = -i/o8(l ± 8^)(tni - t J .
Δ

Combining this with (2.19): for small δ,

(2.22) \ni(x) = 1 + q^x) + oil I log - ) .

Now (2.22) proves claim (a) of the lemma, because (ίnJ — tnf £Ξ
δ2, so q*s(x) as denned in (2.21) is small with d. Turning to claims
(b)-(c),

Xnj(xf = 1 + 2q:i(x) + qUxf + o(l/log i ) .

But qϊs(xy merges into qtά(x), because the latter is small: referring
to (2.21),

± 4^)(ίnί - ίn)
2 .

To complete the proof, choose ~ηx so that

(1 - ψ < 1 - 4ft < 1 + 4ft < (1 + ft)2 . •

This made (2.10)-(2.11) rigorous. Next, take up (2.13). Introduce

(2.23) ψni(x) = Uπ log λYl\nj(χ)-> exp {- (log ±-)κM \ •

LEMMA 2.24. If δ is small, ψnj(x) = o(l) as n-+ ©o, uniformly
over j with \ tnj — ίn | < δ, and uniformly over x in compact intervals.

Proof This is immediate from (2.16a), because Xnj(x) is essen-



ON THE MAXIMUM OF SCALED MULTINOMIAL VARIABLES 341

tially one, and logl/εn goes to infinity. •

LEMMA 2.25. Fix Ύ] > 0. If d is small, the following estimates
apply as n-+ °°, uniformly over extended real a and b, and x in
compact intervals.

(a) Έijεiabψnj(χ) is bounded below by

l - Φ[a(l + ?)]}• i exp ί-{Φ[b(l + V)] Φ[a(l + ?)]} exp ί
(i- ~T~ *]) £p \ Δ

(b) Σiβiα6ψw(a0 ^ s bounded above by

Proof. This follows from (2.16). Claim (a) will be argued in
some detail, and (b) is similar. Define

ε' - (0(1 + 7])εn{2. log j-J2

Hog—)(«.,-«,)

The dependence of ε' and us on ^ is suppressed. Recall that ψ is
the standard normal density. As (2.16a) implies,

As (2.16b) now implies, ψnJ (x) is bounded below by

The "o(l)w is as n-* ©o, and is uniform over *̂ with | ί n i — ίn| < δ,
for small enough 8.

Consider

(2.26) Σ e'φiuj) .

Suppose 0 ̂  α < 6 < oo. Clearly, uj+1 — u5 = ε'; and <3 is monotone
decreasing on [0, oo). So

As definition (2.6) shows, provided n is sufficiently large, jelab iff
α(l + yj) ̂  % < 6(1 + ??). Then the sum in (2.26) is bounded below by

φ(u)du .
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The e' in the lower limit of the integral takes care of an edge
effect: j is discrete, u is continuous. Clearly, the displayed integral
exceeds

φ(u)du — \ φ(u)du .

α(l+>?) JO

This completes the argument for (a) in case 0 <ί a < b < °° the case
b — oo then follows; the case — oo <;&<&<;() is symmetric; and
the general case follows by addition. This disposes of claim (a),
and (b) is similar. •

The η in (2.16) and (2.25) is a nuisance. Over the interesting
j , with

the argument in (2.16) is sharp enough to establish the results with
Ύ] = 0. However, something needs to be done to cover the i's with,
for instance,

( n i n ) <

(tnj - tn) < δ .

To do that, Ύj was needed. Now, however, this technical nuisance
can be eliminated. The interval Iab was defined in (2.6), and depends
on <5. This dependence matters in the next result, so the interval
will be denoted Iab(d).

PROPOSITION 2.27. // δ is small, uniformly over extended real
a and 6, and uniformly over x in compact intervals, as n-+ oo,

(2.28) Σ ΨnM > lΦ(b) - Φ(α)]lexp j - i -

Proof. Denote the left side of (2.28) by Sn(a9 by δ, x); and the
right side by T(a, b, x). The first thing to show is that the tails
don't matter. Fix η in (2.25) at any convenient value, say, η=l/2.
This generates a corresponding δ, for which the estimate in (2.25b)
is valid. This is the δ to use. Let 0 < B < oo, but large. Then

lim sup Sn(B, oo, δ, x)
n—*oo

is bounded above according to (2.25b), and this bound is small for
large B. Likewise for
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lim sup Sn(— oo9 ~B, δ, x) .
n—>oo

Let

α = ( - β ) Λ α and S=bΛB.

Then Sn(af b, δ, x) is bounded below by Sn(d, b, δ, x), and above by

Sn(a, 8, δ, x) + Sn(- oo, - 5 , δ, x) + Sn(B, - , δ, x) .

As a result, it is only necessary to prove the lemma for a and b
with

-B ^ a < b ^ B .

Now, if jelab(δ), then jelab(δ') for n^n0, where ^ 0 depends on
<5' but on j. Here, δ' is positive but much smaller than δ. As a
result, (2.25) applies with η arbitrarily small. •

Step (2.9) in the heuristic argument is easy to rigorize, in view
of (2.16).

For small δ: uniformly in j with \tnj — tn\ < δ, as n-+°°,

(2.29) P{U3 > ^2 log ± Xnj(x)} - [1 + o(l)]fn3{x).

Now (2.13) can be finished.

PROPOSITION 2.30. If δ is small:

(a) P{Uj > l/2log (l/en)λnJ (a:)} = o(l) as w->oo, uniformly over
j with \tni — tn\ < δ, a?ic? uniformly over x in compact intervals)

(b) Σ;e/ a 6iTC > l/2 log (l/en)λni(a?)} converges to

Φ(a)]±e

as n—>oof uniformly over extended real numbers a and δ, and x in
compact intervals.

Proof. Claim (a) is immediate from (2.29) and (2.24). Likewise,
claim (b) is immediate from (2.29) and (2.27). •

This completes the rigorous discussion of (2.13). Recall Mab

from (2.6). The next step is to determine the joint distribution of
Mab and Mcd.

PROPOSITION 2.31. If δ is small: uniformly over a, 6, cy d with
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— °° ^cL<b<*c<.d^ oo, and uniformly over x, y in compact
intervals,

P{Mab ^ wn(x) and Mcd <, wn(y)}

converges to exp{Q(#, y)} as n—>oof where

-2pQ(x, y) = [ΦQ>) - Φ(a)]e-{1/2)x + [Φ(d) - Φ(c)]e"a/2)y .

Proof. Clearly, the logarithm of the probability is

(2.32) Σ log P{ Vnό ^ wn(x)} + Σ log P{ Vnj ^ wn(y)} .

Take the first sum, for instance. Definition (2.8) of λnJ (α?) was set
up so that

Vnj rg wn{x) iff Uj ̂  ^ 2 log —Xnj(x) .

Expanding logp = log[l — (1 — p)] == — (1 — p), the first sum in
(2.32) can be estimated as

S > J2 log ± \ni(x)\ > ~[Φ(b) - Φ(a)]±e-^* ,

using (2.30). The other sum is similar. •

In (2.31), the index j was restricted so that \tnS — tn \ < δ. This
was part of the definition of Iab = /αδ(δ), even for infinite a and b,
in (2.6). As a result, Mab depends on δ too; write Mab(δ) to indicate
this dependence. The restriction on j was necessary, to make the
estimates in (2.16). However, it can now be eliminated.

COROLLARY 2.33. The conclusions of (2.31) apply, whatever δ
may be.

Proof. Let δ be small, so that (2.31) applies, and let δ' be
large. Let

Clearly,

Mab(δ) ^ Mab(δ') ^ Mab(δ) V M * .

But (2.5) and (2.31) show

P{ikt* ^ (1 - 0) ̂ 2 log i . ^ Mah(δ)} > 1 ,
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SO

P{Mah(δ') = Mab(δ)} > 1 . •

In particular, d can be chosen so large that {t:\t- tn\ < 3}
includes all of /. The proof of Theorem 2.2 is then accomplished
by appeal to (2.35) below.

It is helpful, at times, to take max,- Vnj not only over the j
with tnjel, but over all integers j. This can be done if anj and
βnS are defined for all j, and j'a with ίnj ί l do not count. This
can be made precise, as follows.

COROLLARY 2.34. Assume (1.2)-(1.15). Define Vni by (2.1), for
all integers j\ Assume (1.21)-(1.23). Assume further that for some
θ>0,

max {Vnj: tnj £ /} < (1 - θ) ̂ 2 log i -

with probability approaching one as n —» oo. Then the conclusions
of (2.2) apply to

Mn = max{Vni: all integer j} .

Proof Use the argument of (2.33). •

Note. The condition here is that anj should get small, or βnβ

should become large and negative, or both, as j —> ± oo.
Theorem 2.35 below will be used repeatedly, and so it is given

here in some generality.

Framework for 2.35. Let Vnj be a random variable, defined for
integers j in a finite, non-empty (non-random) interval Jn. For (2.2),
take Jn to be the set of j's with tnje J, and Vnj is defined by (2.1).
Let vn(y) be a strictly increasing function of y, with t;w(—°°) — — oo
and vn(oo) = co. For (2.2),

i>n(υ) = ί > v 2 1 o g —ίε*(y - c ^ - *»J

Likewise, let wn(x) be a continuous and strictly increasing function
of x, with wn(— oo) = — oo and ^n(oo) = oo. For (2.2), this function
is defined by (1.21) down to

a?= - 2 log—+ 2 log log—

it may be extended back to — oo in any convenient way, subject to
the conditions given above. Let
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Iai = {j: 3 e / „ a n d vn(a) ^j< vn(b)}

M?b = max{Vnj:jeI?b}
3

with Mab — — °° if /*& is empty. Let

Mn = m&x{VnJ:jeJu}

with Ln being the leftmost j at which the max occurs, and Ln the
rightmost. Let Φ be a distribution function: for (2.2), the standard
normal. Let ψ be a monotone increasing function on (— <*>, oo),
with ψ»(— oo) = — oo, and ^(°°) = 0; suppose too that <̂  has a con-
tinuous derivative ψΛ For (2.2), take ψ(x) = -(l/2p)e~x/\

THEOREM 2.35. Under the conditions given above, suppose that
for —oo <^a<b^c<d<* oo

Mc

w

d ^ wn(y)}

converges to exp{Q(cc, y)} as n—>°°, where

Q(x, y) =

Then

P{vn(a) SLnSLn^ vn{b) and Mn £

converges to

Proof. Begin with the case a— — oo. Since vn(— oo) = — oo,
there is no condition on Ln. Now

Ln ^ vn(6) and Mn > wn(x)

iff

Xn > x and Xn > Yn

where

Xn = w W eoO and F n = wίWfc)

By assumption, ^ n is strictly increasing, and its range is the whole
line, so w"1 is well defined.

As is given in the statement of the proposition, (Xn9 Yn) con-
verges in law to {X, Y), where

P{X ^x and Y ^ y] = exp {Q(α?, y)} .

In particular, X has the probability density

Φ(b)ψ'(u) exp
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while

and X, Y are idependent. Note that ψ is negative, but <f' is posi-
tive. Now

P{Xn > x and Xn > Yn} > P{X > x and X > Y} .

The limiting probability is

]} exp{[l - Φ(b)]ψ(u)}du

= Φ(b) \ψf(u) exp {ψ(u)}du

This proves the theorem when a = — oo and — oo < ft < oo. A
similar argument goes through when — oo < a < oo and 6 = oo. In
particular, Ln and Ln have the same asymptotic distribution, namely,
the law of v~\Ln) converges weak-star to Φ, and likewise for v~\Ln).
Since v~\Ln) ^ v-\Ln), it follows that

(2.36) v?(Ln) - v~\Ln) > 0 in probability.

The balance of the argument is omitted as routine. •

3* The multinomial case* In this section, Theorem 1.24 will
be proved. We are back in the multinomial situation: (1.1)-(1.23)
are in force. Without further loss of generality, assume the
normalization (2.3). Again, let δ be a small positive number. The
j's with \tnj — ίoo| ^ δ make essentially no contribution to the max,
because with probability near one, the corresponding Vn/s are all
less than

(X-l

This will be seen in (3.3). Here ε = εn; the subscript n was dropped
to lighten the notation.

LEMMA 3.1. Let ζ > 0. Then

Pίmax Znj > (1 + ζ) J log -1} > 0

as n—>oof the max being taken over all j with tnjel.

Proof, The chance that
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(3.2) Ns - kpό >(1 + QvΊcfi ^2 log -ί

is at most

exp j-(logi-

where

7 - l/[l + (1 + 0^2 log γ

is uniformly close to 1 by condition (1.18). Eventually, 7>l/(l + ζ),
and then the probability of the event (3.2) will be bounded above
by

However, there are only 0(l/ε) indices j with tnό e I. The version
of Bernstein's inequality used above appears as theorem (4) in [5]. •

LEMMA 3.3. Fix any small positive δ. Let

Iδ = {t: t 6 / and t — t^ | ^ 3} .

.For sufficiently small positive θ, the probability that

max {Vnj: tnά e Iδ} < (1 - θ) p log ±

approaches one as n tends to infinity.

Proof. Argue exactly as in (2.5), but use (3.1) instead of (2.4).
For n ^ n0,

max{Vnj:tnjeJ}

is bounded above by

(al + θ) max {Znj: tnj e J} + (^ί + θ) J2 log — .
j v e

By (3.1), with probability approaching one, the last display is at
most

{al + β)(l + ζ) + (βi + θ)}^2 log i
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<(1 + 0(1 -20)^2 lofiri-

for small ζ. •

Note. Again, in this part of the argument, the error terms in
(1.4)-(1.5) need only be assumed to be o(l). The result disposes of
the j with | t n i - t n | ̂ δ .

It is now time to deal with the j ' s for which \tni — ίn| < δ.
Define Iab and Mab by (2.6), with Vnj from (1.1). Despite the nota-
tion, Iab and Mab depend on n and on S. This will be made explicit
only when it matters.

PROPOSITION 3.4. Assume (1.1)-(1.23). If δ is small, and
— so <L a <b <* c < d <k co, then

^wn(x) and Mcd ^ wn(y)}

converges to exp {Q(x, y)} as n -» co, where

-2pQ(x, y) = [Φ(b) - Φ(a)]e-a/2)x + [Φ(d) - Φ{c)]

Granting (3.4), the condition on δ can be eliminated by (3.3),
just as in (2.33). Then the proof of (1.24) can be completed by
appealing to (2.35). Thus, (1.24) reduces to (3.4). Before going on
to the proof of (3.4), note that it may sometimes be helpful to take
maXj Vnά not only over the j with tni e I, but over all integer j .
This can be done, for anS, βnj9 pnj and Nnj are defined for all j , as
is Vnj by (1.1).

COROLLARY 3.5. Assume (1.1)-(1.23). Suppose further that for
some θ > 0,

max {Vnj: tni $ 1} < (1 - θ) ̂ 2 log -ί

with probability approaching one as n tends to infinity. Then the
conclusions of (1.24) apply as well to

Mn = max {Vnj: all integer j} .

Proof Use the argument of (2.33). •

Turn now to the proof of (3.4). It will be necessary to estimate
the probability above and below. The upper bound is easier. In
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essence, an inequality of Mallows (1968) shows that the probability
is at most

Π P{Vnj <z wn(χ)} Π P{Vni ^ wn(y)}
I* lab 3'eIcd

Of course, logp = log [1 — (1 — p)] < — (1 — p) for 0 < p < 1, so the
logarithm of the displayed product is at most

- Σ P{Vnj > wn(x)} - Σ P{Vni > wn(y)}
όzlab 3eIcd

Due to the minus-sign, P{Vni > wn(x)} must be estimated from below.
Recall Xnj(x) and ψni(x) from (2.8) and (2.23). Then

P{ V*' > ^(*)} = P ί(o.b)

the "o(l)" being uniform over i with | ίni — tn \ < d, provided δ is
small. The argument for (3.6) is omitted, being very similar to one
below. The lim sup of the probability in (3.4) is then at most
exp {Q(x, y)}, by (2.27). Further details on the lim sup are omitted.

For the liminf,

Under the conditions of (3.4), the probability in (3.4) is
bounded below by 7 + o(l), where log 7 is in turn bounded

( 3 ' 7 ) below by

- [ 1 + °(1)][ Σ Ψm(x) + Σ ΨnAv)] + 0(1) .

Granting (3.7), an appeal to (2.27) shows that the lim inf of the
probability in (3.4) is at least exp {Q(x, y)}. This completes the
proof of (3.4), and hence of the main theorem (1.24).

Thus, (1.24) is reduced to (3.7). Now begins a series of calcu-
lations designed to prove (3.7). Eventually, lemma (3.2) of [1] will
be used. Let

Aj = {Vni £ wΛ{x)} for jelab

{ ' {V£w(y)} for jelcd

(3.9) K, be the set of i with tn - δ ^ tni ^ tnί

ieKj
(3.10) g, = Σ Pi

(3.11) B =

(3.12) G} = { Σ JV« > A ̂  - i?}
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In (3.9), note that tni ^ tni iff i ^ j . In (3.10), assumption (1.16)
implies

(3.13) lim sup max {gs: tnj e /} < 1 .
n j

LEMMA 3.14. Σy {1 - Piβd tnjel} -> 0 as w -> oo.

Proof. Clearly, ΣieKjNi is binomial, with number of trials A;
and success probability gd < 1. So

1 - P{G3) < exp j - — J

< exp \-±rl

= exp 1-2 log —\ by (3.11)
v ε )

= ε 2 .

But there are only o(l/s) indices i with ίnί 61, completing the proof.
The version of Bernstein's inequality used above appears as theorem
(4) in [5]. •

LEMMA 3.15. Let N'3 be binomial, with success probability po =
Pj/(1 — gj-ί) and number of trials kr

jf the integer part ofk(l — g3-^ +
R. Let

V3 = V'nj = otn3(kp3)~1/2(N3- — kp3) + βnj(2log —j τc3(x)

= πnj(x) - P{ V'3
n > wn{x)} .

// d is small and n is large, then

P{Mab ^ wn(x) and Mcd £ wn(y)}

is bounded below by

{Till - πΛaOlH ί βΠ [1 - πάv)]} ~ ί e Σ _ [ l - P(C?,-)1

Bί/ definition (2.6), J.^^ is ί/ie seί 0/ i's with \tnj — tn\ < δ.

Proof This follows from (3.2) of [1]. Indeed, let ^ be the
spanned by Nt for i e Kά. Given ^J_ l y the variable Nd is

conditionally binomial, with success probability p]; the number of
trials T5 is an ^^_rmeasurable random variable:
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On Gs_ίf however, T,- ̂  k). So

- P Vy ^ kpj + vΊ&p, ^2 log jXnj(x)

+ fcp^log — λni(a?)

= 1 - πό{x) .

The heuristic: the more often you toss the coin, the more heads
come up.

In this argument, it is tacitly supposed that ctnj > 0, which will
be the case for all j with | tnj — tn \ < d, if d is small and n is
large. •

This proves the first part of (3.7): the product of the (1 — π)'s
in (3.15) serves for 7, and the sum of the [1 — P(Gd)]'a is o(l) by
(3.14). For the second part of (3.7), estimate

I o g 7 = - Σ *&)- Σ πM
3'eIab 3'eIcd

This will now be made rigorous.

LEMMA 3.16. If δ is small, then

πά(x) = [1 + o(l)]ψnj(x)

uniformly over j with \ tni — tn \ < δ, as n —> °°.

Proof. To begin with, for some ζ with 0 ^ ζ < 1,

so

and

(3.17) ftjpj = kPj + 0(RPj)

by (3.13). Consequently,

= 1 + θ[( log - ) 1 / 2 / * 1 / 2 ] by (3.11)

log i j by (1.20).
( 3 Λ 8 )
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Of course, π3-(x) is the chance that N exceeds

/ 1

(3.19) kpj + vkpJΛ]2log —Xnj(x) .
s

Now, the expression (3.19) can be rewritten as

(3.20) kM + VkM ^2log ^\xnj(x) + o(l/ log ̂ J [ .

Granting this transformation, proposition (3.17) of [1] can be applied
and completes the proof. The conditions of that lemma are satisfied
by assumptions (1.2) and (1.17-18), and the properties of k) and p)
developed obove. Note that Xnύ{x) is nearly 1, by (2.16a). Also,
(3.4) of [1] can be used to simplify the expression in (3.17) of [1].

To get from (3.19) to (3.20), note that

Jgί_ ^ b y ( 3 Λ 8 )

l/fcjpj Λ/2 log i - Vkpj Λ/2 log A

( 3 ' 2 1 ) - O(\/pJ) by (3.11) and (3.17)

log - ί) by (1.17)

So, it is harmless to replace the first term kpj in (3.19) by typ).
Now replace the factor V~kp5 in the second term of (3.19) by

v^kjPj. The error is Ί{y2ΊZf where

Ύ3 - Xnj(x)

But 72 - o(l/logl/ε) by (3.18), and 73 - 0(1) by (2.16a). This com-
pletes the move from (3.19) to (3.20), and hence the proof. •

Proof of 3.7. The probability in (3.14) is bounded below by
7 — 7', where

7 = Π [ 1 - * , ( * ) ] • Π [1-*,( !/) ]
(3 22) j6lab i e / ^

7'= Σ [l-P(Gi)l,
j e I—cooo

in view of (3.15). And Y -»0 by (3.14). Next,

(3-23) π,(x) = [1 + o(l)]fnj(x) = o(l)
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uniformly over j with \tnj — tn\ < δ, by (3.16) and (2.24). Of course,
log(l — u) — — [1 + o(l)]u as u—>0, and this completes the proof. •

This completes the proof of the distributional assertions in
(1.24), and it remains only to prove that the maximum occurs at a
unique index. First, some heuristics. Inspection of (1.24) suggests
that the maximum is likely to occur only for O((l/ε)/j/log 1/ε) indices
j near cn + ε~χ. Call these the critical j's. If Ns is maximal, it
must take a critical value i, of order

(3.24) kpj + Vkp' Λ/2 log — Xnj
v ε

where

(3.25) Xnj(x) = 1 + J W , - ίn)
2 ~ 1

2 2 log 1/ε 4 log 1/ε

In particular, there are O[]/A^ /i/log 1/ε] values i which are critical
for the index j.

Suppose the maximum occurs at indices j and jr. Then

N£ = i and Nf — ir

with

(3.26)

Thus, ΐ and i' are rigidly linked. The chance that the maximum
occurs at two distinct indices j and f is then

(3.27) Σ Σ P{Nά = i and Njf = i'}
3,3' i,i'

This sum extends only over critical indices j and j'; for each j, the
inner sum is over i's critical for j. Now N3- and Nr are nearly
independent, so

d=ί and N3, = i'} = P{ΛΓ, - i} P{N- = ί'} .

The probabilities on the right can be estimated by (3.10) of [1]:

P{Ni = i}= /

 X exp l - i - J ^ - ^ i

See (2.11). Likewise,
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In the inner sum of (3.27), the index i determines V by (3.26); so
the inner sum is

i £ 2 / l o g J L V Ί .
kpy \ ε / Jlog 1/e

But kp5> > (log 1/ε)3 by (1.19), so the inner sum is o(ε2). Coming to
the outer sum, the number of terms is O((l/ε2)/log 1/ε).

Returning to rigorous argument, the main estimate is the follow-
ing.

LEMMA 3.28. Assume (1.1)-(1.23). Fix positive, finite numbers
a and b. Then, uniformly over pairs of indices j Φ jr in J_αα, and
values i, if satisfying

kpj + l/kpj y 2 log —χnj(-b)

(3.29) S _
^ i ^ kpj + Vkpt J 2 log —λnί (δ)

^ log ±.\ni,(-b)
(3.30) ^ _

^ V ^ kpy + Vkpr J2 log i-Xnί,(b)
s

we have

(3.31) P{Nj = %} = O^p,)" 1 7 2 e log i

(3.32) P { ^ , = i' I iVy = i) = oΓcfcpyO"1^ log l Ί .

Proof. The first assertion (3.31) is more or less immediate from
(3.10) of [1], and the present (2.16). Details are omitted; also see
(3.4) of [1]. For the second assertion (3.32), given N5 — i, the con-
ditional distribution of Nό> is binomial with success probability p =
Pj>/(1 — Pj) and number of trials k = k — i. Some preliminary esti-
mates are needed before appealing to (3.10) of [lj. All " 0 " and "o"
estimates are uniform over jf f, i and V satisfying the conditions
of the lemma.

It will be shown that
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ίcp = kpll + θ(k~m( log —) m

(3.33)

(3.34) (i' - fc£)2/ί5£ = 2 log i - - 2 log log— + 0(1) .
ε ε

Granting (3.33)-(3.34), the second assertion too follows from (3.10)
of [1].

Turn now to proving (3.33)-(3.34). First,

ίcp - kpr = (kpj - i)PjΊ(X - ^ ) .

Now P i - ^ 0 by (1.17), so 1/(1 - p,) = 0(1). Next, λni(aj) = 0(1)
uniformly over j with \tnj — tn\ < δ and x with |ίc| ^ 5, by (2.16a). So

(3.35) i - fcpy = oΓi/fcpy ^ 2 log ^

and

(3.36) (kp - kpjd/kpj^ θ[τ/p7^log j

Now (1.20) proves (3.33).
For (3.34),

V — kp = (i' — kpά>) +

so

(i' - Λp)2 = (ΐ' - fcpyO2 + 2(i' - kpr)(kpjf -

Now

(ί' - ΛPiO1/^ = [«' - kPrY/kpd>][l + o(l/\og i

= [2 log i -2 log logi- + O(l)][l + o(l/log i-

= 2 log — - 2 log log— + 0(1)
ε ε

where (3.33) was used in the first line, condition (3.30) and estimate
(2.16b-c) of λ n i in the second. Likewise,

{%' - kpr)(kpr - ίcp)jkp - (i' - kpr)(kpy - kρ)lkpy by (3.33)

l/j>i'Pi log— by (3.35-6)

0 by (1.17)
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Finally,

{kpά, - kpf/kp ~ (fcjv - kpΠkVy by (3.33)

- p ^ lo

~ 0 by (1.17)

i - by (3.36)

D

4* A generalization. Some cases of interest do not quite fit
into the framework of conditions (1.4-15). Assume (1.1-3), for j's
such that tnj falls in the compact interval I. Let tn and too be
interior points of J, with tn —> t^. Let anJ a'n and βn, β'n be numbers,
for 1 <; n < co let α" and /3" be numbers. For any positive 7]1 and
η2, suppose there exist positive, finite numbers δx — S^η^ η2) and

n* = n*(ηlf Ύ]2) such t h a t \tnj — ί j < ^ and n > n* entai l

(4.1)

(4.2)

Suppose furthermore

(4.3) an -> a^ positive, and a'n -> αL, both finite

(4.4) a'n + /& = 0

(4.5) α - + ^ < 0 .

Let

(4.6) /O2 = —(ot'Ji ~\~ βf<ϋ)/(Xoo ^ 0

THEOREM 4.7. Suppose (1.1-3) αwd (1.16-23), fo^ (4.1-5) iw place
of (1.4-15). Let n-^ °o. jΓ/̂ erβ is some smαii positive δ such that,
with probability approaching one, Mn = maxy[yni: \tnj — t n | < δ] is
assumed at a unique index Ln. Furthermore, the chance that

c ) - t n ] < y

and

Mn < anwn(x) + βn ilogi-
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converges to

Φ(2/) e x p Γ e
L Ap

The prrof is omitted, being identical to that for (1.24). Note,
however, that (4.7) gives no control over j's with tnj remote from
too- If, for example, anj = a(tnj) and βnύ = β{tnj) where a and β are
smooth functions, then (4.7) can be used separately in the vicinity
of each local maximum of a + β.
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