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ON THE MAXIMUM OF SCALED MULTINOMIAL
VARIABLES

D. FREEDMAN

Suppose S, is a sum of 7 independent, identically distri-
buted, integer-valued random variables. Let p;, = P(S,=j).
Take k independent copies of S,, and let N; be the number
of these sums which are equal to ;. In previous papers
Persi Diaconis and I studied

max; N;

man (N] - kp])

max; (N, — kp,) ,
where P, is the normal approximation to p;. Likewise, we
have studied the histogram as a density estimator. These
problems all have a common structure, namely, determining
the asymptotic behavior of the maximum of scaled multi-
nomial variables. The object here is to present a general
theorem, flexible enough to cover all the cases mentioned
above. The form of this theorem may seem a bit arbitrary
at first, but it is suggested by the special cases.

1. Introduction. In this section, the theorem will be stated;
the proof is deferred to §3. Section 2 presents the analogous theo-
rem for normal variables, so as to bring out the main ideas in the
proof.

For the main theorem, consider a sequence of multinomial dis-
tributions, indexed by ». However, this index may be suppressed
in later sections, to lighten the notation. At every stage =, there
are boxes indexed by the integers j. Associated with each box is
a probability »;, = p,;; and

The p,;’s will tend to 0 as n grows. At stage =, there are k= F,
balls; k, — o as m — o. The balls are dropped independently in
turn into the boxes; a ball lands in box j with probability p,;. Let
N; = N,; be the number of balls which land in box j at stage =.
Thus, each N,; is binomial with small success probability p,; and
large number of trials k,. Jointly, the variables N,; for j =0,
+1, --- have a multinomial distribution.

Next, introduce coefficients a; = «a,; =0 and ;= B,;. The
primary interest is in max; V,;, where
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Vi = QuiZ,; + Ba;V 21og1]e, .

1.1) "
an = (Nnj - knpnj)/l/knpnj

In (1.1),

(1.2) c=¢,—0

is a scale factor for the coefficients, which also have a center ¢=c,.
To make this precise, introduce

(L.3) s = .05 — 02 -
and assume:
(1.4 s = a(tes) + o Llog 1)
sﬂ-
_ 1),
(L5) B = Baltnd) + o108 )

the functions @, = 0 and g, are defined and continuous on a
proper compact interval I, which does not depend on .

(1.6)
Conditions (1.4) and (1.5) are required to hold uniformly over 7 with
t,;€I. Assume further that

17 a,— a. and B,— B. as w — oo, uniformly on I.

For 1 <n £ o, the function a, + 8, has a unique global
(1.8) maximum at an interior point ¢, of I, and a,(¢,) > 0; fur-
thermore, £, — t..

Conditions (1.7) and (1.8) imply that
(1.9 a,(t,) is bounded below by a positive number.

Assume further that a, and B, are locally quadratic at ¢,: namely,
as t — ¢,

@m>m@=aﬂa+mu—mo+%wﬁ—mf+m—mr

(L11) Bu) = Bult) + Bt — 1) + %Bi.'-(t — L)+ oft — &)

where the “o” is uniform in n. Note that
Q— s, 0y — O,
Brn— By Bn — Bi

In (1.10) and (1.11), it is not necessary to assume differentiability
anywhere except at ¢,: the primes just denote numbers. Neces-
sarily :

1.12)
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(1.13) a,+ B.=0.
Also, a) + B8, < 0. More is assumed:
(1.14) an + B8, <0 for 1=n=
Abbreviate
(1.15) on = — (@ + B, (t,) > 0; set p = p...
The following growth conditions will be assumed, as % — co:
(1.16) lim Eggzj, {p.:t el <1
(1.17) p,u--(log%> —0
(1.18) 2. (108 2) — == -

To avoid “large deviation” terms, a condition stronger than (1.18)
is needed: )

(1.19) (6,0..) | (logé)a —

Conditions (1.17)-(1.19) are to hold uniformly in j with ¢,; € I. Note
that (1.17)-(1.18) imply

1 3
(1.20) k,,/(log;;) oo .
To state the main result, let
(1.21) w,(x) = (2 log 1_ 2 log log;l + oc)m .
an 67!

Let @ be the standard normal distribution function, with density ¢:

1.22) 9Oy = Siwgzs(u)du, where ¢(u) = 712—_; exp(——é-uﬁ) .
As usual, exp (v) = ¢’. Let
(1.23) M, = max;{V,;: t,; € I}, occurring at index L, .

Here, V,; is defined by (1.1).

In brief, the main result is that L, and M, are asymptotically
independent, L, being asymptotically normal and M, being asymp-
totically double-exponential.

THEOREM 1.24. Assume (1.1)-(1.23). Let n— . With proba-
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bility approaching one, M, = max;{V,;:t,;el} is assumed at a
unique index L,. Furthermore, the chance that

1 -

and

1
M, < a(tJw(e) + £u(t) 2 log L

converges to

O(y)- exp {—%’e'”’z} .

Now for some heuristic comments about the theorem, especially
the assumed error rate o(1/log 1/¢,) in (1.4)-(1.5). This error rate is
critical. Basically, all the action in M, is over j’s with ¢,; close to
t,. So, M, can be crudely approximated as the sum of two terms:

a,(t,) max; {Z,;: t,; near t,}
and

1
gutt) 2 log L

Both terms are of order 1/logl/e,. Changing the coefficients by
o(1/log 1/¢,) changes M, by o(1/v/log1/e,). Next, consider the asymp-
totic distribution function for M, in (1.24):

a,t)w,(+) + Bt \/ 2 log 21_ .

This is centered just to the left of

fe(t) + Bt 2 log L.,

which may be large. But the spread is of order
1 / \/ log-l— ,
€

which is small. So the distribution may move off to infinity, but
gets more and more concentrated. And only terms which are
o(1/v'Tog 1/e,) can be dropped from M, without affecting its asymp-
totic behavior.

Now for a comment on L,. The action in M, occurs for j’s
with t,; near ¢,. At first, it might seem that O(1/¢,) indices j should
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be involved, but this is slightly exaggerated: the right order is

1 / \/ Iog-l— .

€ €n
Thus, it is necessary to work within shrinking neighborhoods of
t.. Then, it might seem that o and B can be treated as constants.
Not so, however; the quadratic terms in (1.10)-(1.11) really matter
in the asymptotics, as the presence of p in the statement of (1.24)
should indicate: in effect, however, the linear terms cancel.

Next, a comment on the asymptotic independence. This is a bit
surprising. In the vicinity of ¢, the maximum is around

[a,(t) + B.(1)] Jz log 51_

which diminishes as ¢ moves away from ¢,. Intuition suggests that
large values of L, should be accompanied by small values of M,.
However, this is too hasty. Keeping t,; away from ¢, makes V,;
smaller; but saying that L, = j makes V,; larger. So there is some
tension here, and (1.24) shows that the two effects balance.

Finally, a comment on the connection between the multinomial
problem and the normal problem discussed in §2. Formula (1.1)
involves the scaled variables

an = (Nny - knpny)/l/knpm

which are essentially standard normal, and practically independent.
So a theorem for normal variables should—and does—go over to the
multinomial case. The argument in §2 is organized so that the
estimates can be re-used in §3. This depends, however, on the
growth condition (1.19). If only (1.18) is assumed, the binomials
are no longer quite so normal: “large deviations” corrections become
relevant. For a discussion of this point, see [2].

Acknowledgment. This paper is an offshoot from an extended
collaboration with Persi Diaconis on related problems, and it is a
pleasure to acknowledge his help.

2. The normal case. Conditions (1.2)-(1.15) are assumed on
the coefficients. Let U, be independent standard normal variables,
and

(2-1) Vj = V,,”' = (,l’,,jUj -+ an \/2 log—e}-' .

Define M, and L, as before, by (1.23). Recall (1.8).
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THEOREM 2.2. Assume (1.2)-(1.15). Define V,; by (2.1). Assume
(1.21)-(1.23). As n — oo, the chance that

1
21 — —_
p\/ Og Sn [6n(Ln cn) tn] < y

and

M, < a(t)w,@) + £.(8) 2 log 1
converges to
1 —1/2(%)
D(y)- exp [—-e ] .
20

Without loss of generality, assume
2.3) a,(t,) =1 and gB,(t,)=0.

Let 6 be a small positive number. It will be shown that j’s with
|t,; — t.| = 6 make essentially no contribution to the max, because
with probability near one, the corresponding V;’s are all less than

- 0)\/210;;.1_ .
€n
To make this this precise, only a very weak estimate is needed.

LemMA 2.4. Let Z, ---, Z, be standard normal variables, not
necessarily independent. Let 0 < a < oo. Then

P{max,_, .., Z;, =1 2log (am)}] — 0 .

Proof. The probability in question is bounded above by

1 1
P{Z, =121 C—
mPZ, = og (am)}~m Vv'ar  V'2log am

=o(l). O

-exp {——%-2 log (am)}

Notation. vy, ~ x, means y,/x, — 1, while y, ~ x, means

0 < liminfy,/z, < limsup y,/x, < o .

n—roo 7n—>00

LemMMA 2.5. Fixz any small, positive 6. Let
I ={t:tel and |t—t.]=0d}.

For some sufficiently small positive 0, the probability that
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max;{V,;:t,;e[} <@ —6) \/2 log -61—

n

approaches one as n — oo,

Proof. Recall that «,(t,) =1 and B,(t,) = 0 by the normalization
(2.3). From (1.6)-(1.8), there is some § > 0 such that for all large’n,

1 —56) = max {a.(t) + B.(t):tel}.

Now use compactness to express I, as a finite union of intervals J
so short that

ar+Bn=1-40,
where
al = max {a,(t):teJ}

and likewise for g;.
Fix J. By (1.4)-(1.5), for all » = n,,

a,;, <a,+60 and BB+ 0
for all 5 with ¢,;€J. Then
m?:x {an: tni (S J}
J

is bounded above by

(a + 0) max {Uj; t,;eJ} + (B + 0)\/2 log'gl- .

By 2.4, with probability near one, the last display is at most

(i + 0+ 61+ 0)y2log L <~ 20) J2108 L,
n €,

there being only 0(1/e,) indices j with ¢,;€J. Since there only
finitely many J’s, the proof terminates. ]

Note. In this part of the argument, the error terms in (1.4)-
(1.5) need only be assumed to be o(1). Also, since ¢, —t., for
large m, if |t,; — t,| = 0 then [t,; — t.| = §/2. Only j’s with [¢,; —
t,| < 0 contribute to the max.

Turn now to the j’s with |¢,;, — ¢,| < 6. Here, the argument
is more complicated, and a sketch of the idea is given.

For —cc<a<bx oo, let I,, be the set of j’s with [¢,,—%,|<
(2.6) 6 and a < pv"2log (I/e,)(t,; — t,) < b, and let M,,=max;{V,;:
j € Iab}’
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Despite the notation, I,, and M,, depend on » and §. It will be
proved, among other things, that

(2.7 P{V,; > w, ()} = o(1) .
Here and later, “o” and “0” errors are as n —co, and are uniform

over j with |¢,; — t,| < o.
Clearly, for —» <a<b=ec<d < oo,

P{M,, = w,(x) and M., = w,(y)} = P{M,, = w,(@)}- P{M,; £ w,(v)} .

The factors will be estimated, and appeal made to 2.85 below. For
now, only a heuristic argument is given. By (2.7),

log P{M,, = w,(®)} = — >, P{V,; > w,(2)} .

jelgp

The symbol = means approximately equal, and is used only infor-
mally. Now

PV, > w,@) = P{U, > V2 log En@)

where

W, (%) — Baj \/2 log El—

a,,j\/z logzl-

(2.8) M) =

This A, ;(x) is a key technical object in future arguments. To proceed,

1 1 1
Vv 2r \/21 1>\,,”(x)

P{U > \/2 log _xn,@c)}

X exp { — (log 21:> )»M»(x)z}

It is necessary to estimate \,;(®): as it turns out,

Naix) =1 — }—(log Iog /log — + /log—

2.9)

(2.10)
+ Epg(t,.f — 1)

Now (1 + ¢)* =1 + 2¢ for small ¢, so

—<log "1—>)"nj(x)2 = —log —}— + log log 1_1,
€ o8 &, 2

(2.11) ~ % ” <2 log )(tw oy
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Now combine (2.9)-(2.11): the factor 1/, ;(x) on the right in (2.9)
is essentially 1, so

2.12) {U > \/2 log —kn,(w)} - 1p e ()

where

¢ = pe, Jz log-él-

u; = pyf2log (e, — 1)

and ¢ was defined in (1.22) as the standard normal density. Some
algebra has been omitted here: the 1/20 on the right of (2.12) is
needed to offset the p1 2 in ¢’ and get back the 1/1”2 on the right
in (2.9). Continuing from (2.12),

ﬁ%bP{U > J2log L -—)»,,](x)} 1p S Sguy)

(2.13)

because u;., — u; = €.

This argument will now be made rigorous: it is (2 10) and (2.11)
which take most of the work. Notice that \,;(x) must be estimated
to within o(1/log 1/¢,), because its square gets multiplied by log 1/e,.
The assumptions are (1.2)-(1.15), (2.1) and (2.3). Two estimates will
be needed on «a, and pB,; these estimates must be uniform in x.
The proofs are omitted as routine.

LEMMA 2.14. Fix 7, > 0. There is a small positive 0 such that
for all m, and |t —t,] <0,

L— a,(6) = Bu8) = =00 £ 7 — L) -
More explicitly, the display means

%ﬁa—mw—my<1—%w—ﬁw%<%ﬂ1+ma—nﬁ

LEmMMA 2.15. Let (1/2)K > 1 + sup, |a,| + 1/2sup, |a;,|. There
is a small positive o such that for all », and |t —t,| < 0,

]Aﬂ~4<Kn—m
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It is now time to estimate the \,;(x) defined in (2.8), making
(2.10)-(2.11) precise.

LEMMA 2.16. Fix 7 > 0. For small positive 0, the following
estimates will apply as n — oo, uniformly over j with |t,; — t,|<9,
and uniformly over x im compact intervals.

@) [Nas(@) — 1] <7+ o(1)

(b) (log1/e,)x,;(2)* < log1/e, — loglog 1/e, + (x + 7)/2 + (0*/2)(11+
7)(2log 1/e,)(t,; — t,)° + o(1)

(¢) (log1l/e,)n,;(%)* = logl/e, — loglog1/e, + (x — 7)/2 + (0°/2)(1 —
7)(2log 1/e,)(t,; — t.)* + o(1)

Proof. Choose 6 so small that the estimates in (2.14)-(2.15)
apply, with 7, to be chosen later. Also choose § so small that

3 5 1 1
2.17) = S L < — ,
(2.17) 1 < a,t) < 1 and 1 < Bt < 1 for |t —1t,] <o

And so, for n = n,,
1

8 and —L<g, <t for (t,—t]<5.

1
218) L v, <3
2.18) o> <a<g 2 2

In (2.8), replace 3,; by g.(t,;) and «,; by «,(t,;). This gives a
new quantity, to be denoted by \X(x). The first job is to show
that

2.19) Nns(@) = NE(@) + o(1/1og 8l> .

n

However, the first move only caused an error of
(825 — Bultulit; = o(/log =)
€n

by (2.18) and assumption (1.5). Likewise, the second move only
caused an error of

ot - ae Tt - iy o)
5

n

This completes the proof of (2.19).
To proceed, let

Yn = (log log ;{:)/ (108’ -3;) and s,(x) = x/ (2 log é)

n5(®) = Naj(@) — 1
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— [1 — T + sn(w)]l/z - Bn(tn]) . 1

an(tnj)
— [1 — Ta + sn(w)]l/z _ an(tna) _ Bn(tni) .
an(tnj)

This trivial bit of algebra is the key to the proof. Expand the
square root and use (2.14):

1= a,(t.;) — Baltes) — %rn + %sm)

4.5() = a,(t,;) + 0(1/ logé>
Loa £ p)t; -t — L, + Lo
= 2 ) 2 2 + o<1 / Iogglq?) .

Now use (2.15) to estimate a,(¢,;)™ — 1:

g.i(@) = %pﬁu £ )ty — t) — %m + -g-s,xx) ot

1
+ 7, + o(l/ log E,L_>
where
] < 0L+ )t — £ Kty — ]
1
JTZI < "z"rn'Klth' - tnl
1
|T3| < _z-sn(lxD'Klth - tnl .
Now |¢,; — t,| < 0 by assumption, and Ko gets small with d, so 7,

merges into the first term: for small enough 4,

%pz(l & )ty — 1)+ T, = %.02(1 £ 29ty — 1) -

This uses (1.14)-(1.15) to force p > 0. Likewise, 7, merges into
s, (x):

—;—s%(x) + 7= %sn(x +7).

This leaves 7,. With respect to this error, the claim is

(2.20) T = 0ty — £.)° + 0(1 / log .1_) .
en
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Indeed, if |t,; — ¢t,| < 1/(log 1/e,)* then
/2 1
lz,] < —K(loglog >/k log ) = o(l/ log gn—>
On the other hand, if [tn,- — t,| > 1/(log 1/e,)"* then

[z l/(t0; — )" <log log >/ ( log g-)m =o(1) .

n

This completes the proof of (2.20). But (2.20) shows that z, merges
into the lead term as well:

1 o . 2 —_— *. _l_
DL 1 £ 29)(E,; — t)° + 7. = ¢is(®) + 0<1/ log s,,>
where
2.21) 0@ = SO £ 3m)(Es — ) -
Combining this with (2.19): for small 3,
. 1
2.22) Nos(®@) = 1+ g*(@) + o<1 / log 8_> .

Now (2.22) proves claim (a) of the lemma, because (f,; —t,)° =
0%, so qx;(x) as defined in (2.21) is small with . Turning to claims

(b)-(c),
M@ = 1 + 2¢5(0) + @) + o (1 / log sl) .

But ¢};(x)* merges into gi;(x), because the latter is small: referring
to (2.21),

2¢35(%) + @ui(@)" = (L £ 49)(F,; — t.)*
To complete the proof, choose 7, so that
QA= <l—4n<1+4n <A +7n*. [l

This made (2.10)-(2.11) rigorous. Next, take up (2.13). Introduce
_ IV ot exp {—( Tog L)n @y
(2.28) 4, i(x) = <47z log Sn) Ni() exp{ <log . )xw(x) } .

LEMMA 2.24. If 0 s small, +4,;(x) = o(1) as m — o, uniformly
over j with |t,; — t,| < &, and uniformly over x in compact intervals.

Proof. This is immediate from (2.16a), because \,;(x) is essen-
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tially one, and log 1/e, goes to infinity. O

LemMMA 2.25. Fix 7> 0. If ¢ is small, the following estimates
apply as n — <o, uniformly over extended real a and b, and x in

compact intervals.
@) Dljer,, ¥ail@) s bounded below by

21 + 7 = Pla(l + D)) o -exp {=5- @+ D) + ofD)

(0)  Sier,, Vai(®) s bounded above by

1 1 1
A = 7] = Olal — D) o-exp {5 = D)} + o).

Proof. This follows from (2.16). Claim (a) will be argued in
some detail, and (b) is similar. Define

1/2
¢ =pl + 77)6,,(2 log -1—)
;= o(L + 7)(2log = )(t,,, — ).
The dependence of & and u; on n is suppressed. Recall that ¢ is
the standard normal density. As (2.16a) implies,
Aai(@) 7 Z [+ oD/ + 1) -
As (2.16b) now implies, +,;(z) is bounded below by

L ex
(1 + 7' 20
The “o(1)” is as m — o, and is uniform over j with |¢,; — ¢,| <9,

for small enough 4.
Consider

(2.26) > epus) -

jelgy

[+ ol —— p{-2@+n} o).

Suppose 0 < a < b < . Clearly, u;,, —u; =¢’; and ¢ is monotone
decreasing on [0, ). So

et > | owan .
uj
As definition (2.6) shows, provided » is sufficiently large, jel,, iff
a(l + 1) £ u; <b1 + 7). Then the sum in (2.26) is bounded below by

b(1+p)
S sw)dw .

a(1+7)+e’
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The &' in the lower limit of the integral takes care of an edge
effect: 7 is discrete, w is continuous. Clearly, the displayed integral
exceeds

b(1+7) e

S o(u)du — S du)du .
a(1+7) 0

This completes the argument for (a) in case 0 < a <b <oo; the case

b= o then follows; the case —c < a < b =<0 is symmetric; and

the general case follows by addition. This disposes of claim (a),

and (b) is similar. 1

The » in (2.16) and (2.25) is a nuisance. Over the interesting
7, with

1
p\/zloggltﬁ—m <B<w,

the argument in (2.16) is sharp enough to establish the results with
7 = 0. However, something needs to be done to cover the j’s with,
for instance,

B<py2iog Le, — )<

(tni - tn) < 0.

To do that, » was needed. Now, however, this technical nuisance
can be eliminated. The interval I,, was defined in (2.6), and depends
on 6. This dependence matters in the next result, so the interval
will be denoted I,,(6).

PROPOSITION 2.27. If ¢ is small, uniformly over extended real
a and b, and uniformly over x in compact intervals, as n — o,

(2.28) 5 das(@) — [00) — 0(a)] zlpvexp (L.

Felgyts 2

Proof. Denote the left side of (2.28) by S,(a, b, 0, ); and the
right side by T(a, b, ). The first thing to show is that the tails
don’t matter. Fix 7 in (2.25) at any convenient value, say, n=1/2.
This generates a corresponding 4, for which the estimate in (2.25b)
is valid. This is the 6 to use. Let 0 < B < oo, but large. Then

lim sup S,(B, <, 4, x)

is bounded above according to (2.25b), and this bound is small for
large B. Likewise for
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lil‘l;_il;lp S,(— e, —B, d, x) .
Let
éd=(—B)Aa and b=bAB.
Then S,(a, b, 6, «) is bounded below by S,(@, b, 6, ), and above by
S,(@, b, 8, ) + S,(—co, —B, 8, ) + S,(B, =, 0, x) .

As a result, it is only necessary to prove the lemma for a and b
with

—B=a<bs=B.

Now, if jel,,0), then jelI,(0') for n = n, where n, depends on
0" but on 5. Here, 0’ is positive but much smaller than 6. As a
result, (2.25) applies with » arbitrarily small. 0

Step (2.9) in the heuristic argument is easy to rigorize, in view
of (2.16).

For small §: uniformly in j with |¢,; — t,| < 0, as n —o0,
1 -
(2.29) PlU; > \f2l0g Lo} = 1L+ oW
Now (2.13) can be finished.

ProPOSITION 2.30. If 6 is small:

(@) P{U; > V'2log /e )\,;(x)} = o(1) as n —co, uniformly over
Jj with |t,; —t,| <0, and uniformly over x in compact intervals;
(®) Sier, PAU; > V' 21og (Afe,)N,;(®)} converges to

[6(b) — @(a)]-z—lp e

as n — oo, uniformly over extended real numbers a and b, and x in
compact intervals.

Proof. Claim (a) is immediate from (2.29) and (2.24). Likewise,
claim (b) is immediate from (2.29) and (2.27). 0

This completes the rigorous discussion of (2.13). Recall M,
from (2.6). The next step is to determine the joint distribution of
M,, and M,,.

PROPOSITION 2.31. If 0 is small: uniformly over a,b,c, d with
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—0o =a<b=2c<d= o0, and uniformly over x,y in compact
intervals,

P{Mab é wn(w) a',nd Mcd = wn(y)}

converges to exp {Q(x, ¥)} as n —oo, where
—20Q(x, y) = [O(b) — O(a)]le~"?* + [@(d) — D(c)]e~V>" .

Proof. Clearly, the logarithm of the probability is
(2.82) 2. log P{V,; < w,(2)} + 2. log P{V,; = w.(y)} -
Jeleq

JELgp

Take the first sum, for instance. Definition (2.8) of A,;(x) was set
up so that

VS w,(@ iff U;=< \/ 2log sixm-(m .

Expanding logp =log[l — (1 —p)]=—1 — p), the first sum in
(2.32) can be estimated as

[+ o] 3 P{T; > y2log Dr @) — ~[00) — #@)] Eee,
i<lap &, 20
using (2.80). The other sum is similar. O

In (2.31), the index j was restricted so that |¢,; — ¢,| < . This
was part of the definition of I,, = I,,(6), even for infinite ¢ and b,
in (2.6). As a result, M,, depends on ¢ too; write M,,(9) to indicate

this dependence. The restriction on j; was necessary, to make the
estimates in (2.16). However, it can now be eliminated.

COROLLARY 2.33. The conclusions of (2.31) apply, whatever o6
may be.

Proof. Let 6 be small, so that (2.31) applies, and let &' be
large. Let

M* = max{V,;: [t,; — t.| = J} .
Clearly,
Moy(0) = M,,(0") = M)V M* .

But (2.5) and (2.31) show

Pl = (- 0)|210g L = Ma0)} — 1,
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SO
P{M,,(0") = My (0)} — 1. ]

In particular, 6 can be chosen so large that {¢:|¢ — ¢,| < 6}
includes all of I. The proof of Theorem 2.2 is then accomplished
by appeal to (2.35) below.

It is helpful, at times, to take max; V,; not only over the j
with ¢,;e I, but over all integers j. This can be done if «,; and
B.; are defined for all j, and j’s with ¢,;€I do not count. This
can be made precise, as follows.

COROLLARY 2.34. Assume (1.2)-(1.15). Define V,; by (2.1), for
all integers j. Assume (1.21)-(1.23). Assume further that for some
é>0,

max{V,;: t,; ¢ I} <1 — 6?)\/210g€l

with probability approaching one as n — . Then the conclusions
of (2.2) apply to
M, = max {V,;: all integer j} .
J

Proof. Use the argument of (2.33). O

Note. The condition here is that «,; should get small, or g,;
should become large and negative, or both, as j — & co.

Theorem 2.85 below will be used repeatedly, and so it is given
here in some generality.

Framework for 2.35. Let V,; be a random variable, defined for
integers j in a finite, non-empty (non-random) interval J,. For (2.2),
take J, to be the set of j’s with ¢,;€I, and V,; is defined by (2.1).
Let v,(y) be a strictly increasing funection of y, with v,(— ) = —
and v,(co) = . For (2.2),

0.0) = 02108 Lo,y — ¢ — 1.1

Likewise, let w,(x) be a continuous and strictly increasing function
of z, with w,(—c0) = —o and w,(c0) = . For (2.2), this function
is defined by (1.21) down to

rx= —2 log-l- + 210glogl ;
&, €,

it may be extended back to — o in any convenient way, subject to
the conditions given above. Let



346 D. FREEDMAN

w=1{j17ed, and v,(a) = j < v,(b)}
no= max{VM jelxr}

with M = — o if I3 is empty. Let
M, = max {V,;: jeJ,}
J

with L, being the leftmost j at which the max occurs, and L, the
rightmost. Let @ be a distribution function: for (2.2), the standard
normal. Let + be a monotone increasing function on (—oo, ),
with oy(—c0) = —oco, and 4(c0) = 0; suppose too that 4 has a con-
tinuous derivative «’. For (2.2), take y(x) = —(1/20)e *".

THEOREM 2.35. Under the conditions given above, suppose that
for —o = a<b=c<d=s

PMZ, < w,(x) and Mi = w,(y)}
converges to exp {Q(x, ¥)} as n —oo, where
Qz, y) = [2(b) — ()] (x) + [0(d) — PO (Y) -
Then
P{v,(a) < L, < L, < v,(b) and M, < w,(x)}
converges to

[0() — O(a)]-exp {y(2)} .

Proof. Begin with the case ¢ = —c. Since v,(—) = —oco,

there is no condition on L,. Now
L,<v,() and M, > w,(x)
ift
X, >« and X,>7,
where
X, = w;(M*.,) and Y, = w; (M) .

By assumption, w, is strictly increasing, and its range is the whole
line, so w;! is well defined.

As is given in the statement of the proposition, (X,, Y,) con-
verges in law to (X, Y), where

PX=z and Y =<y} =-exp{Q, y)}.
In particular, X héjs the probability density
O(b)y'(u) exp {D(b)y(u)}
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while
PY <u} = exp{[1 — 0®O)}¥p(w)} ;

and X, Y are idependent. Note that 4 is negative, but ' is posi-
tive. Now

P X,>zxand X, > Y,]— P(X>2and X > Y}.
The limiting probability is

|, 2@ @ exp (@G wWI}-exp {[L — PO w)du

= o) | v/ () exp (rw)du

= O(b)[exp {y(co)} — exp {y()}]
= O(B)[1 — exp {y(2)}]

This proves the theorem when a = — and —co <b < 0. A
similar argument goes through when —c < a < o and b = . In
particular, L, and L, have the same asymptotic distribution, namely,
the law of »;%(L,) converges weak-star to @, and likewise for v;\(L).
Since v;Y(L,) < v;%L,), it follows that

(2.36) v;N(L,) — v;'(L,) — 0 in probability.

The balance of the argument is omitted as routine. |

3. The multinomial case. In this section, Theorem 1.24 will
be proved. We are back in the multinomial situation: (1.1)-(1.23)
are in force. Without further loss of generality, assume the
normalization (2.3). Again, let 0 be a small positive number. The
j’s with |¢,; — t.| = 0 make essentially no contribution to the max,
because with probability near one, the corresponding V,;’s are all
less than

a —6)\/210g%.

This will be seen in (3.3). Here ¢ = ¢,; the subseript n was dropped
to lighten the notation.

LeMMA 3.1. Let { > 0. Then
1
P{max Z,;>14+0 Jlog —} —0
i €
as n —co, the max being taken over all j with t,;¢€l.

Proof. The chance that
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(3.2) N; —kp; > 1 + OvV'kp; \/2 log 1
€
is at most
exp {—( log %)(1 + C)W}

where

T=1/[1+ @ +04(210g L) fko,]

is uniformly close to 1 by condition (1.18). Eventually, v>1/1+0),
and then the probability of the event (8.2) will be bounded above
by

exp {—( log —18—)(1 + C)} = gt ,

However, there are only 0(1/¢) indices j with ¢,;€I. The version
of Bernstein’s inequality used above appears as theorem (4) in [5]. []

LEMMA 3.3. Fix any small positive 0. Let
Ii={t:tel and |t—t.| =0d}.

For sufficiently small positive 0, the probability that

max{V,:t;e[} <A —0) \/2 log 1
g €
approaches one as n tends to imfinity.

Proof. Argue exactly as in (2.5), but use (3.1) instead of (2.4).
For » = n,,

max{V,;: t,;€J}

is bounded above by

() + O)max{Z,;:t,;eJ} + (B + 6) \/2 log 1.
i >

By (8.1), with probability approaching one, the last display is at
most

(s + 01 + O + (81 + 0)]y21og L

<+ Ot + 8+ 29)y2log
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<A+ 00— 20)J2l0g 1
1

1
— 0)4/210g ~
<@ 0)\/ og —
for small ¢. |

Note. Again, in this part of the argument, the error terms in
(1.4)-(1.5) need only be assumed to be o(1). The result disposes of
the j with |t,; —t,| = 4.

‘It is now time to deal with the j’s for which |¢,; — ¢,| < 0.
Define I,, and M,, by (2.6), with V,; from (1.1). Despite the nota-
tion, I,, and M,, depend on % and on d. This will be made explicit
only when it matters.

PROPOSITION 3.4. Assume (1.1)-(1.23). If 6 14s small, and
—oZa<b=ZLe<d<Z o, then

PM,, = w,(®) and M, = w,(y)}

converges to exp {Q(x, ¥)} as n — o, where

—20Q(z, y) = [0(b) — D(a)le=2* + [@(d) — B(e)]e " .

Granting (3.4), the condition on 6 can be eliminated by (3.3),
just as in (2.33). Then the proof of (1.24) can be completed by
appealing to (2.85). Thus, (1.24) reduces to (3.4). Before going on
to the proof of (3.4), note that it may sometimes be helpful to take
max; V,; not only over the j with ¢,;€I, but over all integer j.
This can be done, for a,;, B,;, P.; and N,; are defined for all j, as
is V,; by (1.1).

COROLLARY 3.5. Assume (1.1)-(1.23). Suppose further that for
some 6 > 0,

max {V,;: t,; € [} < (1 — 0)\/2log_1_

with probability approaching one as m tends to imfinity. Then the
conclusions of (1.24) apply as well to

M, = max {V,;: all integer j} .
J
Proof. TUse the argument of (2.33). |

Turn now to the proof of (3.4). It will be necessary to estimate
the probability above and below. The upper bound is easier. In
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essence, an inequality of Mallows (1968) shows that the probability
is at most

Il P{V.; = wn(w)}-jeIIId PV,; = w.(y)} .

Jelgy

Of course, logp =log[l — (1 — p)] < —(1 — p) for 0 < p < 1, so the
logarithm of the displayed product is at most

—‘j;b P{ an > wn(x>} _J'g‘d P{ Vni > wn(y)} .

Due to the minus-sign, P{V,; > w,(x)} must be estimated from below.
Recall \,;(z) and +,;(z) from (2.8) and (2.23). Then

P(V. > w,@) = PN, > kp, +1/Fp; 2 log Lo )

the “o(1)” being uniform over j with |¢,; — ¢,| < d, provided o is

small. The argument for (3.6) is omitted, being very similar to one

below. The lim sup of the probability in (8.4) is then at most

exp {Q(x, »)}, by (2.27). Further details on the lim sup are omitted.
For the lim inf,

(3.6)

Under the conditions of (3.4), the probability in (3.4) is
bounded below by 7 + o(1), where log~ is in turn bounded
below by

[+ oMILS, ¥ui@ + 5 i) + o))

3.7

Granting (3.7), an appeal to (2.27) shows that the lim inf of the
probability in (8.4) is at least exp{Q(z, y)}. This completes the
proof of (8.4), and hence of the main theorem (1.24).

Thus, (1.24) is reduced to (3.7). Now begins a series of calcu-
lations designed to prove (3.7). Eventually, lemma (3.2) of [1] will
be used. Let

Ai = {an é wn(x)} for j eIab

3.8
@9 ={V.; S w,(y)} for jel,
(3.9) K; be the set of ¢ with ¢, — 0 <¢,<t,;
(3.10) g9;= >, D
‘LEKj
(3.11) R= 2<k log _1_>”2
>

(3.12) Gy = {5 N> kg; — B)
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In (3.9), note that ¢,, < ¢,; iff © < j. In (3.10), assumption (1.16)
implies

(3.13) lim sup max {g;: t,; € [} <1.
n J

Lemma 3.14. >, {1 — P(G)): t,;€I}—0 as n— oo.

Proof. Clearly, 3.k, N; is binomial, with number of trials %
and success probability g; < 1. So

1 — P(G,) < exp {——;—RZ/ lcgj}
< exp {—%R” k}

= exp {—2 log —i—} by (3.11)
=g,

But there are only o(1/¢) indices j with ¢,; € I, completing the proof.
The version of Bernstein’s inequality used above appears as theorem

(4) in [5]. t

LEmMMA 3.15. Let Nj be binomial, with success probability p; =

2;/A — g;_1) and number of trials kj, the integer part of k(1—g;_,) +
R. Let

1/2
Vi= Vi = a,p) " (N; — kp) + B(2log =) 7i@)
If ¢ 1s small and n is large, then

P{Mab é wn(x) a’nd Mcd = wn(y)}

13 bounded below by

{jgb[l - ﬁj(x)]}-{jgd[l — ol — > [1— P@Gyl.

J€l_o0oco

By definition (2.6), I_... is the set of j’s with |t,; — t,| < 0.

Proof. This follows from (3.2) of [1]. Indeed, let .#; be the
o-field spanned by N, for i€ K;. Given .&#,_,, the variable N, is
conditionally binomial, with success probability pj; the number of
trials 7'; is an .%;_,-measurable random variable:

ieKj_g
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On G;_,, however, T; < k;. So
P{V; = w,(2)| F;_.}
S s |
= PN, < kw; + VT Jz log -e-xn,.(x)]%_l}

= P{Nj' = kp; + V'kp; \/ 2log }—Mf(x)}
5

= P{V; < w, ()}

=1— 7).

The heuristic: the more often you toss the coin, the more heads
come up.

In this argument, it is tacitly supposed that «,; > 0, which will
be the case for all j with [¢,; —¢,] <9, if 0 is small and = is
large. ]

This proves the first part of (8.7): the product of the (1 — x)’s
in (38.15) serves for 7, and the sum of the [1 — P(G,)]’s is o(1) by
(8.14). For the second part of (3.7), estimate

log v i—jg,bn'j(x) - >, wiy) .

jelgg

This will now be made rigorous.

LEMMA 3.16. If 6 is small, then
7,(@) = [1 + oL ()
uniformly over j with |t,; — t,| <0, as n — oo.
Proof. To begin with, for some { with 0 ¢ < 1,
k}=k(1—g,-_1)+R—C,

SO
kip; = kp; + ————(If — 50D
- gj-l
and
(3.17) kip; = kp; + O(Rp;)

by (3.18). Consequently,
'n' — __]-_ 2 1/2
(plep) = 1+ 0 (log 1) [ | by .11)

(3.18) =1+ o(1/log L) by (1.20).
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Of course, 7;(x) is the chance that N, exceeds

(3.19) kp; +1V'Ekp; \/2 log Tl_:-x,,j(ac) .
Now, the expression (3.19) can be rewritten as
320 Kp+ VR 2log L@ + of1/108 L)} .

Granting this transformation, proposition (8.17) of [1] can be applied

and completes the proof. The conditions of that lemma are satisfied

by assumptions (1.2) and (1.17-18), and the properties of %k; and p;

developed obove. Note that A, ;(x) is nearly 1, by (2.16a). Also,

(3.4) of [1] can be used to simplify the expression in (3.17) of [1].
To get from (3.19) to (3.20), note that

hps — Kipi ko — kD g (3.18)
VER J2log L VB, |2log

(8.21) = 00”7, by (3.11) and (3.17)

- 0<1 / log _1_> by (1.17)
€
So, it is harmless to replace the first term kp; in (3.19) by kjpj.

Now replace the factor 1kp; in the second term of (3.19) by
Ic]pj The error is v,7,Y,, where

= mﬁ@—

= [(kp,)/ (k)] —
73 - k"nj(a'/')

But 7, = o(1/log 1/¢) by (3.18), and v, = O(1) by (2.16a). This com-
pletes the move from (3.19) to (3.20), and hence the proof. 0

Proof of 8.7. The probability in (8.14) is bounded below by
v — 7', where

= II [1 —7;@)] H 1 — 7]
(3.22) ’“ab
= 3 [L- P(G?)] ,

Jel—cooo

in view of (3.15). And v"— 0 by (8.14). Next,
(3.23) 7;(@) = [1 4+ o(D]yrs(®) = o(1)



354 D. FREEDMAN

uniformly over j with |¢,; — t,| < 8, by (3.16) and (2.24). Of course,
log(1 —u) = —[1 + o(1)]u as u— 0, and this completes the proof. []

This completes the proof of the distributional assertions in
(1.24), and it remains only to prove that the maximum occurs at a
unique index. First, some heuristics. Inspection of (1.24) suggests
that the maximum is likely to occur only for O((1/e)/1v log 1/e) indices
j mnear ¢, + &,'t,. Call these the critical j’s. If N; is maximal, it
must take a critical value ¢, of order

(3.24) kp; + V'Ekp, \/ 2 log —i—xnj(w) )
where

. 1. . 1 loglogl/e 1 x
3.25) Noi(@) =1 4+ =0t — t.)F — — = :
(3.25) @) + 2'0( ! ) 2 logl/e 4 log 1/e

In particular, there are O[vkp;/1 Tog 1/e] values i which are critical
for the index j.
Suppose the maximum occurs at indices j and j'. Then

Nj = /i and er = 7:,
with

anjq’—];k——@ + Bn,-\/z log 1
(3.26) s ¢

iV — kp; 1
= an YRR i N + nj’ 21 —_— .
" Vkp; d \/ ¢ e

Thus, ¢ and ¢’ are rigidly linked. The chance that the maximum
occurs at two distinet indices 5 and 7’ is then

(3.27) S S PN, =4 and N, =i}

4,47 %’

This sum extends only over critical indices j and j5’; for each j, the
inner sum is over ¢’s critical for j. Now N, and N, are nearly
independent, so

P{N; =1 and N; =i} = P{N;=1}-P{N;=1}.
The probabilities on the right can be estimated by (8.10) of [1]:

1 _1 (@ — kpy)
Vg, P { 2" ko, }

1 1
——/lcpj 2 < log —8-> .
See (2.11). Likewise,

P(N; = i} =
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PN, = ¥}~ s (log %) .

In the inner sum of (3.27), the index ¢ determines 7' by (3.26); so
the inner sum is

V'kp; 2 2
0[1/ lozp{/e ’ l/llfp—j ' l/klpj, ¢ (log —18—):1 ’

But kp; > (log 1/e)* by (1.19), so the inner sum is o(¢*). Coming to
the outer sum, the number of terms is O((1/¢*/log 1/e).
Returning to rigorous argument, the main estimate is the follow-

ing.
LEMMA 3.28. Assume (1.1)-(1.23). Fix positive, finite numbers

a and b. Then, uniformly over pairs of indices j = 7' in I_,,, and
values 1,1 satisfying

kp; + V/p; 2 log Ix,(~b)

(3.29) - .
< i< kp; + Vkp; \/ 2log ?Ma-(b)
kpy + 1/ by A2 log Ln,(—b)
(3.30) ¢
< i S kpy +Vkpy \/ 2 log %M'(b)
we have
(3.31) PN, =i} = o[acpj)-w ¢ log _H
(3.32) PN, = #|N, = i} = O[(lcpj,)‘”“’e log %] .

Proof. The first assertion (3.31) is more or less immediate from
(3.10) of [1], and the present (2.16). Details are omitted; also see
(8.4) of [1]. For the second assertion (3.32), given N; = ¢, the con-
ditional distribution of N; is binomial with success probability p =
p;/(L — p;) and number of trials =k —i. Some preliminary esti-
mates are needed before appealing to (3.10) of [1]. All “O” and “o”
estimates are uniform over j, 5/,7 and 1’ satisfying the conditions
of the lemma.

It will be shown that
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5=t 1+ ofi () )]

- kpj,[l + 0(1/ log ’2’)]

(3.34) (" — kpy/pk = 2 log% — 2log log’%— +0Q).

(3.33)

Granting (3.33)-(3.34), the second assertion too follows from (3.10)
of [1].
Turn now to proving (3.33)-(3.34). First,

kp — kp; = (kp; — )p;/(1 — p;) -

Now p;—0 by (1.17), so 1/(1 — p;) = O1). Next, \,;x) = 0(1)
uniformly over j with |¢,; — ¢,| < 6 and x with |2| < b, by (2.16a). So

(3.35) i — kp, = O[Vk—p; \/2 log _H
and
(3.36) (Ep — kp,)kp, = 0[1/}7,.‘ J@/V‘E] .

Now (1.20) proves (3.33).
For (3.34),

' — kp = (' — kp;) + (kpyy — kp)
SO
(@' — kpy = (& — kpy) + 20’ — kp;)opyr — kp) + (kpy — kD) .

Now
(1" — kp;)/kp = [(i" — kp;)/kp;] [1 + °<1/ log %)]
= [2 log —i—-Zlog Iog%- -+ 0(1)}[1 + 0(1/ log %)]
— 2log _1_ — 2log log% + 0(1)

where (8.83) was used in the first line, condition (8.80) and estimate
(2.16b-c¢) of \,; in the second. Likewise,
@ — kp;)kpy — kD)kD ~ (i — kp;)(kp; — kp)/kp;» by (3.33)
~ l/p,-,p—;-log-t— by (3.35-6)

—0 by (1.17)
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Finally,
(ks — kp)IkD ~ (bpy — kp)lkp; by (3.33)
~ p;p;log —1— by (3.36)
~0 by (1.17) [

4. A generalization. Some cases of interest do not quite fit
into the framework of conditions (1.4-15). Assume (1.1-3), for j’s
such that ¢,; falls in the compact interval I. Let ¢, and t. be
interior points of I, with ¢, —»t.. Let a,, a, and B,, 8, be numbers,
for1 < n < oo; let ) and B; be numbers. For any positive 7, and
7,, suppose there exist positive, finite numbers 4, = 6,(%, 7, and
n* = n*(n, 7,) such that |t,; — t,| < d, and n > »™* entail

’anj - &, — a;'(tnj - tn) - 'é"a:;'(tnj - tn)2

(4.1) )
<Pty — £ + m/ log =

(4.2)
1
b, — )+ 7,/ log L
<7 (tm t.)" + 77/ og c

Suppose furthermore

4.3) a, — a., positive, and a;, — a.,, both finite
4.4) a4+ B8, =0

4.5) al+ B8y <0.

Let

(4.6) 0= —(al + Bl)]a. > 0.

THEOREM 4.7. Suppose (1.1-8) and (1.16-23), but (4.1-5) in place
of (1.4-15). Let m — . There is some small positive 6 such that,
with probability approaching one, M, = max;[V,;: |t,; — t.| <] is
assumed at a unique index L,. Furthermore, the chance that

p\/z log l[sn(Ln —¢)—tl<y
Sn

and

M, < a,w,(@) + 8, \/2 log sl
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converges to

d(y)-exp [—2%06_(1/2“’:) .

The prrof is omitted, being identical to that for (1.24). Note,
however, that (4.7) gives no control over j’s with ¢,; remote from
to. If, for example, a,; = a(t,;) and B3,; = B(t,;) where a and g3 are
smooth functions, then (4.7) can be used separately in the vicinity
of each local maximum of a + g.
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