NON-NORMAL BLASCHKE QUOTIENTS

Shinji Yamashita

A quotient B_{1} / B_{2} of two infinite Blaschke products B_{1} and B_{2} with no common zero is called a Blaschke quotient. The existence of a Blaschke quotient which is not normal in the open unit disk D, is well known. We shall show among other things, that, for each $p, 0<p<\infty$, there exists a nonnormal Blaschke quotient f such that

$$
\iint_{D}(1-|z|)^{p}\left|f^{\prime}(z)\right|^{2} /\left(1+|f(z)|^{2}\right)^{2} d x d y<\infty .
$$

This might be of interest because, if g is meromorphic in D and if $\iint_{D}\left|g^{\prime}(z)\right|^{2} /\left(1+|g(z)|^{2}\right)^{2} d x d y<\infty$, then g is normal in D.

1. Introduction. By a Blaschke product we mean a holomorphic function in $D=\{|z|<1\}$, denoted by

$$
B\left(z ;\left\{c_{n}\right\}\right)=\prod_{n=1}^{\infty} \frac{\left|c_{n}\right|}{c_{n}} \frac{c_{n}-z}{1-\bar{c}_{n} z}
$$

where $\left\{c_{n}\right\}$ is an infinite complex sequence satisfying $0<\left|c_{n}\right|<1$, $n=1,2, \cdots$, and $\sum\left(1-\left|c_{n}\right|\right)<\infty$. By a Blaschke quotient we mean a meromorphic function in D, defined by

$$
Q\left(z ;\left\{c_{n}\right\},\left\{c_{n}^{\prime}\right\}\right)=B\left(z ;\left\{c_{n}\right\}\right) / B\left(z ;\left\{c_{n}^{\prime}\right\}\right),
$$

where the Blaschke products in the right-hand side have no zero in common.

A meromorphic function f in D is called normal in D if $\sup _{z \in D}(1-|z|) f^{\sharp}(z)<\infty$, where $f^{*}=\left|f^{\prime}\right| /\left(1+|f|^{2}\right)$; see [5]. We shall construct nonnormal Blaschke quotients with some additional properties. It is easy to merely construct a nonnormal Blaschke quotient. For example, set $c_{n}=1-(2 n)^{-\lambda}$ and $c_{n}^{\prime}=1-(2 n+1)^{-\lambda}, n=1,2, \cdots$, where $\lambda>1$ is a constant. Then $Q(z)=Q\left(z ;\left\{c_{n}\right\},\left\{c_{n}^{\prime}\right\}\right)$ is not normal. Actually, let

$$
\sigma\left(z_{1}, z_{2}\right)=\frac{1}{2} \log \frac{1+\rho\left(z_{1}, z_{2}\right)}{1-\rho\left(z_{1}, z_{2}\right)}
$$

be the non-Euclidean distance between z_{1} and z_{2} in D, where

$$
\rho\left(z_{1}, z_{2}\right)=\left|z_{1}-z_{2}\right| /\left|1-\bar{z}_{1} z_{2}\right| .
$$

Then, $Q\left(c_{n}\right)=0, Q\left(c_{n}^{\prime}\right)=\infty, n \geqq 1$, and $\lim _{n \rightarrow \infty} \sigma\left(c_{n}, c_{n}^{\prime}\right)=0$. Therefore, Q is not uniformly continuous from D, endowed with $\sigma(\cdot, \cdot)$,
into the Riemann sphere, endowed with the spherical chordal distance. Consequently, Q is not normal in D. Accordingly, J. A. Cima [3, Theorem 4] proved the existence of a nonnormal Blaschke quotient $Q\left(z ;\left\{c_{n}\right\},\left\{c_{n}^{\prime}\right\}\right)$ with $\inf _{j, k \geqq 1} \sigma\left(c_{j}, c_{k}^{\prime}\right)>0$.

There is another way of finding nonnormal Blaschke quotients. Namely, if a Blaschke quotient Q has two asymptotic values at one boundary point of D, then Q is not normal in D by [5, Theorem 2]. Therefore, one can easily conclude that the Blaschke quotients found by D. A. Storvick [6, p. 37] and C. Tanaka [7, Theorem 2] both are not normal in D. A meromorphic function f in D is said to have the left angular limit w (possibly, ∞) at 1 if $f(z) \rightarrow w$ as $z \rightarrow 1$ within each triangular domain whose vertices are 1 and two points in $D^{+}=\{z \in D \mid \operatorname{Im} z>0\}$. Also, f is said to have the right angular limit w at 1 if $\overline{f(\bar{z})}$ has the left angular limit \bar{w} at 1 (convention: $\bar{\infty}=\infty)$. A Blaschke quotient $Q(z)=Q\left(z ;\left\{c_{n}\right\},\left\{c_{n}^{\prime}\right\}\right)$ is called symmetric if $\bar{c}_{n}=c_{n}^{\prime}$ for each n. If Q is symmetric, then $Q(z) \overline{Q(\bar{z})} \equiv 1$ in D, so that Q has the left angular limit w at 1 if and only if Q has the right angular limit $1 / \bar{w}$ (convention: $1 / 0=\infty, 1 / \infty=0$) at 1 . Therefore, if Q is symmetric and if Q has the left angular limit 0 at 1 , then Q is never normal in D because Q has 0 and ∞ as asymptotic values at 1 .

Now, for f meromorphic in D, we set

$$
S_{p}(f)=\iint_{D}(1-|z|)^{p} f^{\sharp}(z)^{2} d x d y, \quad z=x+i y, \quad 0 \leqq p<\infty
$$

It is familiar that if $S_{0}(f)<\infty$, then f is normal in D. It is not difficult to observe that $S_{1}(Q)<\infty$ for each Blaschke quotient Q. In effect, since Q is of bounded characteristic in the sense of R. Nevanlinna, it follows from

$$
\int_{0}^{1}\left[\iint_{|z|<r} Q^{*}(z)^{2} d x d y\right] d r<\infty
$$

that $S_{1}(Q)<\infty$; see (2.10) in $\S 2$.
Our first result is
Theorem 1. Let $0<p<1$, and let $0<q<\infty$. Then there exists a symmetric Blaschke quotient $Q(z)=Q\left(z ;\left\{a_{n}\right\},\left\{\bar{a}_{n}\right\}\right)$ satisfying the following three conditions.
(I) $\inf _{j, k \geq 1} \sigma\left(a_{j}, \bar{a}_{k}\right) \geqq q$.
(II) Q has 0 as the left angular limit at 1.
(III) $S_{p}(Q)<\infty$.

If we restrict p in (III) of Theorem 1 as $1 / 2<p<1$, then we can construct Q with an additional property.

By a left horocyclic angle at 1 we mean a domain

$$
\left\{z \in D^{+}\left|1-x_{1}<\left|z-x_{1}\right| \text { and } 1-x_{2}>\left|z-x_{2}\right|\right\}\right.
$$

where $0<x_{2}<x_{1}<1$. A meromorphic function f in D is said to have the left horocyclic angular limit w at 1 if $f(z) \rightarrow w$ as $z \rightarrow 1$ within each left horocyclic angle at 1 ; the notion is essentially due to F. Bagemihl [1]. Also, f is said to have the right horocyclic angular limit w at 1 if $\overline{f(\bar{z})}$ has \bar{w} as the left horocyclic angular limit at 1. Again, a symmetric Blaschke quotient Q has the left horocyclic angular limit w at 1 if and only if Q has the right horocyclic angular limit $1 / \bar{w}$ at 1 . Therefore, if a symmetric Q has the left horocyclic angular limit 0 at 1 , then Q is never normal in D.

Theorem 2. Let $1 / 2<p<1$, and let $0<q<\infty$. Then there exists a symmetric Blaschke quotient $Q(z)=Q\left(z ;\left\{a_{n}\right\},\left\{\bar{a}_{n}\right\}\right)$ satisfying the same conditions as (I), (II), and (III) in Theorem 1, together with
(IIH) $\quad Q$ has 0 as the left horocyclic angular limit at 1.
Lastly in the present section, we remark that Cima and P. Colwell [4, Theorem 2] proposed a necessary and sufficient condition for a Blaschke quotient to be normal in D in terms of interpolating sequences.
2. Proof of Theorem 1. By the linear transformation $w=$ $\varphi(z) \equiv(1+z) /(1-z)$, the disk D is mapped onto the right half-plane R, so that, $R^{+}=\varphi\left(D^{+}\right)$is the first quadrant in the w-plane. Furthermore, by φ, the chord $L(\theta)=\{z \in D \mid \arg (1-z)=\theta\},|\theta|<\pi / 2$, is mapped onto the half-line:

$$
\Lambda(\theta)=\{w=x+i y \in R \mid y=(-\tan \theta)(x+1)\}
$$

By a simple calculation one obtains

$$
\begin{equation*}
1-|z|^{2}=4 \operatorname{Re} w /|w+1|^{2}, \quad w=\varphi(z), \quad z \in D \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho\left(z_{1}, z_{2}\right)=\left|w_{1}-w_{2}\right| /\left|\bar{w}_{1}+w_{2}\right| \tag{2.2}
\end{equation*}
$$

for $w_{j}=\varphi\left(z_{j}\right), z_{j} \in D, j=1,2$.
To costruct Q we choose $A, 0<A<1$, such that

$$
\begin{equation*}
\frac{1}{2} \log \frac{1+t}{1-t}=q \quad \text { and } \quad t=A /\left(1+A^{2}\right)^{1 / 2} \tag{2.3}
\end{equation*}
$$

Choose $\theta_{0},-\pi / 2<\theta_{0}<0$, so that $A=-\tan \theta_{0}$, and then choose $s>1 / p>1$. Consider the sequence of points $b_{n} \in \Lambda\left(\theta_{0}\right)$ such that $b_{n}=x_{n}+i y_{n}=n^{s}+i A\left(n^{s}+1\right), n=1,2, \cdots$. Let $a_{n}=\varphi^{-1}\left(b_{n}\right), n \geqq 1$. Then $\left\{a_{n}\right\} \subset L\left(\theta_{0}\right)$. We then set $Q(z)=Q\left(z ;\left\{a_{n}\right\},\left\{\bar{a}_{n}\right\}\right)$. First of all, Q is well defined because, by (2.1),

$$
\begin{align*}
\sum\left(1-\left|a_{n}\right|\right) & =\sum\left(1-\left|\bar{\alpha}_{n}\right|\right) \leqq \sum\left(1-\left|a_{n}\right|\right)^{p} \tag{2.4}\\
& \leqq \sum\left(1-\left|a_{n}\right|^{2}\right)^{p} \leqq 4^{p} \sum n^{-s p}<\infty
\end{align*}
$$

Further, one observes that

$$
\begin{equation*}
|Q(z)|=g(w) \equiv \prod_{n=1}^{\infty} g_{n}(w), \quad w=\varphi(z) \tag{2.5}
\end{equation*}
$$

where $g_{n}(w)=\left|w^{2}-b_{n}^{2}\right| /\left|w^{2}-\bar{b}_{n}^{2}\right|, n \geqq 1$.
Proof of (I). Let $w=x+i y \in R, \quad \zeta=\xi+i \eta \in R$, with $y \geqq$ $A(x+1), \eta \geqq A(\xi+1)$. Since

$$
X \equiv(x+\xi) /(y+\eta) \leqq A^{-1},
$$

it follows that

$$
|w-\bar{\zeta}| /|w+\zeta| \geqq\left(X^{2}+1\right)^{-1 / 2} \geqq\left(1+A^{-2}\right)^{-1 / 2}=t
$$

In view of (2.2) one can now easily conclude that $\rho\left(\alpha_{j}, \bar{a}_{k}\right) \geqq t$, so that $\sigma\left(a_{j}, \bar{a}_{k}\right) \geqq q$ for all $j, k \geqq 1$.

Proof of (II). To prove that

$$
\begin{equation*}
\lim _{\substack{\left.z \rightarrow 1 \\ z \in \mathbb{z} \vec{y}_{0}\right)}} Q(z)=0, \tag{2.6}
\end{equation*}
$$

it suffices by (2.5) to show that

$$
\begin{equation*}
\lim _{\substack{w \rightarrow \infty \\ w \in \Lambda\left(\theta_{0}\right)}} g(w)=0 \tag{2.7}
\end{equation*}
$$

Since $g_{n}(w) \leqq 1$ for all $w \in R^{+}$and for all $n \geqq 1$, it follows that

$$
\begin{equation*}
g(w) \leqq g_{n}(w) \leqq 1 \text { for all } w \in R^{+} \quad \text { and all } n \geqq 1 \tag{2.8}
\end{equation*}
$$

Given $\varepsilon>0$, one can find a natural number N such that $x_{n+1} / x_{n}-$ $1<\varepsilon$ for all $n \geqq N$. Then, for each $w=x+i y \in \Lambda\left(\theta_{0}\right)$ with $x \geqq x_{r}$,

$$
\begin{equation*}
g(w) \leqq A_{1} \varepsilon, \quad A_{1}=\frac{1}{2}\left(A+A^{-1}\right) \tag{2.9}
\end{equation*}
$$

which proves (2.7). To make sure of (2.9), we first find $n \geqq N$ such that $x_{n} \leqq x \leqq x_{n+1}$. Then,

$$
\begin{gathered}
\left|w-b_{n}\right|=\left(1+A^{2}\right)^{1 / 2}\left(x-x_{n}\right) \leqq\left(1+A^{2}\right)^{1 / 2}\left(x_{n+1}-x_{n}\right), \\
\left|w+\bar{b}_{n}\right| \geqq x+x_{n} \geqq 2 x_{n},
\end{gathered}
$$

whence

$$
\left|w-b_{n}\right| /\left|w+\bar{b}_{n}\right| \leqq \frac{1}{2}\left(1+A^{2}\right)^{1 / 2} \varepsilon .
$$

On the other hand,

$$
\begin{aligned}
& \left|w+b_{n}\right| /\left|w-\bar{b}_{n}\right| \\
& \quad \leqq\left[\left(x+x_{n}\right)^{2}+A^{2}\left(x+x_{n}+2\right)^{2}\right]^{1 / 2} /\left[A\left(x+x_{n}+2\right)\right] \leqq\left(1+A^{-2}\right)^{1 / 2}
\end{aligned}
$$

so that $g_{n}(w) \leqq A_{1} \varepsilon$. Therefore, in view of (2.8), one can assert (2.9).
Since $|Q(z)|=g(\varphi(z)) \leqq 1$ in D^{+}by (2.8), and since (2.6) holds, it follows from E. Lindelöf's theorem [8, Theorem VIII. 10, p. 306], together with an obvious conformal homeomorphism from the upper half-disk onto D^{+}, mapping 0 to 1 , that Q has the left angular limit zero at 1.

Proof of (III). We remember L. Carleson's family T_{α} of meromorphic functions h in D such that

$$
I_{\alpha}(h) \equiv \int_{0}^{1}(1-r)^{-\alpha}\left[\iint_{|z|<r} h^{\sharp}(z)^{2} d x d y\right] d r<\infty,
$$

where $0 \leqq \alpha<1$; see [$2, \mathrm{p} .19$]. Letting $X_{r}(z)$ be the characteristic function of the disk $\{|z|<r\}$, one observes that

$$
\begin{align*}
I_{\alpha}(h) & =\int_{0}^{1}(1-r)^{-\alpha}\left[\iint_{D} X_{r}(z) h^{\sharp}(z)^{2} d x d y\right] d r \\
& =\iint_{D}\left[\int_{0}^{1}(1-r)^{-\alpha} X_{r}(z) d r\right] h^{\sharp}(z)^{2} d x d y=(1-\alpha)^{-1} S_{1-\alpha}(h) . \tag{2.10}
\end{align*}
$$

For a Blaschke quotient $Q_{1}(z)=Q\left(z ;\left\{c_{n}\right\},\left\{c_{n}^{\prime}\right\}\right)$ we assume that

$$
\sum\left(1-\left|c_{n}\right|\right)^{1-\alpha}<\infty \quad \text { and } \quad \sum\left(1-\left|c_{n}^{\prime}\right|\right)^{1-\alpha}<\infty .
$$

Then it follows from [2, Theorem 2.2, p. 24] that $Q_{1} \in T_{\alpha}$.
Returning to our Q, we can easily conclude from (2.4) that $Q \in$ T_{1-p}, whence $S_{p}(Q)<\infty$ by (2.10).

Remark. The Blaschke quotient Q, described in the second paragraph in $\S 1$, satisfies $S_{p}(Q)<\infty$, for a $p, 0<p<1$, provided that $\lambda<1 / p$.
3. Proof of Theorem 2. Let $\lambda>(1 / 2)\left(p^{-1}+1\right)$ and $1 /(2 p)<$ $\mu<1$, and $y_{n, m}=n^{\lambda} m^{\mu}(n, m=1,2, \cdots)$. Let t and A be as in (2.3).

Then, for each fixed $n \geqq 1$, we may find a natural number M_{n} such that

$$
y_{n, m} \geqq A(n+1) \geqq A\left(n^{-1}+1\right) \text { for all } m \geqq M_{n} .
$$

Then, for each fixed $n \geqq 1$, the points $b_{n, m}=n+i y_{n, m}, m \geqq M_{n}$, lie on the half-line $\Gamma(n)=\left\{w \in R^{+} \mid \operatorname{Re} w=n\right\}$, so that $a_{n, m}=\varphi^{-1}\left(b_{n, m}\right)$ ($m \geqq M_{n}$) lie on the half-oricycle $C(n)=\varphi^{-1}(\Gamma(n))$. Similarly, for each fixed $n \geqq 2$, the points $b_{n, m}^{*}=n^{-1}+i y_{n, m}, m \geqq M_{n}$, lie on the half-line $\Gamma^{*}(n)=\left\{w \in R^{+} \mid \operatorname{Re} w=n^{-1}\right\}$, so that $a_{n, m}^{*}=\varphi^{-1}\left(b_{n, m}^{*}\right)\left(m \geqq M_{n}\right)$ lie on the half-oricycle $C^{*}(n)=\varphi^{-1}\left(\Gamma^{*}(n)\right)$. Let $\left\{a_{n}\right\}=\left\{a_{n, m}\right\} \cup\left\{a_{n, m}^{*}\right\}$. Then $Q(z)=Q\left(z ;\left\{a_{n}\right\},\left\{\bar{a}_{n}\right\}\right)$ is the requested. We first observe that, for $n \geqq 1$,

$$
\beta_{n} \equiv \sum_{m \geqq \mu_{n}}\left[\operatorname{Re} b_{n, m} /\left|b_{n, m}+1\right|^{2}\right]^{p} \leqq n^{p(1-2 \lambda)} \sum_{m=1}^{\infty} m^{-2 p \mu},
$$

and for $n \geqq 2$,

$$
\beta_{n}^{*} \equiv \sum_{m \leqq \pm \mu_{n}}\left[\operatorname{Re} b_{n, m}^{*} /\left|b_{n, m}^{*}+1\right|^{2}\right]^{p} \leqq n^{-p(1+2 \lambda)} \sum_{m=1}^{\infty} m^{-2 p \mu} .
$$

Since $p(1+2 \lambda)>p(2 \lambda-1)>1$ and $2 p \mu>1$, it follows from (2.1) that

$$
\begin{align*}
& \sum\left(1-\left|a_{n}\right|\right) \leqq \sum\left(1-\left|a_{n}\right|^{2}\right)^{p} \\
& \quad \leqq 4^{p}\left(\sum_{n=1}^{\infty} \beta_{n}+\sum_{n=2}^{\infty} \beta_{n}^{*}\right)<\infty, \tag{3.1}
\end{align*}
$$

so that Q is well defined. Now, one observes that

$$
\begin{equation*}
|Q(z)|=G(w) \equiv \prod_{n=1}^{\infty} G_{n}(w) \prod_{n=2}^{\infty} G_{n}^{*}(w), \quad w=\varphi(z), \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& G_{n}=\prod_{m=\Psi_{n}}^{\infty} g_{n, m}, \quad G_{n}^{*}=\prod_{m=\mu_{n}}^{\infty} g_{n, m}^{*}, \\
& g_{n, m}(w)=\left|w^{2}-b_{n, m}^{2}\right| /\left|w^{2}-\bar{b}_{n, m}^{2}\right|, \\
& g_{n, m}^{*}(w)=\left|w^{2}-b_{n, m}^{* 2}\right| /\left|w^{2}-\bar{b}_{n, m}^{* 2}\right|
\end{aligned}
$$

Proof of (I). The same as that of (I) of Theorem 1.
Proofs of (II) and (IIH). We shall first show that

$$
\begin{equation*}
\lim _{\substack{z \rightarrow 1 \\ z \in C(n)}} Q(z)=0 \text { for all } n \geqq 1, \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\substack{z \\ z \in C^{*}(n)}} Q(z)=0 \text { for all } n \geqq 2 . \tag{3.4}
\end{equation*}
$$

Since $g_{n, m}(w) \leqq 1$ and $g_{n, m}^{*}(w) \leqq 1$ for all $w \in R^{+}$and for all possible pairs n, m, it follows that

$$
\begin{equation*}
G(w) \leqq g_{n, m}(w) \leqq 1, \quad w \in R^{+}, \quad n \geqq 1, \quad m \geqq M_{n} \tag{3.5}
\end{equation*}
$$

and
(3.6) $\quad G(w) \leqq g_{n, m}^{*}(w) \leqq 1, \quad w \in R^{+}, \quad n \geqq 2, \quad m \geqq M_{n}$.

For the proof of (3.3), it suffices by (3.2) to show that

$$
\begin{equation*}
\lim _{\substack{w \rightarrow \infty \\ w \in \Gamma(n)}} G(w)=0, \quad n \geqq 1 \tag{3.7}
\end{equation*}
$$

Since $\mu<1$, it follows that, for each $n \geqq 1$ and for a given $\varepsilon>0$ there exists a natural number $M_{n}^{\prime} \geqq M_{n}$ such that $y_{n, m+1}-y_{n, m}<\varepsilon$ for all $m \geqq M_{n}^{\prime}$. Then, for each $w=n+i y \in \Gamma(n)$ with $y \geqq y_{n, M_{n}^{\prime}}$, there exists $m \geqq M_{n}^{\prime}$ such that $y_{n, m} \leqq y \leqq y_{n, m+1}$. Consequently,

$$
\left|w-b_{n, m}\right| /\left|w+\bar{b}_{n, m}\right| \leqq\left(y_{n, m+1}-y_{n, m}\right) /(2 n)
$$

and

$$
\left|\frac{w+b_{n, m}}{w-\bar{b}_{n, m}}\right| \geqq \sqrt{1+\frac{4 n^{2}}{\left(2 y_{n, m}\right)^{2}}} \leqq \sqrt{1+n^{2-2 \lambda}},
$$

so that, by (3.5), $G(w) \leqq g_{n, m}(w) \leqq k_{n} \varepsilon$, where k_{n} is a constant depending only on n. The proof of (3.7) is thus complete. Similarly we can prove, via (3.6), that

$$
\lim _{\substack{w \rightarrow \infty \\ w \in \Gamma^{*}(n)}} G(w)=0, \quad n \geqq 2
$$

which, together with (3.2), shows (3.4). By the Lindelöf theorem [8, Theorem VIII. 10, p. 306] again, (II) is established. For the proof of the horocyclic part, we first note that $|Q| \leqq 1$ in D^{+}. Set $\mathscr{C}=\{C(n) \mid n \geqq 1\} \cup\left\{C^{*}(n) \mid n \geqq 2\right\}$. Then for each left horocyclic angle H at 1 , we may find members C_{1} and C_{2} of \mathscr{C} such that the left horocyclic angle H_{1} at 1 , bounded by C_{1} and C_{2} and a line segment on the real axis, contains H. Since

$$
\lim _{\substack{z \rightarrow 1 \\ z \in C_{j}}} Q(z)=0, \quad j=1,2,
$$

by (3.3) and/or (3.4), it follows from another theorem of Lindelöf [8, Theorem VIII. 7, p. 304], via an obvious conformal homeomorphism, that $Q(z)$ has the limit 0 as $z \rightarrow 1$ within H_{1} containing H. We have thus established (IIH).

Proof of (III). The same as that of (III) of Theorem 1.

References

1. Frederick Bagemih1, Horocyclic boundary properties of meromorphic functions, Ann. Acad. Sci. Fenn. Ser. AI, Math., 385 (1966), 1-18.
2. Lennart Carleson, On a class of meromorphic functions and its associated exceptional sets, Thesis, Uppsala, 1950.
3. Joseph A. Cima, A nonnormal Blaschke-quotient, Pacific J. Math., 15 (1965), 767-773.
4. Joseph A. Cima and Peter Colwell, Blaschke quotients and normality, Proc. Amer. Math. Soc., 19 (1968), 796-798.
5. Olli Lehto and Kaarlo I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math., 97 (1957), 47-65.
6. David A. Storvick, On meromorphic functions of bounded characteristic, Proc. Amer. Math. Soc., 8 (1957), 32-38.
7. Chuji Tanaka, On the boundary values of Blaschke products and their quotients, Proc. Amer. Math. Soc., 14 (1963), 472-476.
8. Masatsugu Tsuji, Potential Theory in Modern Function Theory, Maruzen Co., Ltd., Tokyo, 1959.

Received April 6, 1979.
Tokyo Metropolitan University
Fukazawa, Setagaya-ku,
Tokyo, 158 Japan

