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NON-NORMAL BLASCHKE QUOTIENTS

SHINJI YAMASHITA

A quotient BJB2 of two infinite Blaschke products Bγ

and B2 with no common zero is called a Blaschke quotient.
The existence of a Blaschke quotient which is not normal
in the open unit disk D, is well known. We shall show
among other things, that, for each p, 0 < p < oo, there exists
a nonnormal Blaschke quotient / such that

iί, - \z \Y I f(z) |2/(1 + I f(z) \*)*dxdy

This might be of interest because, if g is meromorphic in D

and if (ί I gf{z) |7tt + I g(z) \2)2dxdy < oo, then g is normal

in D.

1* Introduction* By a Blaschke product we mean a holomor-
phic function in D — {\z\ < 1}, denoted by

o o I - I

>.}) - Π
»=i Cπ 1 — c n s

where {cn} is an infinite complex sequence satisfying 0 < \cn\ < 1,
n = 1, 2, , and Σ (1 ~~ lcnl) < °° By a Blaschke quotient we
mean a meromorphic function in D, defined by

Q(«; K L {<}) = B(2; {cn})/B(z; {c'n}) ,

where the Blaschke products in the right-hand side have no zero in
common.

A meromorphic function / in D is called normal in D if
sup z 6 I ) (1 - \z\)f*(z) < oo, where f - |/ ' |/(1 + | / | 2 ) ; see [5]. We shall
construct nonnormal Blaschke quotients with some additional proper-
ties. It is easy to merely construct a nonnormal Blaschke quotient.
For example, set cn = 1 — (2n)~λ and e'n = 1 — (2n + 1)~*, ^ = 1, 2, ,
where λ > 1 is a constant. Then Q(z) = Q(z; {cn}, {c'n}) is not normal.
Actually, let

σ(zu z2) = I log I + P<*> ̂
2 1 - p ^ , ^)

be the non-Euclidean distance between ^ and 2;2 in D, where

/ 0 ( ^ , ί ^ ) = \Z, - Z2\/\l - ZλZ2\ .

Then, Q(cJ = 0, Q(c'n) - oo, ^ ^ 1, and limn^>oσ(cnf c'n) = 0. There-
fore, Q is not uniformly continuous from D, endowed with tf( , )>
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into the Riemann sphere, endowed with the spherical chordal distance.
Consequently, Q is not normal in D. Accordingly, J. A. Cima [3,
Theorem 4] proved the existence of a nonnormal Blaschke quotient
Q(s; K}, KD with inf i M σ{ph c'k) > 0.

There is another way of finding nonnormal Blaschke quotients.
Namely, if a Blaschke quotient Q has two asymptotic values at one
boundary point of D, then Q is not normal in D by [5, Theorem 2].
Therefore, one can easily conclude that the Blaschke quotients found
by D. A. Storvick [6, p. 37] and C. Tanaka [7, Theorem 2] both
are not normal in D. A meromorphic function / in D is said to have
the left angular limit w (possibly, oo) at 1 if f(z)—>w as z —> 1
within each triangular domain whose vertices are 1 and two points
in D+ — {zzΌ\\mz > 0}. Also, / is said to have the right angular
limit w at 1 if f(z) has the left angular limit w at 1 (convention:
& = oo). A Blaschke quotient Q(z) = Q(z; {cn}, {c'n}) is called symmetric
if cn = c'n for each n. If Q is symmetric, then Q(z)Q(z) ΞΞ 1 in D,
so that Q has the left angular limit w at 1 if and only if Q has
the right angular limit 1/w (convention: 1/0 = oo, l/oo = 0) at 1.
Therefore, if Q is symmetric and if Q has the left angular limit 0
at 1, then Q is never normal in D because Q has 0 and oo as
asymptotic values at 1.

Now, for / meromorphic in D, we set

S9(f) = ^D (1 - \z\Yf\zfdxdy , z = x + iy , 0 ^ p < oo .

It is familiar that if S0(f) < oo, then / is normal in D. It is not
difficult to observe that SX{Q) < oo for each Blaschke quotient Q.
In effect, since Q is of bounded characteristic in the sense of R.
Nevanlinna, it follows from

£[$!«. <««**>r <

that S^Q) < oo; see (2.10) in §2.
Our first result is

THEOREM 1. Let 0 < p < 1, and let 0 < q < oo. Then there
exists a symmetric Blaschke quotient Q(z) = Q(z; {an}, {an}) satisfying
the following three conditions.

( I ) infilfcδl σ(ah ak) ^ q.
(II) Q has 0 as the left angular limit at 1.
(III) SUQ)<oo.

If we restrict p in (III) of Theorem 1 as 1/2 < p < 1, then we
can construct Q with an additional property.
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By a left horocyclic angle at 1 we mean a domain

{z e D+11 — xt < I z — x11 and 1 — x2 > \ z — x21} ,

where 0 < x2 < xt < 1. A meromorphic function / in D is said to
have the left horocyclic angular limit w at 1 if f(z) ~+w as 2 ~> 1
within each left horocyclic angle at 1; the notion is essentially due
to F. Bagemihl [1]. Also, / is said to have the right horocyclic
angular limit w at 1 if f(z) has w as the left horocyclic angular
limit at 1. Again, a symmetric Blaschke quotient Q has the left
horocyclic angular limit w at 1 if and only if Q has the right
horocyclic angular limit 1/w at 1. Therefore, if a symmetric Q
has the left horocyclic angular limit 0 at 1, then Q is never normal
in D.

THEOREM 2. Let 1/2 < p < 1, and let 0 < q < oo. Then there
exists a symmetric Blaschke quotient Q(z) = Q(z; {an}, {an}) satisfying
the same conditions as (I), (II), and (III) in Theorem 1, together
with

(IIH) Q has 0 as the left horocyclic angular limit at 1.

Lastly in the present section, we remark that Cima and P.
Col well [4, Theorem 2] proposed a necessary and sufficient condition
for a Blaschke quotient to be normal in D in terms of interpolating
sequences.

2* Proof of Theorem 1* By the linear transformation w =
φ{z) = (1 + z)/(l — z), the disk D is mapped onto the right half-plane
R, so that, R+ — <p(D+) is the first quadrant in the w-plane. Further-
more, by φ, the chord L(β) = {zeD|arg(l — z) = θ), \θ\ < π/2, is
mapped onto the half-line:

Λ(β) = {w = x + iyeR\y = (-tanθ){x + 1)} .

By a simple calculation one obtains

(2.1) 1 - | s | 2 = 4 R e w / | w + l | f , w = φ(z) f zeD ,

and

(2.2) pfo, s2) = \w, - ^ l / l ^ i + w 2 |

for v>j = 9>(^), ^ 6 JD, i = 1, 2.
To costruct Q we choose A, 0 < A < 1, such that

log \±ϊ = g and ί = A/(l + A2)1/2(2.3) — log \±ϊ- = g and ί = A/(l + A2)
Δ 1 — ί
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Choose ΘQ, — ττ/2 < #0 < 0, so that A = — t a n # 0 , and then choose
s > 1/p > 1. Consider the sequence of points bneΛ(θ0) such that
bn = χn + ίyn = ns + ίA(ns + 1), n = 1, 2, . Let αn = φ^Φv), n ^ 1.
Then { α J c L ( W . We then set Q(z) = Q(z; {an}, {an}). First of all,
Q is well defined because, by (2.1),

Σ (1 - |α n | ) - Σ (1 - \an\) ̂  Σ (1 - K l ) '
= 2 J (J- "" I ̂ » ) έ ^ 2 J ̂  < c o

Further, one observes that

(2.5) I Q(^) I - g(w) = Π ^ W , w = ?>(«) ,

where gn(w) — \w2 •— b\\j\ur — bl\, n ^ 1.

Proof of (I). Let w = x + iyeR, ζ = £ + ΐo? 6 R, with # ^
A(x + 1), 7̂ ̂  -A(£ + 1). Since

X~ (x + ξ)/(y + η) ^ A"1 ,

it follows that

\w - ζ|/|w + ζ| ^ (X2 + I)" 1 7 2 ^ (1 + A"2)-172 - t .

In view of (2.2) one can now easily conclude that p(ajf dk) ^ t, so
that σ(a3; ak) ^ q for all j , k ^ 1.

Proo/ o/ (II). To prove that

(2.6) lim Q(z) = 0 ,

it suffices by (2.5) to show that

(2.7) lim g(w) = 0 .

Since gn(w) ^ 1 for all weR+ and for all n Ξ> 1, it follows that

(2.8) r̂(w) ^ flrn(w) ^ 1 for all w eR+ and all w ^ 1 .

Given ε > 0, one can find a natural number N such that xn+1jxn —
1 < ε for all n ^ N. Then, for each w = % + iy e Λ(ΘQ) with α? ̂  a?.v,

(2.9) flf(w) ^ A,ε , Λ - i ( A + A"1) ,

which proves (2.7). To make sure of (2.9), we first find n^ N such
that xn <: x <: xn+1. Then,
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\w - bn\ = (1 + Aψ\x - xn) ^ (1 + AT>(xn+1 - *„) ,

\w + bn\^x + xn^2xn,

whence

\w-bn\/\w + bn\<ίhl + AT*ε.

On the other hand,

I w + bn I/I w - bn I

^ [(« + aϋ 2 + A\x + xn + 2)2]m/[A(x + xn + 2)] ^ (1 + A~ψ2 ,

so that gn(w) ^ ^ e . Therefore, in view of (2.8), one can assert (2.9).
Since \Q(z)\ = g(φ(z)) ^ 1 in D+ by (2.8), and since (2.6) holds,

it follows from E. Lindelof's theorem [8, Theorem VIII. 10, p. 306],
together with an obvious conformal homeomorphism from the upper
half-disk onto D+, mapping 0 to 1, that Q has the left angular limit
zero at 1.

Proof of (III). We remember L. Carleson's family Ta of mero-
morphic functions h in D such that

UK) = Γ (1 - r)"{ (I hKzYdxdy ~\dr
JO L J J l z l < r J

where 0 <; a < 1; see [2, p. 19]. Letting Xr(z) be the characteristic
function of the disk {\z\ < r), one observes that

Ia(h) = Γ (1 - r)-Γί{ I ^
(2.10) J° U h

= J5JJ] (1 - r)~«Xr(z)drlfiKzydxdy - (1 - α ) " 1 ^ . ^ ) .

For a Blaschke quotient (^(s) = Q(JS; {cn}, {c'n}) we assume that

Σ a - \cn\y~tt < - and Σ a - |o;ιrα < - .

Then it follows from [2, Theorem 2.2, p. 24] that Qx 6 Tα.
Returning to our Q, we can easily conclude from (2.4) that Qe

ΪVP, whence SP(Q) < ~ by (2.10).

REMARK. The Blaschke quotient Q, described in the second
paragraph in § 1, satisfies SP(Q) < oo, for a p, 0 < p < 1, provided
that X <l/p.

3. Proof of Theorem 2. Let λ > (1/2X2Γ1 + 1) and l/(2p) <
/̂  < 1, and yn>m = nλmμ (n, m = l,2, •)- Let £ and A be as in (2.3).
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Then, for each fixed n Ξ> 1, we may find a natural number Mn such
that

Vn,» ^ Λ(n + 1) ^ A(n~ι + 1) for all m^Mn.

Then, for each fixed n^l, the points 6ra,m = w + iyn,m9 m *> Λfn, lie
on the half-line Γ(n) = {w e R+ | Re w = w}, so that αn,m = ^"'(δn, J
(m ^ MJ lie on the half-oricycle C(n) — φ~\Γ(ri)). Similarly, for
each fixed n ^ 2, the points δ*iW = w 1 + iyn,m, m ^ Jl^, lie on the
half-line Γ*(n) = {w eR+\Rew = n~1}, so that α*m = φ-\b*,J(m ^ Mn)
lie on the half-oricycle C*(n) = φ'\Γ*{n)). Let {an} = {anj U {α*»}.
Then Q(«) = ζ>(z; {αn}, {αn}) is the requested. We first observe that,
for n ^ 1,

and for n ^ 2,

/3: = Σ [Re 6 * / | δ * + 1|2]^ ^ Λ"'(1+M) Σ m-2

Σ

Since p(l + 2λ) > p(2λ - 1) > 1 and 2p^ > 1, it follows from (2.1)
that

n=l w=2

so that Q is well defined. Now, one observes that

(3.2) I Q(z) I - G(w) = ft Gn(w) Π GJ(w) , w =
w = l Λ=2

where

Gn = Π 9n,m , Gί = Π *̂,m ,

Proo/ o/ (I). The same as that of (I) of Theorem 1.

Proofs of (II) and (ΠH). We shall first show that

(3.3) lim Q(z) = 0 for all n ^ 1 ,

and

z-*l
zeC(n)
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(3.4) lim Q(z) = 0 for all n ^ 2 .
zeC*(n)

Since gn,m(w) <> 1 and gt,Jw) ^ 1 for all w e R+ and for all possible
pairs n, m, it follows that

(3.5) G(w) ^ gntm(w) ^ 1 > weR+ , n ^ l , m^ Mn ,

and

(3.6) G(w) ^ gtm(w) ^ 1 , w 6 i2+ , n ^ 2 , m^Mn.

For the proof of (3.3), it suffices by (3.2) to show that

(3.7) lim G(w) = 0 , α ^ 1 .
W€ί(ίt)

Since μ < 1, it follows that, for each w ^ 1 and for a given ε > 0
there exists a natural number Ml ^ Aζ, such that yn,m+1 — yn,w < e
for all m ^ Mi. Then, for each w = n + iyeΓ(n) with j/ ̂  y«,jf;,
there exists m^ ML such that /̂Ώjm ^ y <; yniW+1. Consequently,

|w - 6,,.1/lw + 6n t, | ^ (yn>m+1 - yn,J/(2n)

and

so that, by (3.5), G(w) <* gn,m(w) <Ξj knε9 where kn is a constant de-
pending only on n. The proof of (3.7) is thus complete. Similarly
we can prove, via (3.6), that

lim G(w) = 0 , n ^ 2 ,
W—>co

which, together with (3.2), shows (3.4). By the Lindelof theorem
[8, Theorem VIII. 10, p. 306] again, (II) is established. For the
proof of the horocyclic part, we first note that | Q | <ί 1 in D+. Set
<gf == {C(n)\n^l}\J{C*(ri)\n^2}. Then for each left horocyclic angle
H at 1, we may find members Ĉ  and C2 of ^ such that the left
horocyclic angle Hλ at 1, bounded by Cx and C2 and a line segment
on the real axis, contains H. Since

limQ(s) = 0, ί = 1,2,

by (3.3) and/or (3.4), it follows from another theorem of Lindelof
[8, Theorem VIII. 7, p. 304], via an obvious conformal homeomor-
phism, that Q(z) has the limit 0 as z —> 1 within Hx containing H.
We have thus established (ΠH).
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Proof of (III). The same as that of (III) of Theorem 1.
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