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DILATIONS ON LOCALLY CONVEX SPACES

JAMES E. SIMPSON

The simultaneous dilation of a group of contractions on
a Hubert space by a group of isometries is generalized
here to operators on locally convex spaces. The basic con-
struction, using a quotient of a large direct sum, is found
in the Hubert space treatment. The particular difficulties
to be overcome and innovations introduced here relate to
the definition of contraction and isometry for operators on
a locally convex space, and to the handling of various topo-
logies on the operators under scrutiny. With these defini-
tions the traditional dilation of a contraction by an isometry
is recovered. Finally we have a variation of the basic dila-
tion theorem particularly suited to semi-groups of operators
on locally convex spaces and to spectral operators.

The subject of dilations of operators appears as far back as the
work of Neumark [5] and Halmos [1]. For operators on a Hubert
space, very significant results are due to Sz.-Nagy [9]. Dilations
of operators on a Banach space are treated by Ionescu Tulcea [2],
who finds dilations which are spectral operators of scalar type in
the sense of Dunford. The present author proved variations and
extensions of some of these results to operators on locally convex
spaces in his thesis [7], utilizing Ionescu Tulcea's definition of spectral
operators on such spaces in [3]. For operators on Banach spaces
Ionescu Tulcea's results have been expanded and developed by
Stroescu [8]. The content of this note is a recasting of the results
just cited to apply to operators on locally convex spaces. The
general idea of constructing a simultaneous dilation of a group of
operators found in [8] and, in a special case, in [2], is carried for-
ward here. The author believes the concepts of contraction and
isometry introduced here for operators on a locally convex space to
be new, though a similar idea for inner-product seminorms appears
in [10]. Schaefer's work [6] is also quite relevant.

2* The principal theorem* We begin by assuming that E is
a locally convex topological vector space, with the topology gener-
ated by a family Γ of seminorms, L{E) the algebra of continuous
linear functions from E to E. Γ is assumed to be closed under
multiplication by any a > 0. We define an equivalence relation ~ on
Γ by: p ~ q if there exist positive real numbers M1 and M2 such
that Mj>(x) ̂  q(x) ^ M2p(x) for every x e E. Let Γx be the set of
equivalence classes generated by~. By a section of Γ we will mean
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a subset s(Γ) that contains at least one representative of each
element of Γx. Next, for each TeL(E) and each pair p, q of ele-
ments of Γ we define ||Γ|| f f,p = snp{p(Tx): q(x) <; 1}. Continuity of
T guarantees that for every p there is a q such that ||Γ|| f f,p ϊδ 1.

DEFINITION 2.1. Given a section s(Γ) of Γ, we will say that
T e L(E) is an s(Γ)-contraction if for every p e s(Γ) there is a g e
β(Γ) such that \\T\\qtP^l. We say that T is an s(Γ)-isometry if
| |Γ||P,P = 1 for every pes(Γ).

It is clear that when E is a Banach space and | |Γ | | ^ 1, then
T is a contraction in the sense just defined, with s(Γ) = {|| ||}.
However for some T such that | |Γ | | > 1 for the given norm there
may be an equivalent norm on E relative to which | |Γ | | ^ 1. Such
a T will be a contraction as defined above. If the topology of E
is normable then it is not immediate that a given T has the pro-
perty | |Γ | | ^ 1 for some norm that generates the topology of E.
(The referee has pointed out that if (E, || ||) is a Banach space,
then the norm \\x\\, = sup{|| Tnx\\: n = 0, 1, 2 } will do, iff {Tn:n =
0, 1, 2, •••} is point wise bounded.) See Moore [4] for other applica-
tions of these ideas.

Throughout this section G is a group with identity e, and K a
function from G to the positive reals such that K(e) — 1 and K(gh)<ί
K{g)K{h) for all g,heG.

THEOREM 2.2. Let φ:G -> L(E) be a function with the property
that for some section s(Γ), for every pes(Γ) there is qes(Γ) such
that \\φg\\q,p £ K(g) for all geG. Then there is (i) a locally convex
space E containing (a homeomorphic copy of) E, (ii) a matching
p •-+ p of Γ with a family Γ of seminorms generating the topology
of E such that s(Γ) = {p: pes(Γ)} is a section of Γ, (iii) a projection
P of E onto E such that P is an s(Γ)-contraction and (iv) a repre-
sentation φ of G in L(E) as a group of operators such that (v)φe~
ϊ> (vi) | |&lkp ^ K(g) for every geG and every peΓ, (vii) Pφg\E -
φg for every geG, and (viii) E is the closure of the vector space
spanned by {φgx: geG, xeE}. Moreover, if every φg is a s(Γ)-con-
traction, then every φg is an s(Γ)-isometry.

Proof. Let φ: G -> L{E) be a function with the property that
for some section s(Γ), \\φg\\qfP^ K(g) as hypothesized. Let Y = {y:
y maps G into E, and for each p e s(Γ) there is M = Mφiy such
that p{y(g))^M-K{g) for all geG}. For each peΓ let p(y) =
supffeG {K(g)~ιp(y(g))} ' Then Γ = {p:peΓ} generates a locally convex
Hausdorff topology on Y. Also, Y is complete if E is. Finally
s(Γ) = {p: pes(Γ)} is a section of Γ, since p ~ q iff p ~ q.
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Next let φ^aE1 be the direct sum of the spaces Eι where each
E* ~ E. A typical element z = (zt) has only finitely many nonzero
components. For each z, let θz map G into E by 0s(flO=Σ* 0**00
(Generally we will use s and £ as summation indices over G, and /,
g and ft as dummy variables in G.) For each pes(Γ), p(θz(g))^
ΣtP(Φgt(Zt)) For a suitably chosen qe$(Γ), the inequality may be
continued, with p{θz{g)) ^ Σ , K{gt)q{zt) ^ J5Γ(flOΣι #(*)ϊOO. τ i m s ^ e

Γ and e : φ £ f ^ Γ . Let E be the range of θ in Y, E the closure
of i? in Y. To embed i? in Y, we identify each xeE with 2/3
defined by yx{g) = ^(a?), ^ e G . Let Eo = {yβ: α?6#}. Then ψ: #0->JE;,

defined by ψ(yx) = ^ (̂e) = x, is bijective. The inequalities p(ψ(yx)) =
p(yx(e)) ^ sup,{Z(flf)-ιp(».(ff))}=β(».) and 0(iO = sup,{ir(0)-1j>(0/aO)}^
g(a?) show that f is a homeomorphism. Indeed, Eo is contained in
E, since yx = θz if 2 = 00 is defined by zt = δt)β#. That is, 2 is
that element of 02?* for which 2e = x and all other zt = 0. In this
case θz{g) = φge(ze) = i/β(flr).

Let Q: E->E be defined by Q(j/) = y(e). Clearly Q agrees with
ψ on Eo, so that P = ψ"1©: E->EQ is surjective, and P 2 = P. Also
p(Q2/) = p(y(e)) ^ p(2/), so Q is continuous. In fact, we see that P
is a contraction, for s(f) is a section of Γ and p 6 Γ implies
pίf-'Qiv)) ^ q(Qv) ^ Qiv) with qeΓ, so that | | P | | W ^ 1.

Next we define ^ on E. To do this first define Th on 0J^*,
for each h e G, as the translation Th(z) = w iff f̂et = «t for all ί. As
ί runs over G, so does ht. Thus for each ^ G G , ΘTh{z){g) = θw(g) =
Σ.Λ.(w.) = ΣtΛ«(ww) = ΣitΦΰht(zt) = θz(gh)^ Hence ^ΓΛ(^)=0 if te=
0. Consequently we may define φh: E->E by φhθ = ΘTh, for each
ft G (?. With w = ΓΛ(ίί) as before, since f̂t runs over G as 0 does, we
have p(φh(θz)) = P ( ^ ) = sup, {ίΓ^-^^wίflr))} = sup,
sup, {K(grιp(Σ* Φ.M)) = sup, {JBΓCίArpCΣ. Λ
JBΓ(ft) sup^ { J L ^ ^ ^ P G S * Λ*t(«*))} = K(h)p{θz). It follows that each φh

is continuous, and extends by continuity to an element φheL(E).
Also \\φh\\p,p<ίK(h).

We verify φfg = ^/^, by first examining ^. With w = Tfg(z) so
that w/ g l = zt for all ί, we have φfg(θz) = 0w. Similarly, φg(θz) — θu
if w,t = zt for all ί. Hence φfφg(θz) — θv if v/β = u8. Thus V/,t =
Wgt = ^ί, v = w, and ^/, = ^/^,. The extension to φ is immediate.
That φe = 7, the identity on E, is also obvious.

Next, p{βz) = piφ^iφM^KQi-^piφnθz). Thus JEίflΓ1)-1^!!^!!*,*^
JΓCflf) for all geG,pef. Also, φh{y^x){g) = Σ«Λ«0O = U a j ) A where
2̂?=̂ /̂  as described above. Hence Q^λd/β) = Λλ(α)=^(α5), so Pφh(yx) =

yΦkix). Thus P^AU0 = P^AU0 = ψ^Φhψ, which is (viii), if we consider
ψ> as identifying i7 and EQ. Finally, the hypothesis that every φg

is an s(Γ)-contraction allows us to choose K so that K{g) = 1 for
all g, so that φg is an s(Γ)-isometry. This completes the proof.
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We remark that the Banach space analogue of this theorem [8]
is an immediate consequence of the above theorem obtained by
taking Γ = {a\\ ||: a > 0} and s(Γ) — || ||. Consequently, the various
corollaries given by Stroescu also follow. There is one point of
delicacy here. The final conclusion of the Banach space theorem in
[8] seems to the present writer to be a little stronger than the
proof will justify. We propose a weaker theorem from which the
one corollary that relies on this idea (Corollary 1 in [8]) will follow.

COROLLARY 2.3. With E, G, K and <j> as hypothesized in the
theorem, we assume further that G is a topological group, that K
is bounded so that for some M < °°, and some neighborhood V of
zero in G, K(g) <̂  M for all g e V, and that g —> φg(x) is left uni-
formly continuous for each xeE. Then the mapping g -> φg(x) is
continuous for each xeE.

Proof. As in [8] the density of Et = {φgy: geG,yeEQ} in E
combined with the uniform bound on K{g) reduces the problem to
that of showing g —»φgh(y) is continuous for each heGfyeE0. But
this follows from continuity of multiplication in G and the left
uniform continuity assumed.

The point of modifying the hypotheses in [8] is that it seems
impossible to pass in general from Ex to E without some kind of
uniform boundedness or equicontinuity or category conditions. With
the corollary and the theorem it is now an easy matter to recover
the theorems and corollaries expounded by Ionescu Tulcea [2].

3* Application in locally convex spaces* One basic way of
approaching the idea of operator valued measures in locally convex
spaces is treated by Walsh [10], where the concept of an equiconti-
nuous spectral measure triple is exploited. We repeat this definition,
in which S is a σ-algebra of subsets of X.

DEFINITION 3.1. A spectral measure triple in L(E), E locally
convex, is a triple (X, Sζ μ) where μ is a set function from Sf to
L{E) which is countably additive in the weak operator topology
and satisfies

(1) μ(X) = leL{E)
(2) for A and A in 3^ MA Π A) - μ(Dx)-μ{D2).
The triple is equicontinuous if {μ(D):DeS^} is equicontinuous.
Since multiplicativity of the measure is the difficult part of

most applications we present here a dilation theorem suited to this
situation.
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THEOREM 3.2. Let (X, £f μ) be a triple for which μ is an
L(E)-valued set function that is weakly countably additive, for which
μ(X) = 1 and {μ(D):DeS^} is equicontinuous. Then there is an
equicontinuous spectral measure triple (X, S^ β) taking values in
L{E) and a projection PeL(E) from E onto E satisfying Pμ(D)x=
μ(D)x for every DeS^ and every xeE.

Proof As pointed out in [10, p. 300] the function μ may be

used to define a linear continuous function φ: f—Afdμ = φf from

2?°°(X, £f), the algebra of μ-bounded complex-valued ^-measurable
functions from X to E with /^-essential uniform norm, into L(E)
with the strong operator topology. Moreover, μ is countably addi-
tive in the strong operator topology. In particular, if ||/n||βo is
bounded for fneB°°, and limfn(x) = 0 for each xeX, then \gfndμx =

ΦgfSχ}~~*® f° r e a c k x* uniformly for ||flr||oo ^ 1. All that is missing
is multiplicativity of the integral. To achieve this we perform a
construction for the algebra of bounded measurable functions that
generalizes that of the previous section for groups. We take G —
B°°(Xf S?) and K(g) = ||flf|U, the μ-essential uniform norm, so that
G is now a Banach space. For each xeE, x'eE', the mapping /—•

\\fdμx, x'j — (Φ/X, x') defines a bounded measure μ9tX, on £f satis-
fying \fdμXtX> = (φfx, x') for all feB(X, £f). Moreover the mapp-
ing (x, x') -> μΛtX, of E x Ef -> M\X, £f) is g"-hypocontinuous, 8"
being the family of equicontinuous subsets of E', and M1 the space
of bounded measures on £f with total variation norm. For each
i e g 7 , we let WA = {xeE: \\μx,A ^ 1 for all x'e A}.

As in the main theorem of the previous section we consider
first the space φE% with each E* = E for teB°°(X, S). This time
we let θiζ&Et-ϊΠE* with the same definition: (θz)t = ΣihΦth&h)
with E denoting the range of θ. To obtain a topology in E, we
define for each i e g 7 the seminorm qA by

QA(ΘZ) = sup I Σ<«te)» <> I ,
9

the supremum being taken over all elements of @E'9 satisfying
( i ) {x'g: x'gΦ0}QA and
(ϋ) ΣfβF-(w)ίll/IUIlA,.ίll ^ 1 for every xe WA.

Clearly such elements exist, for if any x'sE' is chosen and (x'a) is
defined by x'g = δgΛx' then (x'g) satisfies (i) and (ii) for every A which
contains x'. The only difficulty with qA is in verifying that qA(θz)
is always finite. To see this we observe that

qA(θz) = sup ( Σ <Σ ΦM, O I
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^supΣ[PIUΣIIfiΊUII/Vίll]
ί 9 9

By (i), if pA is the gauge function of the polar of A and pA(zt) = 0
then \\μH,Xg\\ = 0, while if pA(zt) Φ 0 then zt/pA(zt)e WA. Hence by
(ϋ),

^su P Σ[ | | * l lcoP^)Σl l i7 l

since the last expression contains only finitely many nonzero terms.
The family Q = {qA: A e ^ } is directed by the inclusion relation on
£? and generates a locally convex separated topology on E. We
denote by E the completion of E.

As in the previous section we may now embed E in E by
identifying E with EQ — {yx: xeE), where yx = 0z and z* = dttlx as
before. Then qA(yx) = sup | Σ , <Λ», O I ^ sup Σ . II ff IUI Λ. l II ̂  P^(*)ι
proving continuity of the mapping ψ~u. x -> yx. For the converse,
choose xf e A and let &J = δff>1aj'. We have remarked above that set
{Xg} defined in this way satisfies (i) and (ii). For such a set
Σ , <(**),,*;> = <*,«'>. Hence

pA(x) = sup I (x, x'} I = sup | Σ <(θz)g9 x'g) \ ^ qA(yx) .
ϊ ' e i x'eA g

This shows that ψ is also continuous and identifies E with JS0

We may now define Q and P in algebraically the same way as
before, so that Q{θz) = (θz\ and P = f"1©. From pAQ(θz) =
suP»'β^K(03)i, ίc'M ^ QA{ΘZ), by the same argument just used on ψ,
we see that Q is continuous, and so is P. Extend P to E by con-
tinuity.

Turning next to φh:E-^E, we define φh(θz) for 2 = (zt) as
before. That is, its ^-component is (φh(θz))g — ΣtΦghtiZt)- We have
seen in the previous section that φh is well defined (because Th

leaves ker(θ) invariant) and the mapping h—>φh is linear. Also
PφhiVx) — θ(φh(x)), so that Pφh\Eo = Φh- To show that φh is continu-
ous, fix A eg 7 and heB°° with ||λ||«, ^ 1. First assume h is never
0 on x, so that fΦg implies fh Φ gh. For (x'f)e@E'f satisfying
(i) and (ii), define (y'g) by letting yf

fh = x'f whenever fhzB^, y'g = 0
otherwise. Then M e φ S ' " also satisfies (i) and (ii), since

Σ t II0IIII μ..,i II ^ Σ / II Λ/ll II Λ..> II ^ II * ^ I for all * e ^ . There may
be other sets (y'g) also satisfying (i) and (ii). Thus

Z) = sup | Σ < Σ Λ*.(»*), *i> I
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= sup | Σ < Σ *.«(*«), V»>\
9 t

^ sup | Σ <Σ ΦM, v'f> I = QΛ(ΘZ) .

Second, suppose heB°° satisfies ||Λ||oβ ^ 1 and B = {xeX: h(x) = 0}.
For each ε > 0 let gε = (1 + e)"x(Λ + eZB). By what has just been
done qA(φgε(θz)) ^ Qjίβz). This reduces to qA((φh + εφXB)(θz)) ^
(1 + e)qA(θz), or qA(φh(θz)) rg ^(0z) + ε[^(0s) + qA($XB(θz))]. Since ε is
arbitrary, qA(φh{θz)) ^ ^ ( ^ ) whenever \\h\\oo ^ 1. It follows that φh

is continuous, that it extends to φh on E, and that qA(φh(θz)) ^
||fc|U&i(03) so that ^ is strongly continuous from B°° into L(E).
Also {̂ A: ||Λ||oβ ^ 1} is equicontinuous. That φfg = ^ / ^ follows as in
Theorem 1. It is straightforward to obtain μ by μ(B) = φtΌ for
each D e &ί The only point still unconfirmed is that μ is countably
additive. This is a consequence of showing that if H/JU is bounded
and converges pointwise to zero then limπ φfnx = 0. Since {φfj is
equicontinuous it is enough to show this for x e E, that is, to show
limn φfjβz) = 0 for each ze@E\ In fact, it is enough to show
this for θz = yxe Eo. This is because {φh(yx): h e U°°, xeE] spans Eo.
To see this, suppose z = (zt) has nonzero components zH = xf for
1 ^ i <̂  fc. Then ^ = Σf=i Φutifxjf since the ^ ^ component of φti(yXi)
is φgti(Xi), and Σ*=i 0*t<(&i) = (0*O« Returning to φfn(yx) for α? e JE7,
we fix A 6 g3. Then

qA(Φfn(v*)) = sup | Σ <Σ Λ/,*(«t), «;> I

^ sup Σ

To simplify the notation, let u = t&Qj, ̂ , cc) = Φg/n(
χ)' Then

sup Σ [P^(WII 9IU) II flr II-1 <u/pΛ(u), x'g) |]

sup Σ [^(Wll ff IU)I| g II- II j " ^ ( . ) , . i l l ]

(sup ^ ( « / | | flr |U))(sup Σ II9II- li Λ/, j t(.)..jl|

p
geB™

^ sup llfflU^ 1 .

The last expression goes to zero by virtue of the strong countable
additivity of μ remarked on earlier. Thus Φfn(x)->0, completing
the proof.
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