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REMARKS ON NONLINEAR CONTRACTIONS

K U N - J E N CHUNG

Throughout this paper, we assume that K is strongly
normal, that P = {d(x, y); x, y e X}, that P denotes the weak
closure of P, and that Px — {z; z e P and z Φ έ?}. The main
result of this paper is the following.

Let (X, d) be a nonempty Incomplete metric space, and
let S, T be mappings of X into itself satisfying (1) and (2).

(1) φ(d(Sx,Ty))^d(x,y)9 xΦyeX,

( 2) φ{t) > t for any teP19

where φ: Pi -> K is lower semicontinuous on P1#

Then exactly one of the following three statements holds:
(a) S and T have a common fixed point, which is the

only periodic point for both S and T;
(b) There exist a point xoeX and an integer p > 1 such

that Sxo = Xo = Tpx0 and Tx0 Φ xo;
(c) There exist a point yo€X and an integer q > 1 such

that Sqy0 = 2/o = 2̂/o and %0 =£ 2/o

Recently, J. Eisenfeld and V. Lakshmikantham [6, 7, 8], J. C.
Bolen and B. B. Williams [1], S. Heikkila and S. Seikkala [9, 10],
K. J. Chung [3, 4], M. Kwapisz [12] J. Wazewski [16] proved some
fixed point theorems in abstract cones which extend and generalize
many known results. In this paper, we extend some main results
of A. Meir and E. Keeler [14] and C. L. Yen and K. J. Chung [17]
to cone-valued metric spaces.

(I)* Definitions* Let E be a normed space. A set KaE is
said to be a cone if (i) K is closed (ii) if u, veK then an + τv e K

for all α, τ ^ 0, (iii) Kf] (-K) = {^} where έ? is the zero of the

space E, and (iv) K° Φ φ where K° is the interior of K. We say

u ^ v if and only if u — veK, and u > v if and only if u — veK

and u Φ v. The cone K is said to be strongly normal if there is a

δ > 0 such that if z = ΣΓ~i M*, »< 6 # , II a?* II = 1, δ< ̂  0, Σ? = 1 6, = 1,

implies | | ^ | | > <5. The cone i ί i s said to be normal if there is a δ > 0

such that || /, + / 21| > 3 for fl9 f2eK and || /, || = || / 21| - 1. The norm

in E is said to be semimonotone if there is a numerical constant M

such that & <£ cc ̂  y implies ||cc|| ^ M||ί/|| (where the constant M

does not depend on x and y).

Let X be a set and K a cone. A function d:X x X—+K is

said to be a i£-metric on X if and only if (i) d(x, y) — d(y, x), (ii)

d(x, y) = ^ if and only if a? = y, and (iii) d(a?, y) ^ d(ίc, «) + d(^, y).

41



42 KUN-JEN CHUNG

A sequence {xn} in a if-metric space X is said to converge to x0 in
X if and only if for each ueK° there exists a positive integer N
such that d{xn, xo)^u for all n^N. A sequence {xn} in X is Cauchy
if and only if for each u e K° there exists a positive integer N such
that d(xn9 xm)^n for all n, m^N. The iΓ-metric space (X, c£) is said to
be complete if and only if every Cauchy sequence in X converges.

Throughout the rest of this paper we assume that K is strongly
normal, that E is a reflexive Banach space, that (X, d) is a complete
Z-metric space, that P = {d(x, y); x, y e X], that P denotes that weak
closure of P, and that Pλ — {z; zeP and z Φ έ?}.

(II)* Preliminary results* In this section we list Mazur lemma
and needed properties of cone K and the related ϋΓ-metric space which
will be used in our theorem.

(a) "Strongly normal" is normal.
(b) A necessary and sufficient condition for the cone K to be

normal is that the norm be semimonotone (cf. [11]).
(c) If the sequence {un} in E converges (in norm) to u, the

sequence {vn} in E converges (in norm) to v and un <; vn for each n,
then u <ί v.

(d) If {xn} is a sequence in the ίΓ-metric space X that has a
limit in X, then the limit is unique.

(e) If u 6 K°, then there exists a positive number c such that
if v 6 {p; \\p\\ < c} Π K then v <; w.

(f) If fc is an element in the Banach space .£7, hneK for each
nf h ^ hn for each w and {&n} converges (in norm) to & in E, then
-fceίΓ.

(g) If ueK° and {ΛB} is a sequence in K which converges (in
norm) to & in E, then there exists a positive integer N such that
hn ^ u for n^ N.

(h) If {#n} is a sequence in the JSΓ-metric space X that is con-
vergent to x in X then {d(xn, x)} converges (in norm) to & in E.

(i) Mazur lemma [5, 13]. Let E be a normed space and {un}
a sequence in E converging weakly to u. Then there is a sequence
of convex combinations {vn} such that vn = ΣίU &i^ where Σ£=n k = 1>
and 6̂  = &<(w) ̂ 0 , n -^ i ^ N — N(n) which converges to u in norm.

(j) Let the sequence {un} in E be weakly convergent to v, if
^n ^ ^ for each n ^ 1 then v^ ^.

(III)* Examples and main results*

EXAMPLE 1. Let E = R (all real numbers) and K = R+ (all non-
negative real numbers), then i ί is strongly normal and semimonotone,
and K satisfies the law of trichotomy.
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EXAMPLE 2. Let E = R2 and K = {z e R2; 0 < a g Arg z ^ b <

π/2} U {^}, where the symbol Arg z denotes the argument of the
complex number z. Although K is strongly normal, semimonotone,
K doesn't satisfy the law of trichotomy.

The mapping φ'.P^-^K is said to be lower semicontinuous if {un}
and {φun} are both weakly convergent, then lim φun ^ ^(lim un).

The property of the law of trichotomy of the set R has been
used in the proof of [14] and [17] but it can not be used in our
Theorem 1 (cf. Example 2). The proof of Theorem 1 differs from
that of theorem [14] and theorem [17].

THEOREM 1. Let (X, d) be a nonempty complete K-metric space,
and let S, T be mappings of X into itself satisfying (1) and (2).

(1) φ(d(Sx, Ty)) ^ d{x, y) , x Φ y e X ,

(2) φ{t)>t for any tePlf

where φ: Px —> K is lower semicontinuous on Px.
Then exactly one of the following three statements holds:
(a) S and T have a common fixed point, which is the only peri-

odic point for both £ and T;
(b) There exist a point x0 e X and an integer p > 1 such that

SxQ = x0 = Tpx0 and Tx0 Φ xo;
(c) There exist a point yoeX and an integer q > 1 such that

S9y0 = Vo = Ty0 and Sy0 Φ y0.

(IV)* Lemmas and proofs*

LEMMA 1. For each xoeX, we define a sequence {xn} recursively
as follows:

— . W / y » Λ * —- Λ / τ / y » . . . />» ——* SkΎ* Ύ* —— T v y
n+lf

Then the sequence {d(xn, xn+1)} weakly converges to έ7 if d(xn9 xn+1) > έ?
for all n^ 1.

Proof Suppose that d(xnf xn+1) > & for all n ^ 1. Let dn =
d(xn, xn+1). It follows, by (1) and (2), that, for each positive integer n,

( « . d2n+ι = d(Sx2n, Tx2n+ί) < Φ(d2n+1) ^ d2n ,

din = d(Sx2n, Tx2n_x) < φ(d2n) ^ d2n_, .

Therefore {dn} is decreasing and bounded. Let {dn{i)} be a subsequence
of {dn}. Since {dn} is bounded, there exists a subsequence {dm{i)} of
{dnH)} such that {dmH)} weakly converges to z e K and {dm(<)_i} to t e K.
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From the fact that dm{i)_x ̂  dmH) ^ dmU+1)_lf we see that z — t. Because
& <; φ(dm{i)) ^ dmH)_19 we see that {φ(dm{i))} is bounded. For convenience,
we can assume that {φ(dm{i))\ has a weak limit. By the lower semi-
continuity, we have φ(z) ̂  z. Therefore z — & and {dn} weakly
converges to έ?.

LEMMA 2. If y is a fixed point for S, then for each x e X, x Φ y,
either there exists a positive integer p such that Tpx = y or else
{d(Tnx, y)} weakly converges to έ?. Moreover, if {d(Tnx, y)} weakly
converges to έ?, then Ty — y; and if Ty Φ y, then Tpy — y for some
p > 1.

Proof. Suppose that d(Tnx, y) > έ?. By (1), we have

d(y, Tn+ιx) = d(Sy, Tn+1x) < φ{d(Sy, Tn+1x)) ^ d(y, Tnx)

for all n = 1, 2, . As in Lemma 1, we see {d(y, Tnx)} weakly con-
verges to &.

Since

d(T»x, Ty) ̂  d{T{Tn^x\ S(Tnx)) + d(S(Tnx), Ty)

£ φ{d{T{T^x\ S(Tnx))) + φ(d(S(Tnx), Ty))

^ d(Tn-% Tnx) + d(y, Tnx)

and
d(y, Ty) ̂  d(y9 T

nx) + d(Tnx, Ty) ,

we have, as n-+ ̂ f y = Ty.

LEMMA 3. If S, T have fixed points xlf x2 respectively in X,
then a?! — x2 and x± is the unique periodic point for S and T.

Proof. If x1 Φ x2f then d(xlf x2) < φ{d{Sxu Tx2)) ̂  d{xu x2)> a con-
tradiction. Moreover, if Tqx = x, then, by Lemma 2, there is a
positive integer p such that Tpx = xlf and therefore Trx1 — x for
some integer r > 0. But Tx1 — x19 so that xx = x; and by the same
argument, if Sgx = x, then x = xu which completes the proof.

Proof of Theorem 1. For a fixed x0 e X, we define {xn} recursively
x2n+1 = Sx2n, x2n+2 = Tx2n+1, n = 0, 1, 2, , as in Lemma 1.

Case 1. Suppose d(xn, xn+1) = & for some even integer n ^ 1.
Then xn = xn+ί = Sxn is a fixed point of 5, so that by Lemma 2,
either xn is a fixed point of T or else T#n Φ xn and there is a positive
integer p > 1 such that Tpxn = #n.
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Case 2. Suppose d(xn9 xn+1) = & for some odd integer n ^ 1.
Then by the same argument, we have either Sxn = Txn — xn or else
Sχn Φ χn and S9xn = xn for some integer q > 1.

Case 3. Suppose d(xnf xn+ί) Φ & for all n — 1, 2, . Then
{d(xn, xn+1)} weakly converges to &. We wish to show that {xn} is a
Cauchy sequence. Suppose not. Then there is an ε e K° such that
for every integer, there exist integers n(i) and m{i) with i ^ n(i) <
m(i) such that

( 4 ) d(xnU), xmii)) S e

Let, for each integer i, m(i) be the least integer exceeding w(i)
satisfying (4); that is,

( 5 ) d(xn{i), xm{i)) S e and d(a;n(<), ^ ^ J ^ ε .

Since K is semimonotone, the sequence {d(xn{i), a?m(ί)_i)} is bounded.
Consequently the sequence {d(a?n(i), xmW)} is bounded.

Because -& is a reflexive Banach space, for convenience, we let

(A)

{d(xnW, xmu))} be weakly convergent to %x ,

{d(xnii), xm{i)-i)} b^ weakly convergent to z2 ,

{d(xnU)-l9 Xmu)-ι)} be weakly convergent to zs ,

where zί9 zz and ^2 are in K. According to the triangular inequality,
we have

( 8 ) d(a?n(<), xmW) + d(a;m(<), aj» ( i )J ^ d(xn{i)9 xma)-i) ,

( 9 ) d{xn{i)y xm[ί)^) + d(xm{i)_u xm{i)) ^ d(xn{i)9 xm{i)) .

From (6), (7), (8), (9) and Lemma 1, we see that zι ^ z2, z2 ^ z19

z2 ^ zZ9 z5 ^ z2 and ^ = 2̂ = 3̂ = ^ (say). For convenience, we assume
that n{i) + m(i) is odd. We see that

(10) Φ(d(xn{i)9 xmiί))) ^ d(a?nw)-i, a?««)-i)

Let {0(<2(a?nW), ^m(i)))} have a weak limit. Therefore we have φ(z) ^ zf

we obtain that z — &. (If w(i) •+ m(i) is even, we shall consider
putting the sequence {d(xMi)+1, xm{i))}9 instead of {d(xn(t)9 xm{i))}9 into
(10).) By (4) and (g), there exist a positive number 5 and a sub-
sequence {d(xp{ί), xqU))} of {d(xnii)9 xmU))} such that the sequence {d(xpU),
xq{ί))} doesn't converge to 0* (in norm) and lim^oo \\d(xpWf #ff«,)|| =
s > 0. Since the sequence {c2(a?p(<), fl5ff(<))} weakly converges to <^, by
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Mazur lemma, then there is a sequence of convex combinations {vn}
such that

N

where Σf=n bό = 1> &i = b5{n) ^ 0f n ^ j ^ N — N(n) and % = d(x9ij)9

xq(j)), which converges to & (in norm). For convenience, we can
assume s — 1. Since K is strongly normal, then there exists a δ > 0
such that ||vn|| > δ, when n is sufficiently large. Because {vn} con-
verges to ^ (in norm), this is a contradiction. Therefore {xn} is a
Cauchy sequence. By completeness, there is a u e X such that {xn}
converges to u in X We see that

d(Tu, u) ^ d{Tu, Tx2n+1) + d(x2n+2, u) .

Let {yn} c X converge to y with yn Φ yn+1 and ynΦ y for all n ^ l .
Then

d(Γ»n> Γy) ^ d(Tyn, Syn+1) + d(Syn+lf Ty)

^ d(ynf yn+i) + d(yn+1, y) .

We have, as n-+oo9 Tu — u. Similarly we have Su — u. These
three cases show that at least one of (a), (b), (c) in Theorem 1 holds;
and therefore, by Lemma 3, exactly one of (a), (b), (c) in Theorem
1 holds.

If E is the set of all real numbers and if K is the set of all
nonnegative reals, then, from (4), (10) and Lemma 1, Theorem 1 may
now be restated in the following form.

THEOREM 2. Let (X, d) be a nonempty complete metric space, and
let S, T be mappings of X into itself satisfying (1) and (2).

(1) φ(d(Sx, Ty)) ^ d{x, y), xΦyeX,
(2) φ(t)>t for any tePlf

where φ is lower semicontinuous from the right on Px.
Then exactly one of (a), (b) and (c) as in Theorem 1 holds.

Utilizing the way of the proof of Theorem 1 [15], we have the
following result.

THEOREM 3. Let S, T be mappings on a nonempty complete
metric space (X, d). Then the following conditions are equivalent:

( i ) For any ε > 0, there exists δ(ε) > 0 such that

d(Sx, Ty) < ε whenever ε <; d(x, y) < ε + δ(ε) ,

(ii) There exists a self mapping φ of [0, oo) into [0, oo] such
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that φ(s) > s for all s > 0, φ is lower semicontinuous from the right
on (0, oo) and

φ(d(Sx, Ty)) ^ d(x, y ) , x Φ y e X .

From Theorem 3, we have the following result.

THEOREM 4. Let (X, d) be a complete metric space, and let S,
T be mappings of X into itself satisfying condition (i) in Theorem
3; then exactly one of (a), (b) and (c) as in Theorem 1 holds.

Theorem 4 was proved in [17] by Chi-Lin Yen and Kun-Jen Chung,
but it is a special case of our Theorem 1.

REMARK 1. If S = T = F in Theorem 4, any one of (a), (b) and
(c) implies that F has a fixed point, that is, that S and T have a
common fixed point. Hence (a) holds; namely T has a unique fixed
point. This result was proved by A. Meir and E. Keeler [14].

REMARK 2. The condition that two mappings T and S satisfy
(i) in Theorem 3 does not imply S = T (cf. [17]).

The author would welcome an example of a strongly normal cone
K in a reflexive infinite dimensional Banach space.
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