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HERMITE SEMIGROUP RINGS

LEO G. CHOUINARD, II

If S is a commutative, separative semigroup with
identity, and R is a commutative ring with unit such that
R[S] is arithmetical, then a local-global principle for verify-
ing algebraic equations in R[S] is established. This is then
used to show that if S is not a union of torsion groups, then
R[S] is an elementary divisor ring.

l Introduction and notation* The arithmetic of commutative
semigroup rings has been studied in a number of papers in recent
years. Gilmer and Parker [3] were able to determine when such a
ring over a torsion-free cancellative semigroup is Prufer, and from
their work it is easy to conclude that such a ring is also an ele-
mentary divisor ring. Hardy and Shores [4] determined necessary
and sufficient conditions for the semigroup ring of a cancellative
commutative semigroup to be arithmetical, and in that case if the
semigroup is not a torsion group, again the ring is an elementary
divisor ring. In a subsequent paper by Hardy, Shores, and this
author [1], it was completely determined when the semigroup ring
of a commutative separative semigroup is arithmetical.

The purpose of this paper is to show that if S is a commutative,
separative semigroup which is not a union of torsion groups, then
R[S] is arithmetical iff it is an elementary divisor ring. This also
completes the determination of when R[S] is Bezout or Hermite if
S is as above. This result substantially generalizes the well-known
result that R[X] is an elementary divisor ring if R is a field ([5],
§12).

Our notation generally agrees with that in [1]. All rings will
be commutative with unit 1^0, and regular will mean von Neumann
regular. If R is a ring and S is a semigroup, then R[S] is the
semigroup ring of S with coefficients in R; however, we reserve
R[X] for the ring of polynomials in R. All semigroups will be
commutative, separative, and unless noted otherwise, written multi-
plicatively; furthermore, we shall assume all semigroups have an
identity element, although we shall not require this of subsemi-
groups. All homomorphisms of rings or semigroups are unit
preserving. If S is a semigroup, since it is separative it can be
written as a semilattice of cancellative archimedean subsemigroups
([2], Theorems 4.13 and 4.16); that is, S= \Jaeγ Sa where Y is a
semilattice and the Sa are disjoint cancellative archimedean subsemi-
groups of S such that SaSβ Q SaAβ. Note each Sa is either a group
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or is nonpotent (idempotent free). We call each Sa a component of
S, and Y the semilattice of S; we shall say S — \JaeγSa is the de-
composition of S. If a, βe Y, we write aβ for a A β, and we say
a ^ β if aβ = /3. We always use 0 for the index of component of
the identity element of S, and if S has a zero element distinct from
the identity, then by abuse of notation we use z for both that
element and for the index of its component.

With S as above, the multiplication on S is determined by the
Sa's and suitable group maps φa>β: tot(Sa) —> tot(Sβ) defined for all
a ^ β, where tot(Sa) indicates the total quotient group of the
cancellative semigroup Sa ([2], Theorems 4.17 and 4.11). We say S
is a union of groups if each Sa is a group.

By a filter ^~ on the semilattice Y we mean a nonempty sub-
semilattice of Y such that if a e J^, βeY, and β^a, then β e J^T
If S is a semigroup with decomposition \Jaeγ Sa and each Sa has
torsion-free rank <; 1, then for any filter ^~ on Y we can define
the local reduction SL- of S at ^ as in §3 of [1]. Recall that if
R[S] is arithmetical for some ring R, then the rank condition must
hold (4.1 and 4.3 of [1]), and the local reductions exist. Our argu-
ments will assume a knowledge of the construction and properties
of local reductions given in [1].

If R[S] is a semigroup ring and S has decomposition \JaBY Sa,
then R[S] ^ (Baer R[Sa] as ^-modules. If xeR[S], then λ can be
uniquely written as Σ«er\* with λαei?[Sα] and all but finitely many
equal to 0; we then define supp (λ) = {a e Y\Xa Φ 0}. We also define
λ{α) - Σιβ>a^βf λ[α] - Σtβza^βf and S [ α ] = [JβzaSβ for any aeY; note

that the last is a subsemigroup of S. If U is a matrix with entries
in R[S], we can likewise write U = Σ α e F £7α and speak of C7(α), Ui<x\
and supp (27).

Recall that a ring i? is Hermite if for every row vector [a b]
of length 2 over R, there exists a 2 x 2 matrix TF over iϋ such
that det (W) - 1 and [a b]W = [d 0] for some deR. Such a ring
is automatically Bezout, and thus also arithmetical. R is called an
elementary divisor ring (denoted EDR) if it is Hermite and for
every 2 x 2 matrix M. over R, there exist 2 x 2 matrices U, W
over R such that det (17) = det(W) = 1 and UMW is diagonal [5].
Using the Hermite assumption to factor out the god of the entries
of M, we may assume that these entries generate the unit ideal in

B, and that UMW = [J J {M)].
In §2 we shall develop some further facts about local reductions,

and prove a local-global theorem for verifying equations in arithme-
tical semigroup rings, which reduces the problem to checking a finite
number of local reductions. In §3, it is shown that if S is not a
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union of torsion groups and R[S] is arithmetical, then it is Hermite.
The proof requires a series of technical lemmas, and for most readers
only the proof of Proposition 3.1 and the statement of Theorem 3.4
from this section should be read at first. In §4, the much simpler
proof that the above implies that R[S] is an EDR is sketched.

The author wishes to thank Thomas Shores for reading a first
draft of this paper and recommending certain clarifications.

2. Local reductions revisited* Let S be a semigroup with
decomposition \JaeYSa such that the torsion-free rank of each Sa

is <; 1, and let J^ be a filter on Y. Let S#- have decomposition
\Jaeγ' Sa, and let η^-iS-^S^- be the natural map. Then the follow-
ing facts can be proved from the construction of local reductions
and the results in [1].

( i ) If β e Y, define Y{β) = {a e Y\a ^ β] if Sβ is potent, and
Ylβ) = {a e Y\a ^ β and φatβ is reduced trivial} otherwise. Then Y(β)

is a filter on Y, and is in fact the smallest filter on gf such that
η^(Sβ) Φ Szf with Sz the component of the zero element of S^, if
one exists distinct from the identity. Moreover, 7}jr(Sβ) Φ Sz iff for
all 7 6 ^ ; Y{β7) £ JK Note also that if a ^ β and Sa is potent,
then aeY(β).

(ii) If R[S] is arithmetical and Sβ is a nonpotent component
of S, then for &* = Y{β) we have S,r = S0Ό SβΌ Sz with SQ = inj.
lim. {Sα |αe F(^} necessarily a torsion group and S2 either φ or {̂ },
with z a zero element distinct from the identity. Also, if 7 ^ /S
but 7 ί Γί/3), then for some a e Γ{/}) we have Ίa = β, while if 7 ^ /3,

(iii) Let κ,r be the natural map from R[S] to J?[S^]/(^), where
(z) is the ideal of R[S^] generated by Sz (so (z) = 0 if S, = ^). Since
iŜ - is of special type (see §5 in [1]), it follows that Sίf =
{αe Γ|)y^(Sα) ^ Sz} is also a filter on Y. Let αei2[S] and let V be
a finite subsemilattice of Y containing supp (α), and suppose β is
the minimal element of £ίf Π V. Suppose S — Sίβ\ and let ηβ by
abuse of notation denote both the natural map S-+SYw and the
induced map R[S] ~^R[SYw]. Now i2[SF(i5)] is just the localization of
R[S] at \JaerW Sa (note that for this case, step (i) in the definition
of the local reduction in [1], §3, is trivial). Since Y{β) £ ^ 7 we
have a natural map κβ^\ R[SYw] -+R[Sβr]/(z) such that κβiJr°yjβ~
fcjr°i, where i: R[S] —> R[S] is the inclusion. But fCjr(a) = fc^(am),
so we get the following local-global principle.

PROPOSITION 2.1. Let S be a separative semigroup with decom-
position U<χeYSa, and let R be a ring such that R[S] is arithmetical.
Suppose au , an e R[S], and V is a finite subsemilattice of Y con-
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taining {0} U \Jΐ=1 supp (α<). Let P(xlf ••-,#«) ί>e αw equation of poly-
nomials in xlt , #n wi£/& coefficients in R. Then P(άu , an) holds
in R[S] iff for every β e V, P(Vβ(a[% , ηβ{aψ)) holds in R[S%].

Proof Since the inclusion map R[Sm] —>i2[S] has a left inverse,
namely α - W ] , if P(alf ••-, α j holds in Λ[S], then P(αp], --,0,™)
holds in Λ[S m ], so P(^(α{Λ), , ^(α^ ] ) ) holds in J?[S^ }] by applying
^ . Conversely, since P can be tested locally, to show P(alf •••, an)
holds in i?[S] it suffices by the proof of Corollary 3.4 of [1] to show
that for any filter ^ on Γ, P(κAo>d, , 'Mα,.)) holds in J?[S^]/(^).
However, this follows by applying /c^,^ to P(^(αp 3 ), •••, yjβ{aψ)) for
the appropriate /3 6 F.

REMARK 2.2. Obviously, the result can be extended to systems
of equations, and the assumption that V is finite can be dropped,
as long as the number of variables remains finite. Note that the
result actually applies to any statement P about a finite set of
elements in a commutative .R-algebra whose t ruth is preserved by
jR-algebra homomorphisms and which can be tested locally.

REMARK 2.3. If βu β2 eY, β1'^ β2 and ^ = Yw then we can
construct a κβι>β2: RiS^]-^R[S^γ2)] such that /cβlf^ = /Cβ2,^o/cβvβ2 and
/cβ1,β2°Vβί = Vβ2

oi'> where V is the inclusion from R[Sίhl] to β[SCi32:i],
further factoring the maps above.

REMARK 2.4. In some respects, the proposition above is re-
miniscent of a basic result on Pierce sheaves ([6], Proposition 3.4).
It would certainly be interesting if there were a sheaf for
arithmetical semigroup rings which implied the result above.

3* Hermite semigroup rings* Observe that if S is a union of
groups Sa, then Proposition 6.7 of [1] implies that R[S] is Hermite
(or Bezout, or an EDR) iff each R[Sa] is likewise. In fact, Corollary
6.9 in the same paper implies that if S is a union of groups, at least
one of which is not a torsion group, then R[S] is an EDR iff it is
arithmetical (so these conditions are also then equivalent to Bezout
and to Hermite). If we continue to restrict ourselves to separative
semigroups, there are two directions in which to explore: when is
R[G] Hermite (or Bezout, or an EDR) for G a torsion group, or
when is R[S] Hermite (etc.) for S separative but not a union of
groups? We will deal with the latter question. We first show that
R[S] is Bezout if it is arithmetrical.

PROPOSITION 3.1. Let S be a separative semigroup with decom-
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position \Jaeγ Sa which is not a union of torsion groups, and let R
be a ring such that R[S] is arithmetical, and let a, beR[S] not both
0. If Vo is the subsemilattice of Y generated by supp(α) U supp (6),
then there exists d e R[S] such that supp (d) £ Vo and (a, b)R[S] =
dR[S]. In particular, R[S] is Bezout.

Proof We define da by induction, for all a e Fo, assuming dia)

has already been defined so that if β > a, β e VQ then

Consider the composite R[Sa] -+ R[SW] -> R[S%], where the first map
is the inclusion (and is not in general unit preserving) and the
second is f]a. If Sa is a potent component of S, then this composite
is an isomorphism of rings, by the construction of 22[S£(1,]; if Sa is
nonpotent, then by item (ii) in §2, R[S%] = R[S0 U Sa] s R[S0] θ
R[Sa] as ϋJ-modules, where So is a torsion group, and the above
composite is just the injection of the R[Sa] factor in the coproduct.
Now by the proof of Corollary 6.9 in [1], in either case R[S[^a)] is
an EDR, and thus Bezout.

Let d 6 R[S^a)] be such that

dR[S%] = (7«(αW)f UVa}))R[S%]

If Sa is potent, it follows from the above that there exists a dae
R[Sa] such that ηa(da) - d-rja{d{a)), so that ηa(d™) - ηa(d{a) + da) = d.
If Sa is nonpotent, let 7 be the minimal element of Vo Π Yia) (if this
is empty, let 7 = 0). Also, for any xeR[S^a)]f let x0 be the com-
ponent of x in R[SQ] and let xa be the R[Sa] component of x, so x =
x0 + xa. By Theorems 4.4 and 5.1 of [1], R[S0] is regular, and by
projection onto Λ[&], dQR[S0] - (Va(aϊa% ηa(b^)o)R[Sol But ?"β(cW)0 =
£r,«0?r(α[r])) and likewise for 6 and d. Thus do^[So] = fCrΛV
so by regularity, d0^ = fcr,a(Vr(dlr1)) for some unit u e iϋ[S0] Let
du e R[S^a)]. Then (I - ya(dia)))Q = 0, so there exists a
such thatJτβ(dβ) = l -^ r (d ( β ) ) . Now ηa(d™) = (ί=2u, so γ"α(ώ
(^«(^Cα]), VaΦίal))R[S%] as desired. Since Fo is finite, by induction
d is completely defined with supp (d) £ Vo. However, since equality
of ideals generated by given elements can be tested locally and is
preserved by ring homomorphisms, by Remark 2.2, (α, b)R[S] — dR[S],
(Note the testing is done on Vo U {0}.)

Now let a, b, and d be as above, and let VΊ = Vo U {0}. VΊ is
itself a finite subsemilattice of Y. We want next to establish that
at each JS[S^]

α)], with a 6 VΊ there are suitable matrices to be the
images of a matrix U such that [α 6]Z7= [d 0]. Note first that
if a, βeY correspond to distinct nonpotent components of S, then
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Y{a)Φ Y{β) since otherwise Sγ«χ) would not be of special type (Theorem
5.1 in [1] and item (i) in §2). Also, by definition if Sa and Sβ are
distinct potent components then Yla) Φ Y{β). But if Stt is potent
and Sβ nonpotent, then Y{a) = Y{β) iff a is minimal in Y{β), so in
particular a > β.

LEMMA 3.2. Let R, S, a, 6, and d be as in Proposition 3.1, and
let VΊ — {0} U Fo. Then there exists a set of 2 x 2 matrices
{U(a) I a 6 VΊ}, with U{a) defined over R[S$a)], such that

( i ) det (Ula)) = 1 and

= [%#*) 0]

for all a e Vx.
(ii) If a<βeV, and Γ(α) = Yίβ), then

£β,a(U{β)) = (U{ce))0.

Proof If there does not exist a 7 < a such that 7 6 Vx and
y<r) = jr(e)> S i m p i y choose U{a) over Λ[S^]

α)] to satisfy (i), using the
previously noted fact that i2[S^(

]

α)] is an EDR, and thus Hermite,
and the first remark in §4 of [5]. If there is a 7 6 VΊ such that
7 < a and Y{a) = Yir\ then by the above comments Sa is potent
and R[Sa] = jB[S^i,]. But by construction of S$r)f we must have
that fjy restricts to an isomorphism from R[Sa U Sr] to R[S$r)]
(Proposition 6.4 of [1]). Thus, since U{ΐ) is defined so that
ίVria™) VrΦιn)]Uσ) = [ηr(dίrl) 0], we have by taking the component of
the identity in R[S%] that [ηr(a™\ Vrib^oW^X = lVr(d™)0J)] and
det ((Z7(n)0) = 1. By the maps above, however, rjr{air\ = Λ:α,r(^α(αCα])),
with like results for b and c£, and for some Uia) defined over J?[S^ί3

α)],
KaΛU(a)) = (U{ΐ))o> satisfying (ii). By the isomorphism of i2[S^3

α)] and
R[(S$r))0] and the comments preceding the lemma, Uia) satisfies (i)
and is uniquely defined.

We next need a strange-looking technical lemma.

LEMMA 3.3. Let Sbe a separative semigroup with decomposition
Uαer Sα, and suppose for some ring R, R[S] is arithmetical. Suppose
βif βϊ^Ywith Sβl and Sβ2 distinct nonpotent components of S. Then
there exists an integer n ^ 2, and 72, , 7n, β3, , βn 6 Y such
that

(a) 7, ^ 7y if i ^ j,
(b) 7 ^ , - ! = βi+1 for all 2 ^ i ^ n - 1,
(c) 7£6 F ( ^ } for all 2^i^n,
(d) eίί/iβr 7nβn-i = /3n, or Φβn^vrnβn^ is reduced trivial, or iSr%̂ __1

is α group.
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Proof. Define j^l for all nonnegative integers i by induction
as follows:

(1) J^={0},
(2) If i is even, J^7+1 = \JaeJr Γ w , and if i is odd,

It is easy to prove by induction that each ^ is a filter on Y.
We wish to show that ^ . £ ^ + 1 for all i ^ 0. Suppose axe^l9

say for example i is odd and for some αi6^7_i, α e Y"(α 2̂\ If SΛl/j2

is potent, then α2 = α1/32et^7 and α2ey ί α 2 / 3 l ), so since a ^ α2, α e
F(α2/3l) C ̂ + 1 . So suppose Sαî 2 is nonpotent. Then by item (ii) in
§2, there must be some a3eYl0Clβ2) such that a ^ as and φataz is
reduced trivial. Also α 3 e ^ 7 , so r(β»*} £ J^ + 1 , but 0α,α3/3l = ft^^o
0α,α3 is reduced trivial, so a e Y^^ Q J?~i+1 as desired. Thus J*7 S
J ^ + 1 and &* == UΓ=i ̂  is a filter on Γ. Note that it also follows
above that if β2 <£ JT;, then either a e Yia^ or /3X 6 Y(^βί) S ^ + 1 ,
since either ^α>αi9l or «̂is1,«3i91 must be reduced trivial. There are now
two cases.

Case 1. βl9 β2 $ ̂ 7 It is clear from the construction that if
7e J^7 then Y(rh) and Ylrβ2) are subsets of ^ T It follows by item
(i) in §2 that Sβl and S^ map to nonpotent components of S^; how-
ever, S^ has at most one nonpotent component by Theorem 5.1 of
[1]. Thus for some 7 € ^ 7βi — Ίβ2. Let us choose i and Ύ so
that j e ^ i and i is minimal with respect to containing such a 7.
Since βx Φ β2, i Φ 0; by induction, there exist 72, , 7ί, Ύ'i+1 — 7
such that 7j e ̂ _ t and if 2 ̂  i ^ ΐ, then τί+1 e Γ ( ^ ^ } where δ(Λ = 1
if j is even and δ(i) = 2 if j is odd. Now define Ί5 — 727s Ί) for
all 2 ̂  i <; i + 1, and £ i + 1 = 7 ^ ^ ! = 73/Q3(i) for 2 ̂  j ^ i. Then
(a)-(d) of the lemma are easily verified with n = i + 1.

Case 2. Either βλ or β2 is in ̂ T Let i be chosen to be minimal
with respect to having β1 or β2 in <^7+1. Say for instance, /3i€^7+1.
Then there is a 7 6 ^ such that βλe γw*«+i))m Now if i = 0, there
exists 72 6 Y(^2) such that /3i > 72 and φβltTi is reduced trivial, and
the lemma holds with n = 2. If ΐ ^ 1, then as before there exist
7^ . . . ,7ί + 1 =7 such that 7 j e ^ _ ! and if 2 ^ i ^ i then 7j+16 Γ (^(i) }.
Again define 7, = 72 7j for 2 ̂  i ^ i. If βδ{W) or 7<7j+1 is in
γirtrί+iβδ«+i))9 choose 7 < + 1 = 7 j 7 + 1 likewise. For / 3 δ ( m ) 6 F<rir<+ifc«+i>>,

let ^ = ΐ + 1 and define βSt , ̂ Q<+1 as before, and it is again easy
to see that (a)-(d) hold. If not, then since fte Y^β»n+^^γ(n+ιβsn+i)\
we must have δ(i + 1) — 2, and since 82£ Y{™+^\ Sγi+lβ2 is nonpotent.
Thus if 7 m =7i7 + 1 e Y{ri+Mf so is 7i+1βl9 sothere exists a 7ί+2 6 Y{r^M
such that βiϊt+ί ^ 7ί+2 and ̂ 1rί+1,ri+2 is reduced trivial, by item (ii)
in §2. Again defining βά = 7J _1/9i_1 = 7i_1/2δω for all 3 ̂  j ^ i + 2,
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we can verify that n = i + 2, 72, , 7ί+2, β3, , β<+2 satisfy (a)-(d)
of thelemma.

Thus we are reduced to the case where neither 7/Yί+1 nor β2 is
in Γ<wrί+î i). But then 7<7ί+1ft - 7ί+1/8< by induction, and Φr^j^β,
is reduced nontrivial. Also, if βLe Y^βo then fte^ contradicting
the minimality of ί, so Sr .^ is nonpotent, and furthermore 7* 6 Y^tβo
by our remark after the proof that ^ £ ^*+i By hypothesis
7j+1 = 7eYirίβί) £ Γ^1* so 7,7;+1e Y^nh)9 and there is some Ύi+ίe
γ(nβχ) such that 7<7ί+1 ^ 7<+1 and ^Γirΐ+1,ri+1 is reduced trivial. But
then φriri+vri+ίβi is reduced trivial, so since <hiri+ltrtri+1tt is reduced
nontrivial, Φrir'iΛ.1β2,rί+1β2 and thus Φβ2,ri+1β2 are reduced trivial. Now
again it is straightforward to show that n = i + 1, 72, , 7ί+1,
βz, -*, βi+u with the 7's as above and the β's defined by condition
(b), satisfy the lemma. Similar arguments for /32€.^J+1 complete
the proof.

THEOREM 3.4. Let S be a separative semigroup which is not a
union of torsion groups, and let R be a ring such that R[S] is
arithmetical. Then R[S] is Her mite.

Proof. Let a, beR[S], and adopt the notation of Proposition 3.1
and Lemma 3.2. We wish to find a 2 x 2 matrix U over R[S] such
that [a b]U=:[d 0] and det(l7) = l. Note that if U is defined
and V is a subsemilattice of Y containing supp(J7) U Vx, then it
suffices to know that [ηa{aw) Va(bίa])]Va(U^) - [V*(dw) 0] and
det(^α(i7Cα])) = 1 for all a e V, by Proposition 2.1 and Remark 2.2.

For each β e Vu we next wish to choose an element Δ{β) 6 Y
that is in some sense "sufficiently small" among the elements of
Y{β). If Sβ is potent, let Δ(β) = β, and if Sβ is nonpotent but for
some ΎeV, with Sr potent, Y{β) = Y{?\ let Δ(β) = 7. Otherwise,
let a be the minimal element of Vx Π Y{β), and recall R[S^β)] =
R[S0 U Sβ] = R[So] 0 R[Sβ] where So is a torsion group, as in the
proof of Proposition 3.1, and if xeR[S$β)], let x0 and xβ be the
respective components of x under the direct sum. Now again for
any yeR[S] with suppd/ίCVΊ, we must have (^d/m))0=^,p(^(i/ [ a ])).
Thus 7}β([a bnκaAUw) = κaΛVa&a δ]M)J7(β)) - (ηβ([d 0]™)\ =
(^([a 6 F ) ^ , ) 0 - ^([a 6]m)o(ί7(̂ ))o, and det(([7(,))0) = d e t ^ , ^ ^ ) ) -
1, so det (/cα̂ (Z7(α))~

1(ί7(i5))o) = 1 and tCajiU^iU^X acts as the identity
on (ηβ([d 0P)) 0 = [ηβ(d^)0 0]. Since R[S0] is regular, /cα,̂ (C7α)-

1(ί7(̂ )0

can be written as a product of elementary matrices over R[S0]
(triangular matrices with Γs on the diagonal) chosen so that all
above diagonal elements annihilate ^(cί[^])0. This follows since the
standard Pierce sheaf of a regular ring has fields as its stalks, and
over a field this can be done while keeping a bound on the number
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of elementary matrices needed (using [6], Proposition 3.4 generalized
to systems of equations). But R[S0] = inj. lim. {R[tot(Sr)]\7e Y{»}9

so there exists a Δ(β) e Y{β) such that A{β) < a, all the off-diagonal
elements of the elementary matrices are in Vβ(B[tot(SΔiβ))]) =
yβ(R[SJ{β)]), and the elements which map to the above-diagonal ele-
ments can be chosen so as to annihilate κatΔ{β)(yϊa(dίa'1)).

Next, we choose our finite subsemilattice V of Y by taking the
semilattice generated by Vlf for each β e V1 a A(β) as chosen above,
and for every pair ft, β2 e T̂  such that Sβl and Sp2 are distinct non-
potent components of S, a sequence 72, , 7n which (together with
the β's defined by condition (b) of the lemma) satisfy Lemma 3.3.
If βe-VΊ such that Sβ is nonpotent, let us define the clan of β to
be the set of all λ 6 V such that λ <Ξ β, Sλ is nonpotent, φβ>λ is
reduced nontrivial, and if ve V1 with v ^ λ, then v^ β. Note that
not all elements of V belong to clans.

LEMMA 3.5. (a) If alf a2e V such that ax and a2 belong to
different clans, then Y{ai) Γ\Vφ Y{0C2) Π V. (b) If a,eV belongs to
a clan, and a is the minimal element of Y{aύ Π V, then a does not
belong to a clan.

Proof, (a) Suppose βlf β2 6 Vx such that αx belongs to the clan
of βi and a2 belongs to the clan of β2. Let 7?, •• ,7 n be the ele-
ments of V chosen to satisfy Lemma 3.3 for this β1 and β2. Suppose
r<«i) n y = r ( α 2 ) n v. Then τ2 G r(^> n F g y{α2) n v, so let 2 ̂  % ^ ^
be maximal such that τ4 6 Γ(α2) Π V. If i < w and i is odd, then (in
the notation of Lemma 3.3), Ύφ, = /Si+1 ̂  α2, and 7<+1 6 Γ^^^ ΓΪVQ

γίcc2) f\V, & contradiction. Likewise if i < n and i is even. So
suppose i = n, and say for example that again i is odd. Then
Ύnβn^ = 7n/92 ^ α2. If 7n/3n_1 = βn, then ft ^ βn ^ ^2, so α2 ̂  ftft,
and also 7nft = βn ^ «i, so αx ̂  ftft. However, ft is the minimal
element of Vx over alf and likewise for β2 and α2, and since ft Φ β2

and ftft e Vl9 we have a contradiction. If instead, ^%_1,r%/3%_1 is
reduced trivial, then so is φβ2,a2 since it factors through the former
map, again a contradiction. If finally Sγ^^ is a groups, then again
to avoid a contradiction Φrnβn^.va2 must be reduced nontrivial, but
then Sa2 must be a group (since it is closed under multiplication by
Φrnβn-lta2(Sr%βn_J)f yet another contradiction. Thus all three options
in (d) of Lemma 3.3 are impossible.

(b) Suppose a2 is the minimal element of V Π Yi0Cl) and a2 belongs
to a clan. Let ft, β2 be as in part (a). Note ft Φ β2 since φβ2>όCl

factors through φa2>ai and is thus reduced trivial, while φβl,ai is not.
Since ft ^ au and ft is minimal in VΊ over al9 ft > ft. Again let
Ύ2y - - , 7n be the elements of V which satisfy 3.3. In this case we
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must have βx = βz = = β2m+1 and since φβ2tβχ must be reduced
trivial, β2, /34, , Am and 72, 73, , 7n are all in Ylβί) (where n = 2m
or 2m + 1). It follows from 3.3 (d) that n is odd and either φβ2,rnβ2

is reduced trivial or Srnh is a group (since 7n/3n_i = 7»jS2). But
7n/32 e y{αri) Π F, so 7n/32 ^ α2. This means either φβ2t(X2 is reduced
trivial or S«2 is a group, both contradicting the assumption that a2

belongs to the clan of β2.
Returning to the proof of the theorem, we are now ready to

define U so that supp(£7)CF, [a b]U = [d 0], and det(l/) = l.
In order to state our induction hypotheses, we will divide V into
three subclasses: (1) elements minimal in Yla) Π V for a an element
of some clan; (2) elements which either belong to a clan or correspond
to potent components and do not belong to class (1); and (3) all
others. We again define U by induction o n α e F , assuming Z7(α) is
already defined.

Induction Hypotheses. If a e V such that Uw is defined, then
( i ) det(ηa(U™)) = 1 and

VΛa b]W)ya(Uw) = [vMa}) 0 ] .

(ii) If a is in class (1), 7 is in the clan of β and a is minimal
in Yir) Π V, then

(iii) If a is in class (2), and β is the minimal element of V±

which is ;> a, then

(iv) If a is in class (3) and β is the minimal element of
YM Π V, then ηa{U™) = *,„(?,(D™)).

So suppose we are trying to define Ua so that ί7[α] satisfies these
hypotheses, assuming that Uί<Xίl does for all a± > a. First suppose
α is in class (3), and β is as in (iv). Note Sa is nonpotent so β > a.
Let eα be the identity element of tot(Sa), and recall from [1] that
if Ύ^a but 7gΓ ( α ) , then eaSr Q Sa. Define Ua = {U^-Uw)ea

and then (iv) clearly holds. But (i) holds since [a δ][α] = [a b]m and
ejM = dm, and we may apply κβtCt to (i) applied to β.

Next suppose α is in class (2), and β is as in (iii). If Sa is
potent, then since fja induces an isomorphism from R[Sa] to R[S^a)]f

there exists a unique Ua over R[Sa] such that ya(Ua) = κβ,a{U{β)) —
Va(U(ot)). If instead α belongs to the clan of /3, and 7 is the
minimal element of Yla) Π V, then it follows from (ii) that tcβ,JJJ{β)) —
ya(U{a)) sits inside the summand of J?[S^]

α)] which is isomorphic
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under fja to R[Sa]. Again there exists a unique matrix Ua over
R[Sa] such that ηa{Ua) = fcβ,a(U{β)) - ya(U{a)), so in either case (iii)
holds. However, (i) now follows since ηβ([a b]m)U{β) = [Vβ(dm) 0]
and άet(U(β)) = 1, and (i) follows by applying tcβ)Ce.

Finally, suppose that a is in class (1). Let {Ύly •• ,Ύn} be the
set of all elements τ of V which belong to clans and are such that
a is the minimal element of Γ ( Γ ) Π V. By Lemma 3.5, yl9 , Ίn all
belong to the clan of the same βeVί9 and a does not belong to a
clan. Let K = f fc iker (0α>r.: Sa-+ tot(Sr)). It follows readily from
Theorem 5.1 of [1] and Theorem 3.6 of [4] that SJK is a torsion
group and R[SJK] is regular. Note that if Δ(β) is the element of
V chosen earlier, then Δ(β) ̂  a. Also if βx is the minimal element
of V1Γ\Y{a), then it is also the minimal element of VxΓ\Y{Δm.
There are two cases.

Case 1. Sa potent. Our choice of Δ{0) guarantees the existence
of a 2 x 2 matrix Mβ over E[S^%] such that yMβ)([a bψ*)Mβ =
lVjw(diM) 0], fcJ{β)tβ(Mβ) = (U{β),)0, and det(Λf,) = 1. So choose Ua so
that ^α(C7α) - tcMβha(MΦ) - 7«(^ ( α ) ), and thus ηa{U™) = icJ(Λiβ(Λ^). We
have (i) by applying tcd{βUa to the corresponding equations above, and
(ii) holds since

- ICβir.({U{β)\) .

2. S a nonpotent. Let β2 be the minimal element of
Γ(α> Π V (note A ^ /32). Let S^3

α) have decomposition SQ U Sα. We
wish to show that there exist elementary matrices Elf , Eό over
Λ[Syβ(3r>]» with off-diagonal elements from the i2[Sα]-summand and
above-diagonal elements which annihilate [̂ a(cZC/92]) 0] = ̂ α([α b]LhlUίβύ)f

such that ιcair.{ηa{U^)E1 - -. J5y) = ιcβ>γ.{{Um\) for all 1 ^ i ^ w. For
if so, ^(U^E, ••> Ej - Va(U{a)) is in the i2[Sα]-summand, so there
is a choice of Ua so that rJa{Uw) = η^U^E, - - J^,, In that case,
by induction on j , det ̂ α(27[α]) - 1 and ηj\a b]™)ya(U™) = [^α(ώtα]) 0],
while condition (ii) will hold by definition of the Eit

Two show Eu , Eβ exist as desired, we first show that we
can find El, , Ej over i2[S£(3

α)] satisfying all requirements except
that the off-diagonal elements come from the i2[Sα]-summand. These
are defined in two stages. Since supp (d) U supp ([a b]) £ Vlf

0] = WaV™) 0] =

Thus VaiU^ψ^iU^) acts as the identity on ηj\d 0]M), and since
these lie in the iZ[S0]-summand of R[Sfil)], which is again regular,
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there exist E[f , E[ elementary matrices over R[S0] whose above-
diagonal elements annihilate ηJβlM) such that ηJJJu^El •• E[ =
V«(UiM). Now by our choice of Δ{0), there exist Flf --,Fm ele-
mentary matrices over RlSffil)] whose above-diagonal elements
annihilate η Δ{β){diβύ) such that

(β)(U{βι))F1 Fm)

Let j = I + m, and let 2£ί+< = κd{β)ta(Fi) for all 1 ^ i <£ m. Then
JBJ, , Ej behave as desired.

Now let keK= ΓIΓ=i ker (φaJ.: Sa -+ tot(STi)), and define E< = I +
(E't — I)k for all 1 <; i 5g j" (/ the identity matrix), i.e., let 2^ be
obtained by multiplying the off-diagonal element of Έ\ by k. Then
EL, - -9E5 still have above-diagonal elements which annihilate ηa(diβύ).
However, all off-diagonal elements are in the R[Sa] summand of
R[S%], and for all 1 £ i ^ j , 1 ̂  I ̂  w, ^.^(JS,) = fcaJι(Edf so our other
conditions are maintained. As stated above, if we now choose Ua so
that ηa{Ua) = ηa{U^)E1 - Ed - ya{U{a)), then (i) and (ii) hold and
our induction is complete. By Proposition 2.1, the theorem is proved.

4* The elementary divisor ring case*

THEOREM 4.1. Let S be a separative semigroup which is not a
union of torsion groups, and R a ring. The following are equivalent:

(1) R[S] is arithmetical
( 2 ) R[S] is Bezout
( 3 ) R[S] is Hermite
(4) R[S] is an elementary divisor ring.

Proof. For any ring, (4) => (3) => (2) => (1). In light of Theorem

3.4 and our comments in §1, it suffices to show that if M = \a T

is a matrix over R[S] such that (α, 6, c, d)R[S] = R[S], then there

exist 2 x 2 matrices U, W over R[S] such that UMW = ΓJ ad ^ ft Ί

and det (Z7) = det (ΪΓ) = 1. Again let S have decomposition U«er Sa.
This time, let V be the finite subsemilattice of Y generated by
supp(ikf) (note this contains Oe Y). We shall choose U and W to
have support in V, again defining them by induction on a e V,
assuming U{a) and W{a) are defined. Our induction assumption to
be maintained is that det (ηa(Uw)) = det (ya(Ww)) = 1 and

[ ]
If Sa is potent, we know that R[S%] = R[Sa] is an EDR, so

there exist matrices Ua, Wa over 22[S^α

{

]

β)] such that det(ί/α) =
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det(TFα) = l and Uaηa(Mm)Wa has the desired form. Since ηa

restricts to an isomorphism from R[Sa] to i?[S^(

]

α)] in this situation,
we may choose Ua and Wa so that ηa{U^) = Ua — ^"α(£7(α)) and ^(TΓα) =
W'α — ̂ «(W(α)) The induction hypothesis is then clearly maintained.

To handle the case where Sa is nonpotent, we need the following
lemma.

LEMMA 4.2. Let Rt be a regular ring, M{X) a 2 x 2 matrix of
elements of the polynomial ring Rλ[X] whose elements generate the
unit ideal, and Uo, Wo 2 x 2 matrices over Rλ such that det(E70) =

det (Wo) = 1 and U0M.(0)W0 = £J d e t (M(0^~\ Then there exist 2x2

matrices U(X), W{X) over R,[X] such that £7(0) - £70, TΓ(O) = Wo,

det (E7(X)) = det (W(X)) = 1, <™rf U{X)MίX)W(X) = [J ]

Proof An application of the basic theorem on Pierce sheaves
([6], Proposition 3.4) reduces the lemma to the case where Rx is
a field. In that case Rχ[X] is an EDR, so there exist matrices
Ό(X), W{X) over R[X], with det (U(X)) = det (W(X)) - 1 and

tf(X)M(X)#XX) as desired, so by replacing M{X) by [J d e t ( ^ ( X ) ) ] ,
£70 by E70E7(0)~1, and TF0 by ^(O)" 1 !^ we may assume M(X) already
has the desired form, and U0M(0)Wo = il£(0). Let f(X) = det(M(X)).
Once again, we have two cases.

Case 1. /(0) Φ 0. We show that there exist matrices U{X),
W(X) over i?[X] such that £7(0) = Uo, det(£7(X)) = det (TF(X)) - 1
and U(X)M(X)W{X) = ikf(X). It then will follow that T (̂0) = Wo =
ikfίO)-1^)-1^^), so we may choose TF(X) - ^(X).

To prove this simpler statement, since Uo can be written as a
product of elementary matrices, by induction we may assume Uo is
an elementary matrix. The verification that U(X) and W{X) can be
chosen in this situation is left to the reader.

Case 2. /(0) = 0. In this case we must have for some α, 6, c e R1

that tf. = [J I] and ί70 = [ f °]. Then C7(X) = [α_c/ * ]

and FΓ(X) = Γα 1 ( 1 ~ bc^ ~ δ ̂ l satisfy the lemma.
L & ® J

To apply the lemma to the proof of the theorem, let
R[So\ © R[Sa] be the usual decomposition and let K = ker (φ0>a: S
tot(S)), where ^0>α is the structure map for S^]

α)j. Then as in
Theorem 4.4 of [1], we have a semigroup (So/K) U Sa, and a natural
surjection p: i?[S^(

]

α)] -^ R[(S0/K) U SJ. Observe that R[(S0/K) U SJ s
J?[So/if] 0 R[Sa] as i2[S0/i^]-πiodules, and the induced map on the

o
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R[Sa] summands is the identity. As in the proof of Corollary 4.5
of [1], any finite subset of (§JK) U Sa is contained in a subsemigroup
isomorphic to (So/K) x Z+, where Z+ is the nonnegative integers
under addition. Pick such a subsemigroup containing all elements
which occur in p(τjfa(M™)). Now R[(S0/K) x Z+] s (B[§JK])[Σ] and
again R[S0/K] is regular. Apply the lemma to find Ua, Wa in
R[(So/K) U Sa] such that det (Ua) - det (Wa) = 1, Uap{ηa{M^))Wa =

[ ]o det (pVUMW)))]9 a n d (ϋJ*=Pft*(Uίn»> (Wa)o=p(Va(WW)), where[ (pVU)))]
of course (Ua)0 and (TF"α)0

 a r ^ the components of Ϊ7α and Wa in the
ϋί[S0/iΠ summand. Thus ϋa - ρ(ya(Uia))) is in the i2[Sα] summand,
so there is a (unique) Ua such that ρ(ya(Ua)) = Ua - ρ(ya(U{a))).
Likewise we have Wa such that p(ηa(Wa)) = Wa - p{ya{W{a))). Now
calculating the values in each component of R[S^a)]9 one can see
that άet(ηa(U™)) = άet(ηa(W™)) = 1, and ηa(UW)ηa(M™)ηa(Ww) is
also as desired. The theorem is proved.

REMARK 4.3. It can be shown in like manner that in any situa-
tion where we have a statement of the form P(xlf , xm, yu , yn)
satisfying the conditions of Remark 2.2 and the analogue of Lemma
4.2, and R[S] is arithmetical with S separative and not a union of
torsion groups, then we can prove a theorem analogous to the
standard result for Pierce sheaves (Proposition 3.4 of [6]). Specifi-
cally, suppose that whenever K is a field and xl9 , xmeK[X, X"1],
t h e r e exist ylf -- ,yne K[X, X ' 1 ] such t h a t P(xlf - ,xm,yl9 , yn) is

true, and further that if fλ(X)9 -,fm{X) e K[X], cu --,cneK with
P(fi(fi)f "9 /m(0), cl9 , cn) true in K, then the c/s are the constant
terms of polynomials g^X) e K[X] such that P(fu •",fm9g1, , gn)
is true in K[X]. Then for any xl9 - —, xm e R[S], there exist
yu , yneR[X] such that Pfo, , xmf yu , yn) is true in R[S].
Also, the 2//s can be chosen to have support contained in the sub-
semilattice generated by UΓ=i supp (xt) U {0}. The reason for the
difficulties encountered in §3 is precisely that the condition about
extending solutions from K to K[X] fails for the equations de-
scribing the Her mite condition.
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