
PACIFIC JOURNAL OF MATHEMATICS
Vol. 102, No. 1, 1982

INTERPOLATION IN STRONGLY
LOGMODULAR ALGEBRAS

RAHMAN YOUNIS

Let A be a strongly logmodular subalgebra of C(X),
where X is a totally disconnected compact Hausdorff space.
For s a weak peak set for A, define As = {fe C(X): f\seA \s}.
We prove the following:

THEOREM 1. Let s be a weak peak set for A. If b is
an inner function such that b \s is invertible in A \s then there
exists a function F i n A n C(X)'1 such that F = b on s.

THEOREM 2. Let s be a weak peak set for A. If Ue C(X),
I UI = 1 on s and dist (U, As) < 1, then there exists a uni-
modular function U in C(X) such that U—U on s and
άist(U,A) <1.

l Introduction* The purpose of this paper is to prove certain
properties related to strongly logmodular algebras.

In their study of Local Toeplitz operators, Clancey and Gosselin
[3] established one of these properties in a special case (H°°) under
a highly restrictive condition. In [7], the author proved this property
for H°° without any condition.

In the present paper, we obtain this and another property for
arbitrary strongly logmodular algebras. The proofs in [3] and [7]
use special properties of H°° that are not shared by arbitrary strongly
logmodular algebra. In the present work we use new techniques.

Let A be a strongly logmodular subalgebra of C(X), where X
is a totally disconnected compact Hausdorff space. If s is a weak
peak set for A, define As — {/ eC(X): f\se A\s}. The main results
of this work are: Theorem 3.2. Let s be a weak peak set for A, and let
b be an inner function such that b\s is invertible in A\s. Then there
exists a function F i n i n C(X)"1 such that F = b on s.

THEOREM 3.1. Let s be a weak peak set for A, and let u be in
C(X) such that \u\ = 1 on s and dist (u, As) < 1. There exists a
unimodular function u in C(X) such that u = u on s and
dist («, A) < 1.

2* Preliminaries* Let X be a compact Hausdorff space. We
denote by C(X)[CR(X)\ the space of continuous complex [real] valued
functions on X The algebra C(X) is a Banach algebra under the
supremum norm ||/||«, = sup{|/(«)|: x e l } .

Let A be a function subalgebra of C(X). A subset S of X is
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said to be a peak set for A if there exists f in A such that / = 1
on S and \f\ < 1 off S. A set S is a weak peak set for A if S is
an arbitrary intersection of peak sets for A. Let A'1 denote the
group of invertible elements in A and loglA"1! = U°g i/l / βA"1}.

A function algebra A is called a strongly logmodular subalgbra
of C(X) if log I A"11 is equal to GB(X). The reader is referred to
[2] and [4] for many of the basic properties of weak peak sets and
additional properties of function algebra and to [5] and [1] for dis-
cussions concerning strongly logmodular algebras.

Let A denote a fixed closed subalgebra of C(X) which contains
the constants. Let B be a closed subalgebra of C{X) which contains
A. We define B1 to be the closed subalgebra of C(X) generated by
A and {f1: f eA Π B'1}. It is clear that AczB.czB czC(X). If
B = Blf then B is called a Douglas algebra.

A function & in A is called an inner function if |δ | = 1. For a
strongly logmodular algebra A on X, there is a useful characteriza-
tion of Bx in [1, p. 8], which says that Bx is the closed subalgebra
generated by A and {b eB:b is an inner function}.

3* The main result* Throughout this section, A will denote a
fixed strongly logmodular algebra on X, where X is a compact,
totally disconnected Hausdorff space. Examples of such algebras can
be found in [5] and [6].

Let s be a subset of X which is a weak peak set for A. Define
As = {feC(X):f\seA\s}. The algebra As is closed in C(X) since
A\s is closed in C(X)\S. For u in C(X), we define dists(u,A) =
inf {|| u — h \\s: he A} and dist (u9 As) = inf {\\u — h ||oo. h e As}, where
\\u — h\\s = sup{|iφθ — h(x)\: xeS}. It is not difficult to see that
dist (u, As) = dists (u, A) for any u in G(X).

Our main result is as follows:

THEOREM 3.1. Let s be a weak peak set for A, and let u be in
C{X) such that \u\ = 1 on s and dist (u, As) < 1. Then there exists
a unimodular function u in C(X) such that u = u on s and
dist (u, A) < 1.

In the special case of A = H°° (the Hardy space of the unit
circle) the above theorem appeared in [7] which answers a question
raised in [3].

To prove Theorem 3.1, we need the following special case of [1,
Theorem 4.1].

THEOREM A. Let A be a strongly logmodular subalgebra of C(X)
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and J be an ideal in C(X), where X is a totally disconnected com-
pact Hausdorjf space. Then the closure of A + J is a Douglas
algebra.

Theorem 3.1 follows from the following fact, which is interesting
in its own right.

THEOREM 3.2. Let s be a weak peak set for A, and let b be an
inner function such that b\s is invertible in A\s. Then there exists
a function F in Af] C{X)~ι such that F = b on s.

Proof Step 1. There is a peak set EZDS such that b\EeAE\
If not, there is a φE e M(AE) such that φE(b) = 0. Since M(AE) c M(A),
which is compact we can choose a convergent subnet φE —» φ. Clearly
φeM(As), and φ(b) = 0 by continuity, contradicting b\seAs\

Step 2. Let h peaks on s. Let φeM(A), φ(h) = 1, and μ be
the positive measure representing φ and supp μ be its support. Since
\h\ <; 1 and φ(h) = I hdμ = 1, we have h = 1 on supp^. Because
h = 1 exactly on s, we have s u p p l e s . This shows that φeM(As).
Since b\seAs\ Φ(b) Φ 0. Thus 1 — h and b have no common zeros
on M(A), and thus by [2, p. 27], there are f,geA with fb +
0(1 - Λ) = 1.

3. Fix c>2||flr||oo, where βr is as in step (2). Let E =
|1 — fc| < l/6c}. There exists a clopen set TF such that

. On the set X\W we have |1 — h\ > δ, for some positive
number δ. Let Qι = (c/2)lw + (11/6 + c)(l/δ)Zzw. Certainly, ^ e C(X)"1.
Since A is strongly logmodular, there exists Ge^l" 1 such that
log 10iI - log |G|. Thus |G| = c/2 on W and |G| = (11/6 + c)(l/δ) on

From the identity fb + #(1 — h) = 1, we have the following
inequalities. On TΓ: | / | - |1 —flr(l —Λ)| ^ 1 - | 0 | | 1 - A | ^ l-c/2 l/6c =
1 _. τ/i2 - 11/12, and on X: | / | ^ 1 + | ^ | | 1 - h\ ^ 1 + c/2 2 = 1 + c.

Let F = f - G(l - Λ). Certainly, F is in A and ί7 - / = b on
s. Hence on W we have that

^ 11/12- c/2 l/6β = 5/6

and

- (1 + c)

11/6 + c - 1 - c = 5/6 on X\TF
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Thus FeAf]C(X)~\ This ends the proof of the theorem.

Proof of Theorem 3.1. Without loss of generality we can assume
that I u I = 1 on X. It is easy to see that As = A + J, where J =
{/6C(X):/(«) = 0}. Thus, by Theorem A, we have that As is a
Douglas algebra. From the inequality, dist (u, As) < 1, we have
IIw — 0δ||oo < 1> for some # in A and some inner function b which is
invertible in As. Consequently, Re ΰbg ^ δx > 0, for some positive
number δ1 (Re / denotes the real part of / ) . By Theorem 3.2, there
exists F i n i n C{X)~ι such that F = b on _s. Since \F\ ^ <52_> 0,
for some positive number δ2, we have ReΰbF/\F\Fg = |2<Ί Re wδ# ^
S^ > 0. Thus there exists a positive real number R > 0 such that
|| i? - ΰbFI\ F\Fg |U < R. Hence || 1 - UbF/\ F\Fg/R | |β < 1. Set ΰ =
wδJpy|jP|; then \u\ = 1, ffi = w on s, and the last inequality shows
that dist (uf A) < 1. This ends the proof of the theorem.

The following corollary is a generalization of Theorem 3.2.

COROLLARY 3.3. If s is a weak peak set for A and f in C(X)
such that f \s is invertible in A \Sf then there exists G in A Π G(X)~ι

such that G — f on s.

Proof. The hypothesis that f\s is invertible in A\s shows that
f(x) =£0 for all x e s. Let W be a clopen set of X such that f(χ) Φ 0
for all x in ΫF. The function fXw + 1 — Z^ 6 C(X)~1, so we can write
it in the form vg, where veC(X), \v\ = 1 and grG A"1. [This is pos-
sible because A is strongly logmodular]. Both the functions v and
v are in As. By Theorem A there exists h in A and an inner func-
tion b which is invertible in As such that \\v — hb H*, < 1. Since
tJ6 6 A^ and ||1 — vbhW^ < ^> t h e n by [2, p. 49] we have vbh = ettl

for some ut in A5. By the definition of As, there exists u in A such
that w = ux on s. Thus v = δfeβ~w on s. By Theorem 3.2 there
exists F = 6 on s. Set G = Fhe~wg, then G is the required function.
This completes the proof of the corollary.
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