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THE GEOMETRY OF THE JAMES-HOPF MAPS

NICHOLAS J. KUHN

Snaith's splitting of the suspension spectrum of the space
ΩkΣkX9 for X path connected, into the wedge of the suspen-
sion spectra of spaces denoted Dk>qX, has been of considerable
interest to homotopy theorists in recent years. If Σ°°X
denotes the suspension spectrum of a space X then this can
be restated as

Σ~Ω*Σ*X = V Σ°°Dk>qX .

Projection onto the qth wedge summand and adjunction yield
James-Hopf maps j q : ΩkΣkX-+ QDk>qX, where QY = lim Ω*Σ*Y.

In this paper I study various compatibility relations
which hold among the j q as X is replaced by ΣnX. In par-
ticular, I show that, for k > n, the iterated evaluation map
εn: Σ

nΩkΣkX-*Ωk-nΣkX is naturally compatible with the stable
splittings of these two spaces. This is done by exhibiting
maps δk>n: Σ

nDk,qX —> Dk-n,qΣ
nX making the following diagram

of suspension spectra homotopy commute:

Zι iJ JL Λ. = y JL Uk qΛ.

Ωκ nΣnX ~ V Dk-n,qΣ
nΛ. .

In certain cases, the maps δkf7l are then identified as standard
projection maps. Consequences are then discussed.

Special cases of James-Hopf maps were defined by James [7],
Toda [17], and Milgram [13] who fit their maps into the E-H-P
sequence and its generalization. Snaith [16] then proved the above
mentioned splitting theorem. If X is a Thorn space, Kosckorke and
Sanderson [9] have given a geometric description of these maps as
operations between bordism theories.

J. Caruso, F. Cohen, J. P. May, and L. Taylor [2, 5] note that
a "Cartan formula" interrelating the maps j q allow them to be
defined even for nonconnected spaces. James' original combinatorial
construction of the Hopf invariant is used as a model. This version
can be used for all of the above applications, and the extension to
nonconnected spaces leads to a quite elementary proof of the Kahn-
Priddy theorem [2, 15].

Section 1 contains the statements of our compatibility results.
In § 2 we apply these results in conjunction with the E-H-P sequence
and the Kahn-Priddy theorem. In particular, we prove a "delooped"
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Kahn-Priddy theorem. We also translate our results into Koschorke
and Sanderson's geometric framework, yielding relationships among
self-intersections of immersions. Sections 3 and 4 contain the proofs
of the statements of §1.

Peter May and Larry Taylor deserve my thanks for stimulating
discussions and critical readings of preliminary versions of this work.

1* The compatibility theorems* We review some notation and
definitions.

Let ^k{q) be Boardman and Vogt's [1, 11] space of ordered q-
tuples of little cubes disjointly embedded in P. The symmetric
group Σq acts freely on ^ ( g ) . Let Bktq = ^k(q)/Σq. Note that B^^
is a model for the classifying space BΣq. If X is a based space,
CkX is defined by

where [(cJf , cg), (xlf , xq_u *)] ~ [(cl9 , cq_,)9 (xlf , xq_x)] gen-

erates the equivalence relation. The spaces CkX serve as approxi-
mations to ΩkΣkX in the following sense: there are natural maps
ak: CkX-+ΩkΣkX9 preserving all additive structure, which are homotopy
equivalences when X is connected, and group completions in general
(see [11,14]).

The space CkX is filtered and the quotients of successive filtra-
tions are the reduced extended power spaces Dk>qX = ^k(q)+ f^ΣqX

iqΛ.
Here X [g] denotes the g-fold smash product and Y+ denotes the union
of a space Y with a disjoint basepoint. Let CX— CLX and DqX —
D^X.

Let η: ΩkΣkX-> Ωk+nΣk+nX be the usual map. There are maps
ηktn: CkX-+ ΩnCkΣ

nX and βktn: CkX-+ ΩnCk_nΣ
nX covered by η and the

identity map respectively; that is, there are commutative diagrams:

ΩkΣkX -^-> Ωk+nΣk+nX ΩkΣkX = ΩkΣkX

h h h β hn

CkX —^^—> ΩnCkΣ
nX CkX -^-> ΩnCk_nΣ

nX .

The adjoints, ηkf7l and βk,n are therefore covered by iterated
evaluation maps. Moreover, the adjoints are filtration preserving
and t h u s induce maps Ak>n\ ΣnDkfQ -> Dk,qΣ

nX and δkfn: ΣnDk>qX-+

Dk-n,gZ
nX By passage to limits, we obtain maps ηn and βn:CX—>

ΩnCΣnX and maps Δn and δn: ΣnDqX -> DqΣ
nX.

We also have maps ί: CkX-+ Ck+nX and i: Dk>qX-> Dk+7i}(JX induced

by the inclusion P —»P+n onto the first k coordinates.
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In [5], F. Cohen, J. P. May, and L. Taylor define James-Hopf
maps jq: CkX-> CDk,qX. The space Π^o QDk>qX is a ring space where
Dkι0X is interpreted as S° and the multiplication is induced by natural
pairings ^ C : Dk)PXΛ Dk>qX->Dk)P+qX together with the smash product
φ : QYxQZ->Q(Y ΛZ). Similarly the space Π^o CDk,qX is a ring
space. The James-Hopf maps satisfy a "Cartan formula" [2, 9,15]
and in [2] this is interpreted as the statement that Ilq>oJq:CkX—>
Π^o CDktqX is an "exponential" H-map taking the additive structure
in CkX to the multiplicative one in Π^o CDkyqX.

The next proposition is the key to our results.

PROPOSITION 1.1.

(1) The following diagram commutes.

ckx-

ΩnCΣnDk,qX

k,q

( 2 ) The following diagram homotopy commutes.

ckx- CDt..X

In fact, there is an "exponential" H-map

J: CkX > F(l+, Ω Π CDh_n,qΣ»x)

which is a homotopy between JQ — 8k,n°Vno Tίq^o 3q and Jx = jq

oβk,n

This will be proved in § 4. Statement (1) follows essentially from
a check of the definitions while (2) requires more care.

As shown in [2], the "exponential" properties of the maps jq

allow them to be extended to jq: ΩhΣhX->QDk,qX and jq: QX-+QDqX.

THEOREM 1.2. The following diagrams commute up to weak
homotopy.
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QX-

( 1 ) Ω"QΣnDqX

kk

ΩkΣhX

( 2 ) ΩnQΣnDk,qX

<>k,n

This will be proved in §4. By weak homotopy, we refer to
neglect of lim1 terms.

Much of the usefulness of the theorem comes from an understand-
ing of the maps Δktn and δk)7l. The next proposition allows us to
identify the maps δk,n in special cases,

PROPOSITION 1.3.

(1) The composite ΣnDn,qX^ ΣnDk+nfqX-^+Dk,qΣ
nX is null-

homotopic for all q > 1.
i δk+n n

( 2 ) The sequence ΣnDn,2X—> ΣnDk+n>2X—'•* Dk,2Σ
nX is homotopic

to a cofibration sequence. Furthermore, the sequence desuspends n
times.

(3 ) If p is an odd prime, the sequence

is homotopic to a cofibration sequence, localized at p.

When X=S°, Dkj2X=RPk-1+ and DktPX= Bk

+,p, hence the propo-
sition has the following consequence.

COROLLARY 1.4. Dky2S
n = ΣnRPn+k-1/RPn-1 and, localized at an

odd prime p, DkjPS
n = ΣnBn+P)k/Bn>p. Under these identifications, δk+n,n

can be identified with the projections

REMARK 1.5. Proposition 1.3(2) proves and generalizes Milgram's
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Corollary 2.3 [13] in our setting.

Theorem 1.2 and Corollary 1.4 imply the following.

COROLLARY I.6.1

(1) The following diagram commutes up to weak homotopy.

QSl J2 3 QRP00*

(2) Localized at an odd prime p, the following diagram com-
mutes up to weak homotopy.

QBΣJBn,p

If n is odd then the finiteness of the homotopy groups of QRP^/RP71"1

and QBΣJBΛl9 implies that the Urn1 terms vanish and the diagrams
actually homotopy commute.

Finally, the following proposition relates the maps Jk>n and δktn.

PROPOSITION 1.7. In the following diagram, the quadrilaterals
commute and the triangles commute up to homotopy.

ΣnDuQX

Thus, in the limit as k goes to oo, dn = Δn\ ΣnDgX -> DqΣ
nX.

Propositions 1.3 and 1.7 will be proved in §3.

2* Applications* In our first application we apply Proposition
1.3 and Theorem 1.2 to the Kahn-Priddy theorem [8]. For a prime
p, Segal [15] and Caruso, F. Cohen, May, and Taylor [2] find maps

1 A variant of Corollary 1.6(1) appears in lecture notes by M. Mahowald and A.
Unell, Northwestern University, 1977.
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j : Q0S° -> QBΣP and s: QBΣP -> Q0S° such that the composite is an
equivalence localized at p. The maps j and s are defined by j =
π°jp and s = spoi in the diagram

QBΣ 2>

where j p is the James-Hopf map as above and sp is an infinite loop
map. Thus s is also an infinite loop map.

Corollary 1.6 implies the following result.

PROPOSITION 2.1. j is a loop map and thus the Kahn-Priddy
theorem "deloops" once.

REMARK 2.2. That j does not deloop twice follows from homology
calculations in [10].

REMARK 2.3. In [3] it is shown that Proposition 2.1 is precisely
what is needed to calculate the order of η\ Ω2

Q

n+1S2n+1 -> Q0S°, localized
at 2. From this can be computed the 2 torsion in the order of the
bundles ζk,q: F(R\ q) XΣq Rq-+F(R\ q)/Σq. Note that the Thorn complex
of nζk>q is precisely the space DkfqS

n.
Our next application mixes our compatibility statements with

the E-H-P sequence. We need the following version of Milgram's
generalized E-H-P sequence.

LEMMA 2.4 [12].

If X is m — 1 connected (and ΣnX is connected) then

QnΣnχ_l_> Qχ^2\ ΩnQD2Σ
nX

is homotopic to a fibration through dimensions <2n + 3m — 1 (the
metastable range).

The corresponding long exact sequence of homotopy groups is
known as the generalized E-H-P sequence.

COROLLARY 2.5. If X is m — 1 connected then, through dimen-
sions <2n + 3m — 1, the following is a homotopy pullback diagram.

QX — QDtX
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In particular, through dimensions <2n — 1, the following diagram
is a pullback.

QS° -^-> QRP°°

Thus the desuspension of 2-torsion through the metastable range
is detected by the stable map i.

Proof. By Theorem 1.2, the following diagram commutes

QX - ^ > QD2X

ΩnQD2Σ
nX=ΩnQD2Σ

nX

Proposition 1.3 implies that the right hand vertical sequence is a
fibration and the lemma says that the left hand vertical sequence
is a fibration through the desired dimension.

Finally we relate our results to Koschorke and Sanderson's
theory of self intersections of immersions [9].

Using the notation of [9], let V be a manifold without boundary
and let ξ be a vector bundle over a space J3, Let ^ ( V, ξ) be the
bordism set of embeddings g — (glf g2): M-*VxRk for which gx\ M—>V
is an immersion with normal bundle v expressed as a pullback g:v->
ξ. Thus an element of ^fi&V, ξ) is represented by a triple (M, g, g).
By abuse of notation, we will denote this class by [M].

Let Vc denote the one point compactification of V. Let T(ξ)
denote the Thorn space of ξ.

PROPOSITION 2.6 [9]. There is a bijection

This is proved using a generalization of the classical Thom-
Pontrjagin construction. See [9] for details.

To describe the geometric operations, we recall the following
definition. Given a self transverse immersion f:M-*V, let M(q) —
{(xif - , xq) e Mq: /(&,) = - = f(xq), and xt Φ xd if i Φ j}. This is a
closed submanifold of Mq on which Σq acts freely. Let M(q) =
M(q)/Σk, called the ^-tuple point manifold.
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If £ is a bundle over B, let ξk>q be the twisted power bundle
over <tfk(q)xΣqB

q. Note that T(£M) = Dk,qT(ξ). Let εn denote the
trivial bundle of dimension n.

Koschorke and Sanderson define operations 0 g :^( V, ξ) -v^o( V, ξk,q),
roughly defined by θq[M] = [Λf(g)] These operations are related to
the James-Hopf maps as follows.

PROPOSITION 2.7 [9]. There is a commutative diagram

Proposition 1.1 now has following consequences.

PROPOSITION 2.8. The following diagrams commute.

Jί( Vx R\ ξ φ s") i — ^ - ( Fx Λ", (I φ e»)4lί)

ίίerβ J -is induced by the diagonal inclusion of vector bundles:

, ξ) -JZiV, ξk,q)

Here δ is induced by map T(ξk,q

R", (ξ φe")4_,,,)

β") -• T((f φ εn) f t_K l ϊ).

REMARK 2.9. To understand the map Δ geometrically, note that
any bundle inclusion f: ξ —>fj of bundles over B induces a map
f*' ^m{V, ξ)^>^fm(V, rj) which can be interpreted as follows. Given
g: M~^V x Rm and g:v—>ξ, the composite fg .v^η can be ap-
proximated by a map h transverse to the zero section of η. Then

= [h~\B)]. Note that /r^B) is a submanifold of some manifold
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M'e[M].
Proposition 1.3(2) together with Proposition 2.6, yields the next

result. This is just a long exact sequence associated to the fibration:

QT(ξn>2 0 e») > QT(ζn+k,2 0 6») > QT((ξ 0 εn)k,2) .

PROPOSITION 2.10. The following sequence is exact.

x R, ξk+n>20 e») >^jy x R, {ξ 0 sn)4,2)

V, fn,2 θ εw) >^£( 7, &+n,2 0 e ) ~ ^ ( F, (f 0 s )w) .

3* The maps Akin and δfc,n We first define the maps ηk>n: CkX
ΩnCkΣ

nX and βkt7l: CkX-> ΩnCk_nΣ
nX used in § 1. Let ηk\n: CkX

ΩnCkΣ
nX, with adjoint rjhtn9 be defined by

where ί e Sn, (<?i, , cq) e &k(q), and (xlf , a?ff) e X ? . /9fc>1 is the map
defined by May in [11, Prop. 5.4].

It is useful to view βkti in the following way. Let ct = c\ x c'/
where c\: I-+I, c[': P-+-+p\ Then βhtl([(elf , cff), (^, , »,)])(«) =
l(cϊ, , < ) , ((a?lf ^(ί)), , (»ff, «,(*)))] where *,(ί) is defined by ̂ (^(t)) -
ί if ί 6 Im cj and

(0 if t<Imcl
Sί{t)~ [1 if ί > l m c j .

This definition makes sense because if the cubes {c , , c"} are not all
disjoint then exactly the right number of pairs (xi9 s<(ί)) e ̂ ^ are the
basepoint, by virtue of s,(ί) = 0 or 1.

Iteration defines maps βk,n; CkX -> ΩnCk_nΣ
nX, with adjoint /Sfc,n.

As mentioned before, ηkin and βk>n are filtration preserving and thus
induce Jk>n and SA,W. Recall that i:CkX-*Ck+nX is the map induced
by the inclusion P —> Ik+n onto the first k coordinates. We will later
make use of the fact that i is homotopic (by a filtration preserving
homotopy) to the map i'\ CfcX—> Ck+nX induced by the inclusion P—>
P+n onto the last k coordinates. For a proof of this, see [11, Lemma
4.9].

Proof of Proposition 1.3. In statements (1), (2), and (3) we first
reduce the general case to the case n = 1.

Consider the following commutative diagram.
Inductively, if we assume statement (1) for n — 1, then the

statement follows for n by consideration of the two vertical sequences.
Next, suppose q = 2 in the diagram. If we assume that statement



406 NICHOLAS J. KUHN

Σn'lδnΛ »Σ*-*DΛ-lΛΣX

(2) of the proposition is true for n — 1, then the horizontal sequences
are cofibrations, and inductively we assume that the right vertical
sequence is a cofibration. Then, by diagram chasing, the left vertical
sequence will be a cofibration.

Statement (3) reduces to the case n = 1 in a similar fashion,
upon letting q — p in the diagram. Note that the argument given
above for statement (2) goes through here because the set of spheres
is closed under suspension.

Thus to prove statement (1) we just need to show that the

composite ΣDuqX —> ΣDk+1)qX-^i DkjqΣX is nullhomotopic for q > 1.
This follows immediately from the following observation.

LEMMA 3.1. The composite ΣCXX^ ΣCk+1X-^> CkΣX has image
in filtration 1.

To prove statement (2) we need to show that the following
sequence is homotopic to a cofibration sequence.

l ί 2 k + 1 > 2 X ^ i Dki2ΣX.

This sequence is equivalent to the following.

So+ AZ2 (XΛX)ΛSί > Sk+ AZ2(X A X) A S1

>Sk~1+ AZ2(ΣXAΣX).

Here {ΣX A ΣX) is equivariantly homeomorphic to ( I Λ X) Λ (S1 AS1)
where all spaces have the obvious permutation actions. (S1 Λ S1) is
then equivalent to S1 A S1 where S1 has the trivial action and
S1 = [-1, 1]/ - 1 ~ 1 with Z2 action given by t-> -t.

Let points in Sk be benoted by (s0, •••, sk)eRk+1 with Σs\ — 1.
Then our sequence desuspends to

So+ AZi(XΛI)^S*+ AZ2 (XΛ X)-£->S*-1+ AZ2S\XΛ X)

where
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otherwise

and i is defined by i: S° -> Sk with i (±l) = (±1, 0, 0, . . ., 0). Then
p is homeomorphism of pairs,

p: (Sk AZ2 (X A X), So+ Az2 (X Λ X)) = (Sk~1+ Az2 S1 A (X A X), *)

with inverse given by

REMARK 3.2. This last proof is essentially a generalization of
the standard argument that the Thorn space of mξk9 m copies of the
canonical line bundle ξk over RPk

f is homeomorphic to RPm+kIRP'm~ι

%

See [6, Example 15.1.7].
Finally, to prove statement (3) of Proposition 1.3, in the case

n = \f we need to show that the sequence

is a coίibration when localized at p. By virtue of statement (1), it
suffices to show that the sequence acts homologically as a cofibration.
Recall that δk+ltl is induced from the map βktl: ΣCk+1S

m -> CkS
m+ι

which by definition induces the homology suspension σ%. Let Qi

denote a Dyer-Lashof operation, let β denote the Bockstein, and let
Xk{x, y) denote the Browder operation on the homology of a ^ f c + Γ space
(see [4] for the definitions). In [4] it is shown that σ*Qιx = Q V ^
and σ*Xk(%9 y) = Xk-&*x, σ*y); while σ*β = βσ* up to sign. We
conclude that the above sequence induces a short exact homology
sequence:

0 > H*{S> "; Z9) -±+ H*(ΣDk+U9S»; Zp) ^ ί H*(Dk,pS^; Zn) > 0 .

The proposition follows.

Proof of Proposition 1.7. It suffices to show that the quadrila-
terals commute and the triangles commute up to a natural filtration
preserving homotopy in the following diagram.

The quadrilaterals can be seen to commute by a check of defini-
tions.

For the commutativity of the triangles it suffices to let n = 1.
The left hand triangle commutes when i is replaced by i':CkX-+
Ck+1X, induced by the inclusion Rk —> Rk+1 onto the last k coordinates
of Rk+\ As mentioned before, i is homotopic to i\ To prove that
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CkX
 βk>n Ώ"Ck_nΣ"X

the right hand triangles commute, we show that

ΣCkX ^ Ck-ιΣX

commutes up to a filtration preserving homotopy. Again replace ί
by V.

I f [c, x] 6 CkX w i t h c = (e[ x c[\ ---, c'qx c") a n d a? = (xl9 , xq)

then we have following formulae:

β, x], t)) = [(cί x cj',

x c"), ((α?lf * ( ί ) ) , , (a?g,

x < ) , ( ( ^ ί, , (xq9 «)))]

To show that these are homotopic, we show that maps are homo-
topic to the map h: ΣCkX-*CkΣX defined by

h{([c, x], t)) = [(cί x cί', , ci x <;), ((a?!, s
w »,(*)))]

First, 9*,i = Λ by shrinking id: J—> / to «<:/—>/in some natural way
(continuous in c ). Second, h = iroβkii by expanding each cί to
id: I—> I in a natural way.

4* The James maps and the compatibility theorems* In this
section we prove Proposition 1.1 and Theorem 1.2.

We first note that a straightforward inductive argument reduces
our statements to the case n = 1.

Proof of Proposition 1.1. The commutativity of diagram (1) in
its adjoint form follows from a straightforward check of definitions.

We digress to note that this diagram is a special case of the
following more general statement about maps j q . We use the language
of coefficient systems and 77-spaces from [5].

In general, there are James maps
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jq:CX >C\Dq($f,X))

where X is a /7-space and <& and &' are coefficient systems with a
James system {ξqr}: <ίT -> if'. Abbreviate DJ&, X) to DqX.

LEMMA 4.1. For any based space P, the diagonal maps Δ\ P-+Pk

induce following commutative diagram.

CX A P iqNl*C\DqX) A P

C'(DqXΛP)

C(X A P)—2ί— C'(Dq(X Λ P))

To see the specialization of this diagram to the adjoint of diagram
(1) of Proposition 1.1 and to prepare for proof of (2), we recall the
construction of the James-Hopf maps from [5].

Let F(Y, q) c YQ denote the configuration space of distinct g-tuples
in Y«. If X is based, let

with the equivalence relation generated as before. There is a natural
equivalence CkX = C(Rk, X), under the map which assigns to a set
of cubes, their centers.

The James-Hopf maps are constructed as follows. We first define
maps j q : CkX^ C(Bk>q, Dk>qX). If [c, X] e CkX is in filtration r, then
jq((c, x)) will be in filtration m, where m is the binomial coefficient

( M . Let {Al9 , Am) be the m subsets of c of cardinality q. There

are corresponding subsets {Blf , Bm) of x. Let

Λ(l>, x]) - [(A,, , AJ, ((A,, ft), , (Aw, BJ)] .

This is well-defined and continuous.
An embedding Bkjq —> JB°° induces a map

C(Bktq, Dk,qX) >C(K",DktqX),

and the composite with the above maps defines jq:CkX-*CDktqX.
Proposition 1.1 (1) now follows from the application of the lemma

to the special case in which <£* — ̂ , the little cubes operad,
<jg» = ^(Bk>q), the coefficient system with tth space F(Bk>qi ί), and
P=S\

The proof of statement (2) is a bit more delicate. We recall
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that an embedding BkΛ c JB°° is involved in defining the maps jqm

We can make these compatible as k varies by chossing a fixed
embedding BΣq->R™ and then embedding Bk>q via the composite
B

k>q

BΣq R". Then jg: CkX->C(R~, Dk,qX) factors as the com-
posite CkX^ C(Bk,q, DktqX) -> C(BΣq, Dk,qX) -> C(R~, DhtqΣ). The space
Πĝ o C(Bk>q, Dk>qX) has an iϊ-space structure induced from the maps
Bk>q x Bk>p -> Bk>q+P and Dk,qX Λ Dk>pX-* DktQ+pX [2] . I t suffices t o

show that the following diagram commutes, and that, when the
product is taken over all q ^ 0, the homotopy is through compatible
iί-maps.

CkX )Q, Dk,qX)

ΩC(Bktq, ΣDk,qX)

M , Dk_lιqΣX)

To show this we make use auxiliary spaces, lying between
^Λ-i(ί) a n d ^k(q)> which also form a coefficient system. Let ^'k{q) —
ordered sets of q little &-cubes (clf , cq) such that (c['f , c") have
disjoint images, where ct = cj x c ', c : I-> /, c ': I^"1 -> Z*"1. Let 5fe',g =

defined byThere is a projection map β:

Let iλ: ^k^{q) -> ̂ ( 9 ) be the inclusion map defined by ix(fil9 , cff) =
(1 x d, , 1 x cff) and let ΐ2: ^ί(g)-> ^ ( g ) be the obvious inclusion.
Then /^o^ = id^k_liq) and î yS ^ id^h{q) equivariantly via a homotopy
Ht' ^k(Q)-> ^k(q) "stretching" the c\ to id:I->I in a natural way.
Consider the following diagram. Once again, note that i has replaced
by the homotopic map V.

ίfί, Dk_UqΣX)

_Uq, Dk_uqΣX)

C(Bk,q, ΣDk,qX)

C(βkΛ9 Dk_ι>qΣX)

By inspection, δktloη1ojq factors through C(Bk>qf Dk_uqΣX), thus defining
the map j ' q . Thus the upper part of the diagram commutes. By a
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check of definitions, one can see that the left hand quadralateral
commutes, i.e., βoj == jq°βktJ.

Finally we check that the triangle commutes up to homotopy. i' =
i2°ii so that %Όβ = i^i^β ^ i2ol = i2 Thus diagram (2) of Proposition
1.1 commutes up to homotopy.

To conclude that this homotopy is an ϋ-map we first note that
Πĝ o C(Bk>q, Dk_1>qX) also has a natural fZ-space structure. In the
language of [2], <g" has a separated sum. Proposition 1.1 (2) now
follows from the following lemma.

LEMMA 4.2. The following maps are strict H-maps.
(a) EUo j 9 : CkX -> Πg.o C(Bktq, Dk,qX)
(b) βhtl:CkX-^ΩCk^ΣX
(c) iλ: Γ U C(Bk_ltq, Dk_UqΣX) -> Π9,o C(Bk,q, Dk_UqΣX)
(d) v E
(e) H: Π f

(f) The homotopy between i and i'\ Π^o C(Bk_uq, Dk_1>qΣX)

(g) The composite

Π C(Bh,q, Dk,qX) -^ΩU C{Bkiq, ΣDk>qX) ^ΩJi C(Bk,q, Dk_UqΣX)

That (a) is a strict iϊ-map is shown in [2]. That the maps (b)-
(g) are strict ff-maps follows from a straightforward check of the
definitions. Statement (h) follows from statements (a), (d), and (g)
and the fact that i2 is an injection.

Proof of Theorem 1.2. As remarked before, it suffices to prove
the theorem when n — 1. We will just show that the second diagram
homotopy commutes; that the first diagram commutes follows from
a slightly simpler but essentially identical argument.

To extend the James-Hopf maps jq: CkX->CDk>qX-^QDk>qX to
jg:Ω

kΣkX-*QDk,qX we note that Uq^jq:CkX~*Jlq>0QDk>gX is an
if-map and that Π<̂ o QDkyqX is grouplike. A universal property of
group completions [2] then allows ΐ[q>ojq to be extended to ΩkΣkX,
uniquely up to weak homotopy, i.e., disregrading lim1 terms.

Similarly the homotopy J: CkX->F(I+, ΩJlq>0QDk_UqΣX) of Pro-
position 1.1 extends, uniquely up to weak homotopy, to give a
homotopy of weak H-maps J: ΩkΣkX->F(I+, Ω Π^o Qk-hqΣX). Then
Ji — Ω Πĝ o Jq because Ω Π9>0 jq does cover J± and is an iϊ-map. As
before, δk}1: ΐlq^0QDk,qX-> Uq>oQDk_UqΣX is an ϋ-map and thus so
also is <5fc>1oΠg>o Λ τ i l i s composite covers JQ and thus Jo = Sk>1oJlq^Qjq.
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Theorem 1.2 follows.
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