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THE GEOMETRY OF THE JAMES-HOPF MAPS

NicuorLAs J. KUHN

Snaith’s splitting of the suspension spectrum of the space
23X, for X path connected, into the wedge of the suspen-
sion spectra of spaces denoted D,,, X, has been of considerable
interest to homotopy theorists in recent years. If 3°X
denotes the suspension spectrum of a space X then this can
be restated as

2o X = Y X*D, X .

921

Projection onto the qth wedge summand and adjunction yield
James-Hopf maps j,: 9*2*X — QD,, X, where QY = l_li).’l QY.

In this paper I study various compatibility relations
which hold among the j, as X is replaced by >"X., In par-
ticular, I show that, for £ > n, the iterated evaluation map
& 23X — Q3% X is naturally compatible with the stable
splittings of these two spaces. This is done by exhibiting
maps 0y,.: 2Dy, X — D,_,,,2"X making the following diagram
of suspension spectra homotopy commute:

303X = V 3°D, X

[E31
o

Q32X = Y Dy 20X
q=1

In certain cases, the maps §,,, are then identified as standard
projection maps. Consequences are then discussed.

Special cases of James-Hopf maps were defined by James [7],
Toda [17], and Milgram [13] who fit their maps into the E-H-P
sequence and its generalization. Snaith [16] then proved the above
mentioned splitting theorem. If X is a Thom space, Kosckorke and
Sanderson [9] have given a geometric description of these maps as
operations between bordism theories.

J. Caruso, F. Cohen, J. P. May, and L. Taylor [2, 5] note that
a “Cartan formula” interrelating the maps j, allow them to be
defined even for nonconnected spaces. James’ original combinatorial
construction of the Hopf invariant is used as a model. This version
can be used for all of the above applications, and the extension to
nonconnected spaces leads to a quite elementary proof of the Kahn-
Priddy theorem [2, 15].

Section 1 contains the statements of our compatibility results.
In §2 we apply these results in conjunction with the E-H-P sequence
and the Kahn-Priddy theorem. In particular, we prove a “delooped”
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Kahn-Priddy theorem. We also translate our results into Koschorke
and Sanderson’s geometric framework, yielding relationships among
self-intersections of immersions. Sections 8 and 4 contain the proofs
of the statements of §1.

Peter May and Larry Taylor deserve my thanks for stimulating
discussions and critical readings of preliminary versions of this work.

1. The compatibility theorems. We review some notation and
definitions.

Let &(q) be Boardman and Vogt’s [1, 11] space of ordered g¢-
tuples of little cubes disjointly embedded in I*. The symmetric
group X, acts freely on &,(q). Let B,, = &.(¢)/%,. Note that B.,
is a model for the classifying space BY,. If X is a based space,
C,X is defined by

CX = 11 24(9) Xz, X(~)

where [(6,, ) Cq), (@, - *y Lg—1y *)] ~ [(cn B Cq—l); (xu ) xq—l)] gen-
erates the equivalence relation. The spaces C,X serve as approxi-
mations to 2*3*X in the following sense: there are natural maps
a,: G, X— 2*3* X, preserving all additive structure, which are homotopy
equivalences when X is connected, and group completions in general
(see [11, 14]).

The space C,.X is filtered and the quotients of successive filtra-
tions are the reduced extended power spaces D, X = Z(@)* Az X"
Here X' denotes the g¢-fold smash product and Y* denotes the union
of a space Y with a disjoint basepoint. Let CX = C.X and D, X =
D, X.

Let n: Q¥3%*X — Q¥ 3k X be the usual map. There are maps
Don: Co X — 27C,3"X and S,,,: C,.X — 2"C,_,2"X covered by 7 and the
identity map respectively; that is, there are commutative diagrams:

ka‘kX_l_) QFtnyitn QFSEX —— QkSkX
Iak ]ak ]\ak Iak—n
C,X — T, 0G5 X C.x 2, 00, 37X .

The adjoints, #.. and B,, are therefore covered by iterated
evaluation maps. Moreover, the adjoints are filtration preserving
and thus induce maps 4, 2"D,,— D,,2"X and 0;,:2"D, X —
D,_,,2"X. By passage to limits, we obtain maps 7, and B3,:CX—
2"C2"X and maps 4, and §,: "D, X — D, 3"X.

We also have maps i: C,X — C,,,X and i: D, , X — D, . X induced
by the inclusion I* — I** onto the first & coordinates.
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In [5], F. Cohen, J. P. May, and L. Taylor define James-Hopf
maps j,: C,X— CD, , X. The space [],:, @D, X is a ring space where
D, X is interpreted as S° and the multiplication is induced by natural
pairings .#": D, , X A\ D, , X — D, ,., X together with the smash product
P:RQY XQZ - QY N Z). Similarly the space [],s, CD, X is a ring
space. The James-Hopf maps satisfy a “Cartan formula” [2, 9, 15]
and in [2] this is interpreted as the statement that [],.,J,: C.X —
I1,:0CD, X is an “exponential” H-map taking the additive structure
in C,.X to the multiplicative one in [],;, CD, X.

The next proposition is the key to our results.

ProrosiTION 1.1.

(1) The following diagram commutes.

c.x—3i—cp, X
T
Tk Q“C2 D, X
by

2°C, 3" X—~0CD, 3 X

(2) The following diagram homotopy commutes.

C.X Ja CD, . X
Nn
,Bk.n QnCZR.Dk,qX
Jk.n

ank_nan—jL’QnCDk—n,anX

In fact, there is an “exponential” H-map

J:CX— F (I+, o1 CD,,_n_,,Z"X>
g2

which 1s a homotopy between J, = 0;,,°7,° 11420 J, and J; = Tli20 J4°Birn-

This will be proved in §4. Statement (1) follows essentially from
a check of the definitions while (2) requires more care.

As shown in [2], the “exponential” properties of the maps j,
allow them to be extended to j,: 2*2*X —» QD, X and j: QX — @QD,X.

THEOREM 1.2.
homotopy.

The following diagrams commute up to weak
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Qx—2—@DX

|

(1) 2Q3"D,X
4,
273,
Q3" 2°QD, 3" X
[91D.¢ = QD, X

(2) 2"Q3"D, . X

Ok.n

Qan—'nZk—nZnX 'an

. QnQDk—n,qZuX

This will be proved in §4. By weak homotopy, we refer to
neglect of lim' terms.

Much of the usefulness of the theorem comes from an understand-
ing of the maps 4,, and §,,. The next proposition allows us to
identify the maps 6, , in special cases,

PROPOSITION 1.3. )

(1) The composite 5°D, X -> 5'D,,, X522 D, "X is null-
homotopic for all q > 1. .

(2) The sequence "D, X - 3°D,., . X 2™ D, ,5" X is homotopic

to a cofibration sequence. Furthermore, the sequence desuspends n
times.

(8) If p is an odd prime, the sequence
3 5 NN
3D, 8" —— 3D, ., S ™2 D, gntn

is homotopic to a cofibration sequence, localized at p.

When X=S°, D,,X=RP**" and D,,X= B/, hence the propo-
sition has the following consequence.

COROLLARY 1.4. D, ,S*"= X"RP""*"'/RP™' and, localized at an
odd prime p, D, ,S* = 3"B, ., ./B,,. Under these identifications, 0;,n,n
can be identified with the projections

Z’nRPn+k—1 — ZnRP’IL-I—k—I/RPn—l and
2an+k,p I Zan+k,p/Bn,p .

REMARK 1.5. Proposition 1.3(2) proves and generalizes Milgram’s
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Corollary 2.3 [13] in our setting.
Theorem 1.2 and Corollary 1.4 imply the following.

COROLLARY 1.6.
(1) The following diagram commutes up to weak homotopy.

QSO _ZZ_, QRPoo+

ns
242 r

QRP~*/RP"*

(2) Localized at an odd prime p, the following diagram com-
mutes up to weak homotopy.

QS —2—~QB3;

25, |

QBZ,/B..,

If n is odd then the finiteness of the homotopy groups of QRP*/RP™*
and QBY,/B, , implies that the lim' terms vanish and the diagrams
actually homotopy commute.

Finally, the following proposition relates the maps 4,, and d,,,.

PROPOSITION 1.7. In the following diagram, the quadrilaterals
commute and the triangles commute up to homotopy.

5k,n

Z’nDk)qX Dk—-nqunX
W\ li
, D, "X
5k+n,n li

A +n,n n
ZnDk_)_n,qX_k__———)Dlﬁﬁn,qZ X
Thus, in the limit as k goes to «,d, = 4,: 3D, X — D S X.

Propositions 1.8 and 1.7 will be proved in §3.

2. Applications. In our first application we apply Proposition
1.3 and Theorem 1.2 to the Kahn-Priddy theorem [8]. For a prime
p, Segal [15] and Caruso, F. Cohen, May, and Taylor [2] find maps

1 A variant of Corollary 1.6(1) appears in lecture notes by M. Mahowald and A.
Unell, Northwestern University, 1977.
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7:QS°—>QBX, and s:QBZX, — Q,S° such that the composite is an
equivalence localized at p. The maps ;7 and s are defined by j =
woj, and 8 = s,01 in the diagram

@s° -2 @B3; 22 @80
-]
@Bz,

where j, is the James-Hopf map as above and s, is an infinite loop
map. Thus s is also an infinite loop map.
Corollary 1.6 implies the following result.

PROPOSITION 2.1. j is a loop map and thus the Kahn-Priddy
theorem “deloops” once.

REMARK 2.2. That j does not deloop twice follows from homology
calculations in [10].

REMARK 2.3. In [3] it is shown that Proposition 2.1 is precisely
what is needed to calculate the order of 7: 2:*+'S** — @Q,S°, localized
at 2. From this can be computed the 2 torsion in the order of the
bundles £, .: F(R*, ¢) X, R'— F(R*, ¢)/Z,. Note that the Thom complex
of n¢,, is precisely the space D, S".

Our next application mixes our compatibility statements with
the E-H-P sequence. We need the following version of Milgram’s

generalized E-H-P sequence.

LEMMA 2.4 [12].
If X is m — 1 connected (and 2"X is connected) then

35X 15 Qx2% 0Qpsnx

18 homotopic to a fibration through dimensions <2n + 3m — 1 (the
metastable range).

The corresponding long exact sequence of homotopy groups is
known as the generalized E-H-P sequence.

COROLLARY 2.5. If X is m — 1 connected then, through dimen-
sions <2n + 3m — 1, the following is a homotopy pullback diagram.

osx -, QDX

Lo, b

ox - onx
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In particular, through dimensions <2n — 1, the following diagram
18 a pullback.

QnSn _i_> QRPn—l

b

QS' -1 QRP-

Thus the desuspension of 2-torsion through the metastable range
is detected by the stable map 7.

Proof. By Theorem 1.2, the following diagram commutes

05X -2, QD, X

o,k

ox -, Qn.x

ks

Q"QD,3"X —= Q"QD,>"X

Proposition 1.3 implies that the right hand vertical sequence is a
fibration and the lemma says that the left hand vertical sequence
is a fibration through the desired dimension.

Finally we relate our results to Koschorke and Sanderson’s
theory of self intersections of immersions [9].

Using the notation of [9], let V' be a manifold without boundary
and let & be a vector bundle over a space B, Let _A(V, &) be the
bordism set of embeddings g = (g,, ¢9,): M —V x R* for which g;: M -V
is an immersion with normal bundle » expressed as a pullback §: v —
£. Thus an element of A(V, ¢&) is represented by a triple (M, g, 7).
By abuse of notation, we will denote this class by [M].

Let V, denote the one point compactification of V. Let T(g)
denote the Thom space of &.

ProPOSITION 2.6 [9]. There is a bijection
ﬁ( V’ é) = [Vc’ CkT(é)] .

This is proved using a generalization of the eclassical Thom-
Pontrjagin construction. See [9] for details.

To describe the geometric operations, we recall the following
definition. Given a self transverse immersion f: M —V, let M(q) =
{(@y, <+, x) e M f(2,) = -+ = f(x,), and x;, # x; if 7 j}. This isa
closed submanifold of M? on which X, acts freely. Let M(q) =
M(q)/Z,, called the g-tuple point manifold.
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If & is a bundle over B, let &,, be the twisted power bundle
over &,(q) %y B?. Note that T(&,,) = D,,T(£). Let e* denote the
trivial bundle of dimension n.

Koschorke and Sanderson define operations 6,:_#Z(V, &) —_Z.(V, &.0),
roughly defined by 6,[M] = [M(q)]. These operations are related to
the James-Hopf maps as follows.

PROPOSITION 2.7 [9]. There is a commutative diagram

[V., C.T()] -2 [V, €D, T(®)]

H H

AV, &)~ 2V, ) -

Proposition 1.1 now has following consequences.

PROPOSITION 2.8. The following diagrams commute.

0(1
AV, 8 AoV, &0
%0( VX Rn: Ek,q @ sn)
4
AVRE, £ @) — e F(VXR, (D)
Here 4 is induced by the diagonal inclusion of vector bundles:
Era D — (ED e, -
AV, 8) % AV, &)
%c( VX Rn, Sk,q @ 6")

8
Sl VXR™ @) —— Z(VXR" (EDEiony)
Here & is induced by map T(&,,De™) — TUED €pn)-

/)

REMARK 2.9. To understand the map 4 geometrically, note that
any bundle inclusion f:Z— 7 of bundles over B induces a map
Fe: Zn(V, &) —_Z,(V, 7)) which can be interpreted as follows. Given
g M—V x R and §:v—¢, the composite fg:v—7n can be ap-
proximated by a map h transverse to the zero section of 7. Then
f«[M] = [n"(B)]. Note that h~'(B) is a submanifold of some manifold
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M e [M].
Proposition 1.3(2) together with Proposition 2.6, yields the next
result. This is just a long exact sequence associated to the fibration:

QT De") — QT D ™) — QT(ED ™) -

ProproSITION 2.10. The following sequence is exact.

s AV X R, £1na D &) —_7(V X R, (¢ D )
s AV, £0n B &) —_EV, Errns D ") ——_Z(V, (B ")) -

3. The maps 4,,, and 0;,,. We first define the maps %,,,: C,X —
2C.3"X and B;,,.:CX—02"C,_,5"X used in §1. Let %,.CX—
o"C, 2 X, with adjoint 7,,,, be defined by

ﬁk,n([(cly ) cq)’ (xl; ) .'Bq), t]) = [(01, ) cq); ((xu t), ) (.’,17,1, t))]

where teS", (¢, + -+, ¢,) €E%(Q), and (z, ---, x,) € X% [, is the map
defined by May in [11, Prop. 5.4].

It is useful to view 3,, in the following way. Let ¢; = ¢} X ¢
where ¢;: I — I, ¢;': I"' - I*7*. Then g,,([(¢;, - -+, ¢,), (@, - -+, 2)])(E) =
[(eiy -+ -, €), (@1, 8:(2))y - - -, (@, 8,(8)))] Where s,(2) is defined by ci(si(2)) =
t if telme; and

st) = 0 1.f t<Ime;
1 if ¢t>Ime;.
This definition makes sense because if the cubes {ci, - - -, ¢;'} are not all
disjoint then exactly the right number of pairs (x;, s;(t)) € 2X are the
basepoint, by virtue of s,(¢) = 0 or 1.

Iteration defines maps fB;..; C,.X — 2°C,_,3"X, with adjoint 3, .
As mentioned before, 7,, and B,, are filtration preserving and thus
induce 4,, and §,,. Recall that ¢: C,X — C,,,X is the map induced
by the ineclusion I* — I**" onto the first k& coordinates. We will later
make use of the fact that 7 is homotopic (by a filtration preserving
homotopy) to the map 4: C,X — C,,,X induced by the inclusion I* —
I** onto the last % coordinates. For a proof of this, see [11, Lemma
4.9].

Proof of Proposition 1.8. In statements (1), (2), and (3) we first
reduce the general case to the case n = 1.

Consider the following commutative diagram.

Inductively, if we assume statement (1) for n — 1, then the
statement follows for » by consideration of the two vertical sequences.

Next, suppose ¢ =2 in the diagram. If we assume that statement
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271—15",1 et
"D, X 3D, . X 3D, IX
| ) |
2141 1
anl qX EnDk_(.qu__—_—)Z‘ .D,,_;.,,_l,qZ'X
[5k+n.n 5k+n—1,n—1
Dk’qEnX p—— Dk'anX

(2) of the proposition is true for » = 1, then the horizontal sequences
are cofibrations, and inductively we assume that the right vertical
sequence is a cofibration. Then, by diagram chasing, the left vertical
sequence will be a cofibration.

Statement (3) reduces to the case » =1 in a similar fashion,
upon letting ¢ = p in the diagram. Note that the argument given
above for statement (2) goes through here because the set of spheres
is closed under suspension.

Thus to prove statement (1) we just need to show that the

composite 3D, X 5 3Dy, , X ey D, .2 X is nullhomotopic for ¢ > 1.
This follows immediately from the following observation.

LeMMA 3.1. The composite XC, X——> 2C, .. X —> Prvsy C.2 X has image
wn filtration 1.

To prove statement (2) we need to show that the following
sequence is homotopic to a cofibration sequence.

5k+1 1

3D, , X AN 3D, X — D, X.
This sequence is equivalent to the following.

S™ Az (XA X) A8 — 8 AL (XA X) A S
— S AL (ZX A IX) .

Here (3 X A 2 X) is equivariantly homeomorphic to (X A X) A (S*'ASY)
where all spaces have the obvious permutation actions. (S* A SY)is
then equivalent to S* A S' where S' has the trivial action and
S*=[-1,1]/ — 1 ~1 with Z, action given by t — —t.

Let points in S* be benoted by (s, ---, s;,) € R*** with Ys? = 1.
Then our sequence desuspends to

S* AL XA X)— S A, (XA X)—— 8" A, S (X A X)

where



THE GEOMETRY OF THE JAMES-HOPF MAPS 407

51 Sk ) .
So @y @) 1 [l <1
(8o, ***y Spy L1y Ty) = <1/1__8(2)7 "] I-s' 05 L1y L2 0

* otherwise

and 7 is defined by 4: S°— S* with #(+1)=(4+1,0,0, ---,0). Then
»p is homeomorphism of pairs,

P:(S* Az, XA X), 8" Az, (XA X)= (S Az S* A X A X), %)
with inverse given by

(817 ct Y sky t; X1y xz) = (t’ 1/(1 - t2)31, Yy l/(l - tz)sky xly xz) .

REMARK 3.2. This last proof is essentially a generalization of
the standard argument that the Thom space of mé&,, m copies of the
canonical line bundle &, over RP*, is homeomorphic to RP™**/RP™,
See [6, Example 15.1.7].

Finally, to prove statement (8) of Proposition 1.3, in the case
n = 1, we need to show that the sequence

Somtt L, 5p,,, S p gun

is a cofibration when localized at p. By virtue of statement (1), it
suffices to show that the sequence acts homologically as a cofibration.
Recall that §,,,, is induced from the map A3, 3C,,,S™ — C,S™*
which by definition induces the homology suspension o,. Let Q°
denote a Dyer-Lashof operation, let @ denote the Bockstein, and let
Ni(2, ) denote the Browder operation on the homology of a &, ,-space
(see [4] for the definitions). In [4] it is shown that ¢,Q'x = Q'c.2x
and o, (T, ¥) = Np_i(042, 0,y); while 0,8 = Bo, up to sign. We
conclude that the above sequence induces a short exact homology
sequence:

0 — H (P, Z,) — H (3D, 8™ 2,) 5% H (D, ,S*; Z,)—0 .

The proposition follows.

Proof of Proposition 1.7. It suffices to show that the quadrila-
terals commute and the triangles commute up to a natural filtration
preserving homotopy in the following diagram.

The quadrilaterals can be seen to commute by a check of defini-
tions.

For the commutativity of the triangles it suffices to let n = 1.
The left hand triangle commutes when ¢ is replaced by ¢:C, X —
C,+:X, induced by the inclusion R* — R*™ onto the last % coordinates
of R**'. As mentioned before, i is homotopic to 4'. To prove that



408 NICHOLAS J. KUHN

C.x-Ler aong, snx

Nksn 1
i 0"C3" X
ﬁk‘i—n,n %
Ciin Mitngm 2C,. 3" X

the right hand triangles commute, we show that

ZC]‘X—'@E'* Ck_IZX

el

C2X

commutes up to a filtration preserving homotopy. Again replace 7
by <'.

If [c, 2] € C,X with ¢= (¢ X ¢!, - -, co X ey) and = (2, « -, 2,)
then we have following formulae:

i’ogk,l(([c! w]’ t)) = [(1 X C;.,, Y 1x 04'1’)9 ((w], sl(t))9 °t %y (wqy sq(t)))]
ﬁk,l(([o’ x], t)) = [(C; X C;’, ] C; X 0;’), ((xly t; ) (wq, t)))] .

To show that these are homotopic, we show that maps are homo-
topic to the map h: ¥C,X — C, 3 X defined by

h(([c’ x], t)) = [(C; X cily Sty cl’l X C;'), ((xly 31(t)), Sty (qu sq(t)))] .

First, 7., = h by shrinking id: I — I to s;: I — I in some natural way
(continuous in ¢;). Second, h=i'0f5,, by expanding each ¢; to
id: I — I in a natural way.

4, The James maps and the compatibility theorems. In this
section we prove Proposition 1.1 and Theorem 1.2.

We first note that a straightforward inductive argument reduces
our statements to the case n = 1.

Proof of Proposition 1.1. The commutativity of diagram (1) in
its adjoint form follows from a straightforward check of definitions.

We digress to note that this diagram is a special case of the
following more general statement about maps j,. We use the language
of coefficient systems and /7-spaces from [5].

In general, there are James maps
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Ji: CX — C'(Dy(7, X))
where X is a Il-space and & and &’ are coefficient systems with a

James system {£,}: @ — &’'. Abbreviate D (%, X) to D X.

LEmMA 4.1. For any based space P, the diagonal maps 4: P— P*
induce following commutative diagram.

cx A P—E0 oD, X) A P
4

4 C'(D,X A P)
Y|

C(X A P)—2—~C/(D,(X A P))

To see the specialization of this diagram to the adjoint of diagram
(1) of Proposition 1.1 and to prepare for proof of (2), we recall the
construction of the James-Hopf maps from [5].

Let F(Y, q) ©Y? denote the configuration space of distinct g-tuples
in Y?. If X is based, let

Y, X) = I1 F(Y, )%, X*/(~)

with the equivalence relation generated as before. There is a natural
equivalence C, X = C(R*, X), under the map which assigns to a set
of cubes, their centers.

The James-Hopf maps are constructed as follows. We first define
maps j,: C,.X — C(B,,, D, ,X). If [¢, X]eC,X is in filtration 7, then
J (e, x)) will be in filtration m, where m is the binomial coeflicient

(2) Let {4, ---, 4,} be the m subsets of ¢ of cardinality q. There

are corresponding subsets {B,, ---, B,} of . Let

jq([c; x]) = [(AJ, tt Am); ((Aly Bl); Tty (Am, Bm))] .

This is well-defined and continuous.
An embedding B, ,— R> induces a map

C(Bk,q, Dlo,qX) h— C(Rw, Dk,qX) ]

and the composite with the above maps defires j,: C, X — CD, X.
Proposition 1.1 (1) now follows from the application of the lemma
to the special case in which & = &, the little cubes operad,
%' = &(B,,), the coefficient system with ¢th space F(B,,, t), and
P=S§.
The proof of statement (2) is a bit more delicate. We recall
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that an embedding B,,c R~ is involved in defining the maps j,.
We can make these compatible as % varies by chossing a fixed
embedding BY, — R* and then embedding B,, via the composite
B,,— BY,—» R*. Then j:CX— CR~, D, ,X) factors as the com-
posite C,.X — C(B,,, D, X)— C(B%,, D, ,X)— C(R*, D,,,X). The space
11,20 C(B,,,, D, X) has an H-space structure induced from the maps
B,,x B,,— By, and D, XA\ D, ,X— D,,.,X [2]. It suffices to
show that the following diagram commutes, and that, when the
product is taken over all ¢ = 0, the homotopy is through compatible

H-maps.

CkX %2 C(Bk.q; Dk,qX)
mn
Brt QC(B,.,, D, ,X)
0.1

.y .
0C, 3X—2=0QC(B,_,,,, Di-1,,5X)——>02C(B,,,, D,_,,2X)

To show this we make use auxiliary spaces, lying between
& r-1(q) and &(q), which also form a coefficient system. Let &(q) =

ordered sets of ¢ little k-cubes (e, ---, ¢,) such that (¢}, - --, ¢;) have
disjoint images, where ¢, = ¢; X ¢/, ¢i: I — I, ¢i': I"™* — I**. Let B, =
& (@) 2,

There is a projection map B: &%(q) — &F_.(q) defined by
B((Cly ) Cq)) = (C;'y ct 0;') .

Let 4,: €,_,(q) — ©(q) be the inclusion map defined by (e, ---, ¢,) =
1xe,---,1xe,) and let 7,: &4(q) — F(q) be the obvious inclusion.
Then Boi, = ide, o and 4,08 = tde; o) equivariantly via a homotopy
H,: &(q) — &x(q) “stretching” the ¢, to ¢d: I — I in a natural way.
Consider the following diagram. Once again, note that 7 has replaced
by the homotopic map 7'.

3C,X I SC(B,,,, Dy, X)
K 1771
Brn C(Bi,, D, ,2X) C(By.,, 2D, . X)

A 7.
1/3 ‘:il \ J5k,1
! ’

ConSX——~C(B,_..,, Dyt SX)——C(By,, Dy, 2 X)

By inspection, 6,,°%,°J, factors through C(B; ,, D,_, ,2X), thus defining
the map j;. Thus the upper part of the diagram commutes. By a
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check of definitions, one can see that the left hand quadralateral
commutes, i.e., 8o = j,oB,,.

Finally we check that the triangle commutes up to homotopy. =
1,01, S0 that i’o8 = 4,04,08 = 1,01 = 4, Thus diagram (2) of Proposition
1.1 commutes up to homotopy.

To conclude that this homotopy is an H-map we first note that
.20 C(Bi,gy D,_;,,X) also has a natural H-space structure. In the
language of [2], &’ has a separated sum. Proposition 1.1 (2) now
follows from the following lemma.

LeMMA 4.2. The following maps are strict H-maps.

(@) Ilezo dgt CoX — Tlg20 C(Bygy Dy, X)

b)) Be:CX—0C,_ 32X

(€)% Tz C(Byoigy Dy, e2X) — Tlgzo C(Bigy Dyp—s, 2 X)

d) Hq;o C(B/:,q; Dk—l,qZX) - Hqgo C(Bk,q; Dk—x,qSX)

(e) H: Hqgo C(BI:,Q, Dk-l,quX) - F(I+, Hqgo C(Bl:,q, Dk—l,qZX))

(f) The homotopy between i and i [1420 C(Bi_1,qy Di—1,e2X) —
120 C(Bypy Dy, 2 X)

(g) The composite

1 Or,
};Io C(By.qs Dy.,s X) 2,0 ql;[D C(By,, 2D, ,X) LN qu;[o C(By,gy D502 X)
(h) Hq;o j;: CkX'% Hq;o C(Blzyq, -Dk-l,qZX)'

That (a) is a strict H-map is shown in [2]. That the maps (b)-
(g) are strict H-maps follows from a straightforward check of the
definitions. Statement (h) follows from statements (a), (d), and (g)
and the fact that 4, is an injection.

Proof of Theorem 1.2. As remarked before, it suffices to prove
the theorem when n» = 1. We will just show that the second diagram
homotopy commutes; that the first diagram commutes follows from
a slightly simpler but essentially identical argument.

To extend the James-Hopf maps j,.:C,X— CD, X — @D, X to
Jg 2 3*X — QD, X we note that [],.,7,: CX— 11,:0QD; X is an
H-map and that [],.,@QD,,X is grouplike. A universal property of
group completions [2] then allows [],.,j, to be extended to 2*3*X,
uniquely up to weak homotopy, i.e., disregrading lim' terms.

Similarly the homotopy J: C,.X — F(I*, 2 [1,20 Q@D;_,,,.2X) of Pro-
position 1.1 extends, uniquely up to weak homotopy, to give a
homotopy of weak H-maps J: 2*3*X — F(I*, 2 T1420 Qi—1,,>X). Then
J,=0 11,20 7, because 2], j, does cover J, and is an H-map. As
before, d,,.: T1,20 @Dy, X — 1420 @D;_1,,2X is an H-map and thus so
also is 8, 0TI 20, This composite covers J, and thus J, = 8, 1,20 Jo-
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Theorem 1.2 follows.
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