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PICONE-TYPE THEOREMS FOR HYPERBOLIC
PARTIAL DIFFERENTIAL EQUATIONS

KURT KREITH

Sturmian comparison theorems are established for hy-
perbolic partial differential equations of the form

— (m(t)ut)t + (a(x)ux)x + p(x, t)u = 0

and

~(M(t)vt)t + (A{x)vx)x + P(χ, t)v = 0

when these equations are neither assumed to admit a separa-
tion of variables, nor to have equal principal parts. As
such, the principal results constitute a generalization of the
classical Sturm-Picone theorem.

1* Introduction* The fact that the Sturm-Picone theorem has
a natural generalization to elliptic equations was observed by Picone
[7] in 1911, was since rediscovered by several authors, and has
recently been extended in several directions (see [11] for an extensive
list of references), including consideration of equations of parabolic
type. However, the question of an extension to hyperbolic equations
has received relatively little attention in spite of the physical
motivation (see §4) which exists.

One explanation for absence of an hyperbolic analogue is that
the variational machinery implicit in the "Picone identity" does not
carry over to hyperbolic equations. Rather, the indefiniteness of the
quadratic form associated with a hyperbolic equation precludes the
development of the disconjugacy criteria which are naturally as-
sociated with the Legendre sufficiency condition. For this reason
generalizations to hyperbolic equations have been restricted to
problems which allow for a separation of variables [2], [3], [10],
[12] or to analogues of the more restrictive Sturm comparison
theorem for equations with the same principal parts [4].

In this paper we seek to develop a more satisfactory hyperbolic
version of a Picone-type theorem which is based on [4] and an
analogue of the Liouville transformations for hyperbolic equations.
Motivation for this approach is developed in §2 where such trans-
formations are used to establish comparison theorems for Sturm-
Liouville equations. In § 3 we generalize upon the Sturmian theorem
of [4], while §4 exploits a generalized Liouville transformation
which, together with the results of §3, yields Picone-type theorems
for a class of nonseparable hyperbolic equations. Examples and
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generalizations are considered in §5.

2* Picone-type theorems for ODE's via transformations*
While the proof of the Sturm-Picone theorem seems to require a
tool from the calculus of variations, other forms of this theorem
can be obtained from the classical Sturm comparison theorem and
the Liouville transformation. In order to compare zeros of solutions
of

(2.1) l[u] ΞΞ -(m(ί)iθ' + p(t)u = 0

and

(2.2) L(v) = ~{M{t)v')' + P(t)v = 0 ,

when 0 < M(t) ^ m(t) and P(ί) <; p(t) in [α, 6], it is natural to try
an oscillation-preserving change of variables

(2.3) u(t) = p(fi)U(t) τ

which transforms (2.1) into

(2.4) -JfL(i|f(ί)ϋ^-) + Q(t)U= 0 ,
dτ \ dτ /

so that both equations have the same principal parts. A direct
calculation shows that (2.3) transforms (2.1) into (2.4) whenever

2dτ _ M
dt m

and that then

Q{t) = ρl[p](^r

In particular, one can choose τ = t so that p — M/m and Q — pl[p],
A slight variant of this approach is to require that

0 < M{t) ^ μ ^ m(t)

in [a, b] for some constant μ. This approach enables us to transform
both (2.1) and (2.2) into equations of the form

(2.5)

(2.6)

by means of

-μun +

transformations

u = pU

Q((τ)F=0

r - Γ(ί)

<7 = σ(ί)
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which satisfy

p2— = JL R*— = JL
dt m dt M

For example, we could choose p = 1, R == 1 and

5 tf = 7
M(s)

for some 7 e [tlf t2]. Then g = m/μp, Q = M/μP, and r is a contrac-
tion while σ is a dilation, so that

[?&), Γ(ί2)] S [ίlf ί j S [(7(0, *&)]

A solution u(t) of (2.1) with ^(ίj = u(t2) = 0 now corresponds to a
solution J7(τ) of (2.5) with zeros at τitj and r(ί2) If QW ^ $(r) ίn

[r(iL), r(ί2)] then, by Sturm's comparison theorem, V(σ) has a zero
in [τ(tχ)f τ(t2)] while the original solution v(ί) of (2.2) must have a
zero in [o " 1 ^ ^ ) ) , ^~1(τ(ί2))] However, in order to assure that Q(τ) ^
g(r) one must again assume the existence of a constant λ such that

Q(t) ^ λ ^ g(ί)

in [tu ί j .
This approach, which will cary over to the hyperbolic case,

suggests the following definition for functions f(x) and g(x) defined
in a common domain G £ Rn.

DEFINITION 2.1. We say that / is a strong major ant of g in G
if there exists a constant λ such that f(x) ^ λ ^ #(JC) for all x e G.
We then write " / > # in G."

With this definition one can summarize the preceding discussion
with the following Picone-type theorem based on the Liouville trans-
formation.

THEOREM 2.2. Let u(t) and v(t) be nontrίvial solutions of (2.1)
and (2.2), respectively, satisfying u(Q — u(f2) — 0. If

0 < M < m

and

MP< mp

in [tίf tz], then every solution of (2.2) has a zero in

[σ-\τf (O), σ-\τ(t2))] c [tl9 t2] .
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On the one hand the hypotheses involving strong dominance
demand more than one would like. They suggest the price to be
paid for eschewing mathematical tools rooted in the calculus of
variations and, in the present paper, for dealing with the hyperbolic
case where such variational tools do not exist.

On the other hand, Theorem 2.2 also has some advantages over
the usual Picone theorem. Specifically, there are situations in which
we do not have P(t) ^ p(t) in [tu t2] but the fact that M < m, in
[tlf ί2) makes it possible to satisfy P <(m/-M)p in [tlf ί j . Also where-
as the Picone theorem only concludes that v(t) has a zero in (flf t2],
Theorem 2.2 specifies a proper sub-interval of [tlf t2] in which v(t)
has a zero.

However, our main interest in this approach is that it carries
over to a class of nonseparable hyperbolic equations, as will be
shown in §4.

3* A generalized Sturmian theorem* By way of preparation,
we consider a pair of hyperbolic equations of the form

(3.1) lu = -(m(je, t)ut)t + Σ Di(aiS'(x, t)D3 u) + p(x, t)u = 0

(3.2) Lv Ξ -(Λf(x, t)vt)t + Σ DlAiό{x, t)Dόv) + P(x, t)v = 0
i,3=l

in a smooth bounded domain G £ Rn+1. We assume that m and M
are of class C1 and positive, that the matrices a — (α^ ) and A = (Aiά)
are C1, symmetric and positive definite, and that p and P are con-
tinuous in G.

In order to apply Green's theorem to (3.1) it is convenient to
define

Vu = (Dxu, •-•, Dnu, ut) ,

n = (Σ αti^i, ' , Σ a>inVi, - w v n

where v = (vlf , ι>n+1) is the exterior unit normal to dG. Then we
have

ί* ί* C Γ Γ I ft ~—~ ΎYi \

(3.3) 11 vludxdt = I vFwnds - \\ \Vu Fv - pwv dxdί .

The boundary integral in (3.3( motivates a decomposition of dG
into

7X = {(x, t) e 3G|v n ^ 0 at (x,«)}
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72 = {(x, t) e dG\v n > 0 at (x, t)} .

As shown in [4], this decomposition corresponds to the "space-like"
and "time-like" components of dG relative to (3.1). More geomerti-
cally, under a canonical change of coordinates which yields aiά = δtj

and m = 1 at a given (x, t) = (x0, *o) we consider a particular tangent
vector

- U, , »„ - i i ± - i i i ± i l ) (vn+1 =*= o)

If ^(ΛΓ0, ί0) denotes the interior of the characteristic cone emanating
from (xo,to), then Γ G ^ if and only if (xo,tQ)eΎ2.

An analogous development relative to (3.2), with

yields

(3.4) ί ( uLvdxdt = ( uFi; ΛΓcZs - (ί
JJί? J3ί? JJί?

Fu - Puv dxdt.
\0 -1

This equation motivates a second decomposition of dG into

Λ = {(x, t) 6 dG\v . JV ^ 0 at (α, t)}

Λ = {(*, ί) e dG\ v JV > 0 at (a, t)}

corresponding to the "space-like" and "time-like" components of dG
relative to (3.2).

An immediate consequence of these definitions is the following

L E M M A 3 .1 . If for all (x,t)eG

(3.5) 0 < M(x, t) <; m(x, ί)

and

(3.6) 0 < Σ a>v(x, t)ViVj ̂  Σ AtS{xf t)ηiηj

for all real n-tuples (rju , ηn) Φ (0, , 0), then

Proof. By definition, (x, t) e 72 if and only if Σ aij(χ> $P$>i >
m(x, t)v2

n+1 which clearly implies that Σ Ai3 (x, t)vtvs > M(x, t)v2

n+1 and
that (x, ί) 6 Γ2. A similar argument shows that Γλ £ 7X.

COROLLARY 3.2. dG c 7! U Γ2.
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With this background, we consider the more special case of
functions U(x9 t), V(x, t) which are, respectively, solutions in GaRn+1

of

(3.1)' -(m(x, t)Ut)t + Σ A(αi5<x, t)DsU) + q(x, <)J7 = 0

(3.2)' -(m(x, ί)7 t) t + Σ A(a*y(x, t )AF) + Q(ΛΓ, ί) F = 0 ,

and let Ί[ U 7g denote the decomposition of 3G relative to (3.1)' or
(3.2)'. In order to show that the inequality

(3.7) Q(x, t) ^ q(x, t) for all (AT, ί) e G

assures that V(x, t) changes sign in a domain G in which U(x, t) Φ 0,
we seek to show the incompatibility of the conditions

( i ) Q(x, t) ^ q(x91) for all (x, t) e G, (P =£ Q)
(ii) U(x, t) > 0 in G,
(iii) F(x, ί) > 0 in G.

The desired contradiction follows from the fact that for solutions
U and V of (3.1)' and (3.2)', respectively, Green's theorem yields

(3.8) (( ( g - Q)UVdxdt - - ( {VVU n - UVV- ή)ds .
JJG JdG

In the event that (i)-(iii) hold and

V = 0 on 7s and J7 = 0 on τl

then (3.8) cannot hold and we have the following result.

THEOREM 3.3. Let U(x, t) and V(x, t) be solutions of (3.1)' and
(3.2)', respectively, satisfying Z7>0 in G, U—0 on Ί[ and V—Q on Ί[.
If (3.7) is satisfied in G with Q^q, then V(x, t) changes sign in G.

4* A Picone-type theorem* We turn now to the more difficult
task of comparing two equations of the form (3.1) and (3.2) with
different principal parts. By way of physical motivation, we note
that (3.1) can be interpreted as describing the oscillations (about
u — 0) of a vibrating system of density m(x, ί), whose elastic
properties are given by the matrix (atJ)9 and which is subject to a
linear restoring force —p(x, t)u. Intuitively, we would expect that
a decrease in density and an increase in the elastic and restoring
forces should lead to more rapid oscillation about u — 0. This is
what motivates us to consider special cases of (3.1) and (3.2) subject
to the hypotheses (3.5), (3.6), and (3.7), seeking conditions under
which a solution v(x, t) of (3.2) must change sign in a particular



HYPERBOLIC PICONE THEOREMS 391

domain G.
Our principal result deals with a pair of nonseparable hyper-

bolic equations

(4.1) lu = —(m(t)ut)t + (a(x)ux)x + p(x, t)u = 0

(4.2) Lv ΞΞ -(M(t)vt)t + (A(x)v.)m + P(x, t)v = 0

for which there exist constants μ and a such that

(4.3) 0 < M(t) ^ μ ^ m ( t )

(4.4) 0 < a(x) ^ a ^

in a smooth bounded domain G c Rn+1. In order to establish boundary
conditions which will assure that v(xt t) changes sign in G we seek
a generalized Liouville transformation which will enable us to apply
Theorem 3.3 to the transformed equations. Motivated by a technique
described by Ahlbrandit, Hinton, and Lewis in [1], we consider the
functional

(4.5) J[u] = 11 (mul — aul + pu2)dxdt

associated with the differential operator I of (4.1). It is readily
verified that the substitution u(x, t) — p(x, t) U(x, t) yields

J[pU] = \\ (mp2U! - ap2U2

x + pl[p]U2)dxdt

™-(id
Neglecting the boundary term, but making a change of variables
ζ = ζ(x)f τ = τ{t) yields

J[ι°^J — \\ mp—Uz — ap—Uξ -\ pl[P\U \dξdτ

where we have made use of the fact that J(x9 t/ζ, τ) = l/ξxτt.
Anticipating the form of the Euler-Lagrange equation associated
with J[pU], we impose the conditions

mp2— — μ ap2^ = a

which are satisfied if

(4.6) p =
1 am

aiL * - lot
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Then, as can be verified by a direct calculation, (4.1) is transformed
into

(4.7) l[U] EE -μUττ + aUξξ + (M^U = 0 .

Analogously, the transformation

v — icV 7] — η(x) σ —

with

(4.8) K =

transforms (4.2) into

(4.9) L[F] - - ^ F σ σ + aVm + ( ^ 1 ) ^ = 0 .
V c

With this machinery we are able to establish our principal
result.

THEOREM 4.1. Suppose G is a smooth bounded domain which is
convex in R2 and that u{xf t) is a solution of (4.1) satisfying u — 0
on Ύλ. If there exist constants μ and a such that

0 < Λf(ί) ^ μ ^ m(ί)

0 < α(x) ^ α ^ A(a)

JM^L < il£L (not identically equal)
M P

for all (x, t) in G, then every solution v(x, t) of (4.2) satisfying v = 0
on Γ2 changes sign in G.

Proof Choose a point (e, δ) e G so that

(4.10) £ = e + (" V-TT** ' τ = δ + Γ

satisfy (4.6). From the hypotheses it follows that (4.10) is a dilation
in x and a contraction in t which leaves (ε, δ) fixed. Analogously,

(4.11) V = ε + J - ^ - Λ <τ •= ί + J-£-ds

is a contraction in cc and a dilation in t which satisfies (4.8) and also
leaves (ε, δ) fixed. Denoting the images of G under (4.10) and (4.11)
by H and H, respectively, it follows from the convexity of G that
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. Denoting this intersection by G, we consider the de-
composition of dG into its "space-like" and "time-like" components

dG = Λ U f 2 .

Since the property of being "space-like" is invariant under a change
of variables, it follows from Corollary 3.2 that Γ1 is contained in
the image of rtx under (4.10) and that U(ζ9 τ) = 0 on /\. By an
analogous argument we have V(?)f σ) = 0 on Γ2. Since U and V
satisfy (4.7) and (4.9) respectively, an application of Theorem 3.3
(in which we identify ξ and η with x, τ and σ with t) yields the
conclusion that V changes sign in G. Therefore v changes sign in
the pre-imge of G under (4.11), and this completes the proof.

5* Remarks and examples* Unless (4.10) and (4.11) are identity
mappings, Theorem 4.1 yields a specific proper subset of G in which
a zero of v must occur; this is stronger than the usual Sturmian
conclusion. The assumption that G be convex can be weakened
to the requirement that it be closed under horizontal and vertical
contractions.

A natural choice for (4.1) is the wave equation

(5.1) lu = —utt + uxx + p(t)u = 0 .

If (5.1) is subject to boundary conditions of the form u(xlf t) —
u(x2, t) = 0, then it allows a separation of variables u = X(x)T(t) so
that u(x, t) has a rectangular nodal domain G = {(x, t) \ xx < x < x2f

tι<t< U) whenever T" + (π2l(x2 - x,f - p(t))T = 0 is not discon jugate
on (tlf oo). The techniques of [2], [3], [10], and [12] show that
every solution of

-vti + vxx + P(x, t)v = 0

v(xu t) = v(x2f t) = 0

changes sign in G whenever P(x, t) ^ p(t) (P 0 p) in G. However
Theorem 4.1 enables one to establish zeros for solutions of certain
equations of the form

(5.2) ~{M(t)vt)t + (A(x)vm). + P{x, t)v = 0

v(xlf t) — v(x2, t) = 0

when M(t) ^ 1 in (ίlf ί8) and A(x) ^ 1 in (xl9 x2). In this situation
we can choose a = μ = 1 so that ξ = x, τ = t, p = 1, K — %/l/AM ,
ηx = VTfA, and pt = VΪ/M.

In case p(t) is a negative constant (i.e., p(t) = —pQ), equation
(5.1) also has the solution u = JoiVp^i? — x2)). Now u(xf t) has



394 KURT KREITH

hyperbolic nodal lines of the form

/2 ™2 . Jn

where {jn} are the zeros of the Bessel function of order zero. This
solution does not allow a separation of variables in x and t nor does
it have any bounded nodal domains. Yet Theorem 4.1 applies to
solutions v(x, t) of (5.2) in a domain G bounded by two hyperbolic
nodal lines and a pair of space-like curves (such as xt — const)
provided v(x, t) = 0 on the bounding space-like curves.

Finally, we note that when p(t) ΞΞ 0, (5.1) has the solutions

u = (x — xj + (t — tof — r2

which generate circular nodal domains with arbitrary centers and
radii. With such solutions we can apply Theorem 4.1 to solutions
of (5.2) which vanish on the space-like boundary of an arbitrary
circle in the {%, ί)-plane whenever M(t) ^ 1, A(x) ^ 1 and L[fc]//c <

The extension of Theorem 4.1 to a higher number of independent
variables is straightforward as long as the principal part is appro-
priately restricted-e.g.

l[u] = -(m(t)ut)t + (a(x)ux)x + (b(y)uy)y + p(x, y, t)u = 0 .

Of greater interest is the question of whether one can handle the
two-dimensional case where m — m(x, t) and/or a = a(x, t). The
techniques pursued above suggest that such results might follow
from a study of generalized Liouville transformations corresponding
to more general principal parts than those considered here.
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