HAUSDORFF MEASURE, BMO, AND ANALYTIC FUNCTIONS

Robert Kaufman

Abstract

Besicovitch's theorem on removable singularities is extended to function of class BMO. The extende d theorem admits a converse.

Let W be an open set in the plane, and the class $\mathrm{BMO}(W)$ be defined as follows: a measurable function f on W is BMO if to each ball B contained in W there is a constant $c=c(B)$ so that $\iint_{B} \mid f(x, y)-$ $c(B) \mid d x d y \leqq A m(B)$, with a constant $A=A(f)$. For any complex function f on $W, S(f)$ is the set of points at which f fails to admit a complex derivative; $S(f)$ in general is neither open nor closed, but is in fact a Borel set.

Theorem (a). Let $f \in \operatorname{BMO}(W)$ and suppose that $S(f)$ has 1dimensional Hausdorff measure 0 . Then there is a function f_{1}, holomorphic on W, equal to f on $W-S(f)$.
(b) Let S be a compact set of positive 1-measure. Then there is a function g, analytic off S, of class $\mathrm{BMO}\left(R^{2}\right)$ with Taylor expansion $g(z)=z^{-1}+\cdots$ at infinity.

Proof of (a). This relies on Theorem 1 of [3] and the following variant form of Vitali's covering theorem: if a sequence of open balls $\left(B\left(a_{i}, r_{i}\right)\right)_{1}^{\infty}$ covers a bounded set E, then it contains a disjoint collection $\left(B\left(a_{j}, r_{j}\right)\right)_{1}^{\infty}$ such that $\mathbf{U}_{j} B\left(a_{j}, 3 r_{j}\right)$ covers E. Let V be a bounded subset of W and $\varepsilon>0$; we construct coverings of $V \cap S(f)$ and $V-S(f)$ separately. Inasmuch as $S(f)$ has 1-measure 0 we can cover it with balls $B\left(\alpha_{i}, r_{i}\right)$ such that $B\left(\alpha_{i}, 2 r_{i}\right) \cong W$ and $\sum r_{i}<$ ε. For each point z in $V-S(f)$ we can find a number $r(z)>0$ so that $B(z, 6 r(z)) \subseteq W$ and $\left|f(w)-f(z)-(z-w) f^{\prime}(z)\right|<\in r(z)$ when $w \in B(z, 6 r(z))$. The collection $B(z, r(z))$ contains a disjoint sequence $B\left(z_{j}, r\left(z_{j}\right)\right)$ such that $\cup B\left(z_{j}, 3 \pi\left(z_{j}\right)\right) \supseteqq V-S(f)$; by the disjointness, $\sum 9 \pi \lambda^{2}\left(z_{j}\right) \leqq 9 m(V)$. Using the fact that constants are analytic, we see that the conditions of $\left[3, \mathrm{p}\right.$. 108] are fulfilled, so that $f=f_{1}$ a.e., for some function f_{1} holomorphic on W. Then $f-f_{1}$ is differentiable on $S-S(f)$, and so $f=f_{1}$ there.

An easy improvement can be obtained from [3], namely, the constant $c(B)$ in the definition of $\mathrm{BMO}(W)$ can be replaced by a polynomial (depending on B).

Proof of (b). By a theorem of Frostman [2, p. 7], S carries a
probability measure μ, such that $\mu(B(z, r)) \leqq c r$ for every ball B of radius $r>0$. Let

$$
g(z)=\int(z-\zeta)^{-1} \mu(d \zeta)
$$

so that g is analytic off S and $g(z)=z^{-1}+\cdots$. To prove that $g \in$ BMO (R^{2}) we choose a ball $B=B(w, r)$, set $B^{*}=B(w, 2 r)$ and $C=$ $R^{2}-B^{*}$. Let

$$
\begin{aligned}
& g_{1}(z)=\iint_{B *}(z-\zeta)^{-1} \mu(d \zeta) \\
& g_{2}(z)=g(z)-g_{1}(z)
\end{aligned}
$$

Now

$$
\begin{aligned}
\iint_{B}\left|g_{1}(z)\right| d x d y & \leqq \mu\left(B^{*}\right) \sup \iint_{B}|z-\zeta|^{-1} d x d y \\
& =2 \pi r \mu\left(B^{*}\right) \leqq 4 \pi c r^{2}
\end{aligned}
$$

Further

$$
\iint_{B}\left|g_{2}(z)-g_{2}(w)\right| d x d y \leqq \int_{C} \int_{B}\left|(z-\zeta)^{-1}-(w-\zeta)^{-1}\right| d x d y \mu(d \zeta)
$$

From the inequality $|\zeta-w|>2 v \quad(\zeta \in C)$, we find that the inner integral doesn't exceed $(4 \pi / 3) \cdot r^{3}|\zeta-w|^{-2}$, and the entire integral is at most

$$
\begin{aligned}
& (4 \pi / 3) \cdot r^{3} \int_{C}|w-\zeta|^{-2} \mu(d \zeta) \\
& \quad \leqq(4 \pi / 3) \cdot r^{3} c(2 r)^{-1}=2 \pi / 3 \cdot c r^{2}
\end{aligned}
$$

Hence

$$
\iint_{B}\left|g(z)-g_{2}(w)\right| d x d y \leqq 3 c m(B)
$$

Remarks. (i) A Borel set S of positive 1-dimensional measure contains a compact set S_{0} of the same kind (Besicovitch) [2, p. 11].
(ii) Besicovitch proved (a) for bounded functions; for continuous f_{1} he proved the sufficiency of the hypothesis that $S(f)$ have σ-finite 1-dimensional measure. Combining his method for this variant, with the one presented above for BMO, we can replace continuity of f by VMO (vanishing mean oscillation), that is $\iint_{B}|f(x, y)-c(B)| d x d y \leqq m(B) \varepsilon(m(B))$, where $\varepsilon(0+)=0$.
(iii) The variant just mentioned also admits a converse; to explain this we observe that if the probability measure μ figuring in the proof of (b) has the stronger property that $\mu(B(z, r)) \leqq$ $r \varepsilon(r)$ with $\varepsilon(0+)=0$, then the function g is VMO $\left(R^{2}\right)$. We use the
following theorem [4]; a Borel set S, not of σ-finite 1-dimensional measure, contains a compact set S_{0}, with positive Hausdorff measure for a measure function $h(u)=u \varepsilon(u)$; by Frostman's theorem S_{0} then carries a probability measure μ with the stronger property needed to improve VMO to BMO.

References

1. A. Besicovitch, On sufficient conditions for a function to be analytic, Proc. London Math. Soc., 2 (32) (1931), 1-9.
2. L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand, 1967.
3. R. Kaufman and J.-M. Wu, Removable singularities for analytic or subharmonic functions, Arkiv for Mat., 18 (1980), 107-116.
4. M. Sion and D. Sjerve, Approximation properties of measures generated by continuous set functions, Mathematika, 9 (1962), 145-156.

Received August 3, 1981.
University of Illinois
Urbana, IL 61801

