
PACIFIC JOURNAL OF MATHEMATICS
Vol. 102, No. 2, 1982

MINIMAL POLYNOMIALS FOR GAUSS CIRCULANTS
AND CYCLOTOMIC UNITS

S. GURAK

To determine the minimal polynomial of the Gauss
periods of degree / corresponding to a given rational prime
I > 3 is a classical problem dating back to Gauss. In this
paper I show that at least the beginning coefficients of
their minimal polynomial can be computed in an elementary
fashion. The methods used here extend to give a similar
result for computing the minimal polynomials of the cyclo-
tomic units.

1* Introduction* Let I denote a prime greater than 3 and fix
ζ = cos (2π/l) + i sin (2πβ), a primitive ϊ-root of unity. If I — 1 = ef
with / > 1 let K be the unique subfield of Q(ζ) with [Q(ζ): K] = f.
Choose a generator s for the subgroup {Zff of e-powers in the full
group Zf of reduced residue classes modulo I. Fix a set of integers
tlf t2, , te to represent the cosets Hu H2, , He of (Zf)/(Zi)e. The
values

(1) Tr^-^C") (l^i^e)

are the Gauss periods or circulants of degree / corresponding to I

[4]. Their common minimal polynomial has the form

(2) g(x) = xe + axx
e~l + a2x

e~2 + + ae__λx + ae .

Determining the coefficients of g(χ) is a classical problem dating back
to Gauss, and is intimately connected with the determination of the
cyclotomic numbers of order e. Gauss himself determined the
coefficients of g(x) for fixed values e <̂  4. For instance, when e = 2
he found that

( 3 ) g(χ) - x2 + x + (1 - (-1)('-1)/2 0/4 [5, art. 356] .

In case e = 3, the minimal polynomical

(4) g{x) = xz + x2 - (I - l)xβ - ((I - l)/3 + ftZ)/9 [5, art. 358]

where the integer k is uniquely determined from the integral
representation U = (3ft — 2)2 + 27N2. In particular, for I = 13, since
52 = (±5)2 + 27 one finds 3ft - 2 = - 5 so k - - 1 and 0(a?) = a?8 +
α;2 — Ax + 1 in (4).

For certain larger values, specifically e = 5, 6, 7, 8, 9, 10, 11, 12,
14, 16,20,24, 30, the cyclotomic numbers of order e have been
determined through the efforts of Dickson, E. Lehmer, Whiteman,

347



348 S. GURAK

Muskat, and more recently, Leonard and Williams (see [6] for an
account of these results). For these values of e, the coefficients of
the minimal polynomial g(x) for the corresponding Gauss periods are
readily computed from the cyclotomic numbers.

In this paper I take another approach-determining the coefficients
of g(x) in (2) for a fixed value /. The case / = 2 was known to
Gauss [5, art. 337]. Here each coefficient ar is given by a polynomial
of degree [r/2] in I; namely,

(5) αr = ( - l F

where [ ] denotes the greatest integer function. When / > 2 it is
natural to ask if each coefficient ar in (2) can be computed in similar
fashion by some polynomial in Z. Of course, Eisenstein and Gauss'
results [1, p. 220] for the next cases / = 3 and 4 already indicate
this is not so; the determination of the later coefficients becomes
increasingly more dependent on the higher reciprocity laws. How-
ever, there is still evidence here that the beginning coefficients may
follow such a pattern, and indeed I have found this to be the case.
If p is the smallest prime factor of /, I will prove that if I is
sufficiently larger than r then ar = Pr(l) where for each r, Pr is a
polynomial in I of degree [r/p]. The method of proof provides a
recursion to compute the Pr.

In the next section I actually consider the more general question
of determining the coefficients of the minimal polynomial for a sum
of Gauss periods (1). This leads me to establish similar results for
the cyclotomic units in §3.

2* The minimal polynomial for a sum of Gauss periods* Let
C denote a finite set of k positive integers (repetitions allowed). I
wish to determine the beginning coefficients for the minimal poly-
nomial of the sum,

(6) 0 = Tr Q ( ζ ) / x (Σζ c )
c e C

of Gauss periods (1), which I shall always assume generates K over
Q. Under these hypotheses the minimal polynomial of θ has the
form (2) and equals g(x) = J[β

i=ί (x — θ{i)), where for 1 ^ % <̂  e, the
0(ί) = Tr (ΣeCcίi) = Σ a C c ί i + Zcsti + + ζ"'""1") denote the distinct
conjugates of θ in K. It is well known from the theory of equa-
tions [3] that the coefficients ar of g(χ) can be computed in terms
of the symmetric power sums Sn = Σ (#(ί))n Specifically, this is
expressed by Newton's identities
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( 7) Sr + αl(Sr-i + α2<$v_2 + + α,_t

or equivalently in determinant form,

St 1 0 0 0 •

S2 S, 2 0 0 -

+ (1 ^ T ^ β) ,

( 8 ) αr =

3 0

0

0

0

O Qf Of

? x r - l

?2 S,

(1 ^ r ^ e) .

Already αt = - ^ = -Trβ(C)/<2 (ΣσC) = * if no c Ξ 0 (modi). To
compute the higher power sums I first note that the number N(n)
of ones (ζ°) occurring in the multinomial expansion of any (θ[ί))n =
(ΣcC c ί i + ζC8ti + + ζ 7""1'*)" is the number of tuples (clf c2, , cn)
in Cn satisfying a relation

( 9 ) 8aicx + sa2c2 + . . . + sancn Ξ 0 (mod Z)

for some choice of exponents at = 0,1, 2, , / — 1 (1 :£ ΐ ^ n). Since
the total number of terms in expanding (θ{i))n is (fk)n, the number
of nonones in the multinomial expansion of (θ(i))n is (fk)n — N(n).
Taking into account the contribution of each term (θ{i))n in the
power sum Sn9 one finds a total of (Z — l)N(n)/f ones, and
(Z — l)((/fe)π — N(n))lf nonones, exactly {{fk)n — N(n))/f occurrences
of each of the (Z — 1) primitive Z-roots of unity. Since ΣfcίC* = —1>
the value Sn must be (Z - l)N(n)/f - ((&/)71 - N(n))/f, or equivalently

(10) Sn = lN(n)/f -

I now establish the main result concerning the minimal polynomial
of (9 in (6). Let η be a fixed primitive /-root of unity and p be the
smallest prime factor of /. For each 2 <; r ^ β let Λf(r) be the
maximum of the sums

(11) (cx + c2 + + cr)^ in C ,

where ^ denotes, as customary, the Euler totient function. The
beginning coefficients ar can be computed as follows.

THEOREM 1. For all primes I = 1 (mod/) and greater than
M{χ) the coefficient ar of the minimal polynomial of θ in (6) satisfies
ar = Pr(l), where for each r, Pr is a polynomial of degree [r/p] in
I.
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Proof. I begin with two initial remarks. First, since 1 = 1
(mod/) each prime lying above I in Q(jj) has residue degree one.
Thus the condition I > M(r) ensures that for n ^ r, no sum

(12) s^c, + s"2 - c2 + + sa«cn Ξ 0 (mod I)

where c { eC and at = 0, 1, 2, , / — 1 (1 <£ i <̂  w) unless

(13) η^c, + ?<% + + 27β cn = 0 ,

since otherwise I <* Nq^^η^ + + ηancn) <: M(r). Second, since
each d > 0, if relation (12) holds the number n of terms in the sum
is at least p.

Now it follows from the above remarks that N(n) = 0 for 1 <;
n < p, so Sn = -k71/71-1 (l^n<p) in (10). If p\n t h e n N(n) > 0

since clearly the w-tuple (c, c, * ,c), for any c in C, satisfies (13)
by choosing n/p repetitions of ηf/pc + η2f/pc + + rfc — 0. Thus
8>n is a polynomial expression of degree one in I whenever p\n.

I now proceed to prove the theorem by inducting on r. It
easily follows from the preceding discussion that for 1 <Ξ r < p, the
coefficients ar are positive constants. Indeed, since Sn — —knfn~ι

(1 <̂  n < p)9 one finds from (8) that

(14)

Now

ar = kή

assume

•((r-

that

•1)/

r >

+

V

l)((r

and

- 2 ) /

that

+ D

each

• (2/ + 1)(
for

coefficient

/
1

a

+
<

VI *

l)/r!

r <

forp < r,
satisfies αΛ = Pn(l), where for each n, Pn is a polynomial of degree
[n/p] whose leading term has sign ( —l)Cn/p]. Next write r = up + v
for integers u and v with 0 <; v < p. Then one has from (7) that

V 1 5 ) Q Q

From the induction hypothesis and the above remarks concerning
the symmetric power sums Sn (1 <̂  n ^ p), the first v terms of the
sum in (15) and the pth term each have leading term of degree [r/p]
and sign (—l)[r/p]. The remaining terms are either of lower degree
or have a leading term of degree [r/p] and sign ( — l) [ r / ί ) ] also. Thus
it follows that ar = Pr(l) for some polynomial expression Pr of degree
[r/p] in I whose leading term has sign (—ΐ)ίr/Pl. This completes the
induction and the proof of the theorem.

The special choice C = {1} yields the following corollary concerning
the minimal polynomial of the Gauss periods (1).

COROLLARY. The coefficient ar for the minimal polynomial of
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the Gauss periods given in (1) satisfies ar = Pr(l) if r < φ{f)v/ I , where
for each r, Pr is a polynomial of the degree [r/p]. In particular,
for l<r<p,Pr = l/r!((r - 1)/ + l)((r - 2)/+ 1) (2/+ 1)(/ + 1).

EXAMPLE 1. Upon calculating the numbers N(l) = N(2) = 0,
JSΓ(3) = 3 and JSΓ(4) = iSΓ(5) = 0 in (10) for the choice {C} = 1 in the
case / = 3 of the above corollary, one finds the following polynomial
expressions for the coefficients ar (0 <: r <£ 5) of the minimal poly-
nomial of the period ζ + ζs + ζs2 from (7):

a0 = 1 , αx = 1 , α2 = 2 , α3 = -2(1 - 7)/3 , α4 = -(2Z - 35)/3 ,

and

The pattern of these coefficients is exhibited below for primes I < 37.

I

7
13
19
31

x2 •

a;4 -
x Q •

X10

Minimal

±-x + 2
-f a;3 + 2ar

-f x5 + 2xL

+ x9 + 2a

polynomial g(,

1 - 4x + 3
1 - 8a;3 - x2 +
8 - 16a;7 - 9a;8

5a; + 7
- lla;δ -\- 43a;4 + βa;3 + 63a;2 + 20a; + 25

3* Minimal polynomials for the cyclotomic units* I shall
now apply the results of the last section to determine the beginning
coefficients of the minimal polynomials for the cyclotomic units of the
maximal real subfield K of Q(ζ). The cyclotomic units are customarily
indexed θ5 = sin (πj/l)/sin (π/l) for j = 2, 3, ••-,(£- l)/2 [2, p. 360].
However, it is convenient here to reindex them as

(16) θk = sin (2πk/l)/sm (π/l) for 1 ^ le ̂  (I - 3)/2 .

It is easy to show that ^ = — 2Σ*LX cos (π(£ — (2ΐ — 1))/Z) and hence
is conjugate to -(ζ-«*-» + ζ-(2fc~3) + . . . + ζ-1 + ζ1 + . . . + ζ**-» + ζ2^1).
Thus — 0fc has the same minimal polynomial as the sum of Gauss
periods of degree / = 2 having the form (6) with C = {1, 3, 5, ,
2k - 1}. Noting that M(r) = (2k - l)r for r ^ 2 from (11), it follows
from Theorem 1 that if I > (2k — l)r the coefficient br of the minimal
polynomial

(17) Ax) = x{l~w + b^1"^2 + + brx
{l~2r~1)/2 + + 6α_1)/2

for 0Λ satisfies a polynomial of degree [r/2] in i. I actually prove
the stronger result:

THEOREM 2. If I > (2k - ΐ)r then br = Pr(ft, Z) in (17),
/or eαc/̂  r, P r is α polynomial in k and I of degree [r/2] m Z
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of total degree r. For 0 <; r ^ 5 ί/iese polynomials Pr are given by

P 3 = ft2(Z - 5ft)/2 ,P o =

and

P 4 = - 7ft)/8 + (A;3

P5 = -k\l - 7ft)(ϊ - 9ft)/8 - (ft4 -

Before proving the Theorem I need the next combinatorial result.

LEMMA. The number N(k, n) of solutions of the equation
Ci + c2 + + cn = 0 with each integer — (2k — 1) ^ ct ^ 2k — 1 and
odd for 1 <; i <£ w αwcϋ A: > 0, is ^ i

(18) N(k, n) = — 1
if n %s even ,

0 if n is odd

Proof If % is odd the result is immediate, so assume that n
is even. The number N(k, n) is seen to be the coefficient of the
constant term in the expansion

or that of the term χ^k~l)n in the expansion (1 + x2 + - + #4 f e-2)\
Replacing # by x1/2 everywhere in the latter expression one finds
that N(k, n) is the coefficient of χVk-»»/* in the expansion

2Λ \ nί—x_\

1 — x /

It is well-known that (1 + x + x2 + •••)" = Σ

Upon comparing coefficients in (19) it follows that N(jk, n) —

Σfco~w/4A:] (—l)*ί )( __ i ) which is the expres-

sion given in (18).

Proof of Theorem 2. For r = 0 and 1 it is clear that Po = 1
and Px = —ft, so I shall assume r ^ 2. From the lemma above and
in view of the initial remarks in the proof of Theorem 1, one finds
that each Sn in (10) for I > (2r — l)ft and n ^ r is a polynomial
expression in ft and I of total degree w. A simple extension of the
induction argument used in the proof of Theorem 1 and based on
the Newton identities (7) now yields the first statement of Theorem 2.

It remains to compute the polynomials P r (2 <̂  r ^ 5) explicitly.
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I actually compute the coefficients for the minimal g(x) for — θh of the
form (2) first using the lemma and (7). For r — 2, since N(k, 2) = 2k
one has St = —k and S2 = k — 2k2 in (10). Here ax — k so a2 =
l ^ C - α A - S2) - ~ft(Z - 3&)/2 from (7). For r = 3, one also has
£ 3 = — 4fc3 so α3 = ( — α2Si — αLS2 — S3)/3 = ~k\l — 5Λ0/2 again from
(7). For r = 4, since JV(&, 4) - (16A;3 + 2k)/Z one finds S4 = (8k5 + k)β -
$k\ Thus α4 = l/4(-α 3 S 1 - a2S2 - axS3 - S4) - ft2(Z - 5fc)(ί - 7ft)/8 +
(A:3 — k)l/12. Finally, in the case r = 5 since S5 = — 16Λ5 one finds
<α5 - k\l - 7Λ)(Ϊ - 9A0/8 + (A;4 - A;2)ί/12 using (7).

According for the sign changes in the coefficients of the minimal
polynomial for θk and — θk, one immediately obtains the desired
expressions Pr for the coefficients br (2 ^ r ^ 5).

EXAMPLE 2. The pattern of the coefficients br for the minimal
polynomial (17) of the cyclotomic unit θ2 in (16) is exhibited below
for primes I < 20.

I Minimal polynomial fix)

7 xB - 2x2 - x + 1
11 xb - 2x* - 5xz + 2a?2 + 4x + 1
13 xβ - 2a;5 - 7a;4 + 6α3 + 5x2 - §x + 1
17 a 3 - 2x7 - lla;6 + 14aj5 + 19a;4 - 14a;3 - lla;2 + 2x + 1
19 x9 - 2a;8 - lZx7 + 18a;6 + 32a;5 - 24a;4 - 26a;3 + 7a;2 + 7a; + 1

I wish to express my gratitude to Basil Gordon for his assistance
in locating some of the material referenced in this paper, and to
Dwight Bean for his patience and helpfulness in obtaining some
valuable numerical evidence with the computer.
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