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ON PROPERTY (β) AND OTHER SEMICONTINUITY
PROPERTIES OF MULTIFUNCTIONS

SHUI-HUNG HOU

Different upper semicontinuity properties of multifunc-
tions in general topological spaces are presented and their
interrelationships are expounded in detail. In particular
criteria are given for Cesari's property (Q) for multifunc-
tions /: X-*E where X is a general topological space and
E is a locally convex space. Among them are that either
/ is mild upper semicontinuous, or / is maximal monotone.

Introduction* In addition to their intrinsic mathematical in-
terest, the study of upper semicontinuity properties of multifunc-
tions has been motivated by numerous applications in different fields,
for instance, in optimal control problems (Cesari [5], [6], [7]), in
mathematical programming (Zangwill [20]), and in nonlinear func-
tional analysis (Brezis [2]).

Several concepts of upper semicontinuity (u.s.c.) have been
introduced in the past at various levels of generality. In the
present paper we present these concepts in general topological
spaces: the closed graph property, the u.s.c. property, and property
(Q). Moreover, for the sake of comparison, we also introduce the
concept of mild u.s.c. The comparison of these concepts at this
level of generality does not seem to have been done before. Also,
we prove here a number of implications which seem to be new.
For instance, we prove in § 2 that mild u.s.c. implies property (Q)
and that mild u.s.c. also implies the closed graph property. The
latter is a slightly more general statement than the essentially
known result that u.s.c. implies the closed graph property. In
particular we prove in § 6 a result which seems to be of some
relevance, that is, a maximal monotone multifunction in any locally
convex space E satisfies all the upper semicontinuity properties
discussed in this paper if it is locally bounded. Thus a maximal
monotone multifunction necessarily has property (Q) if it is locally
bounded. In the case that E is a Frechet space, maximal mono-
tonicity alone is sufficient to imply property (Q). This last result
extends a previous one of Suryanarayana [17].

All these results seem to indicate how property (Q) appears to
be a generalization of a number of different concepts introduced in
different fields. The following diagram summarizes some of the
interrelationships among all these concepts.

Let f: X—> Y be a multifunction concerning two topological
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spaces X and Y; Y a locally convex topological vector space when
appropriate.

(2)

1
property (1) mild (4) closed

*s -«Ξ U.S C. -* .
(Q) u.s.c. k =» graph

f wi
(5)

Numbers on arrows indicate additional assumptions referred to
below.

(1) / has closed convex values.
(2) / has closed values.
(3) / has closed values and Y is regular, or / has compact

values.
(4) / i s locally compact.
(5 ) / has compact values.

l Closedness of multifunctions* Let X, Y be nonempty sets.
A multifunction or set valued map /: X-> Y is a point to set
correspondence from X to Y. Equivalently, / can be viewed as a
function from the set X into the power set 2F of Y. Let P be an
attribute defined for the subsets of Y. A multifunction /: X —> Y
is said to be P-valued or to have P-values if, for every x of X,
fix) is P.

For sets A £ X, B Q Y, it is customary to write f(A) =
Uai/W, f~(B) = {xeX:f(x)ΓiBΦ 0} and f+(B) = {xeX: f(x)QB}.
We have the following useful relations:

(a) X\f-(B) = f+(Y\B)
(b) /-(UB,)= U/-(*,).

Also we denote the graph of / by Gr(/) Ξ= {(#, y)eX x Y:ye f(x)}.
We shall write co A, cl A and clco A for the convex hull, closure

and convex closure of a set A. Also the notations clw and clw* will
be employed to mean the closure in the weak topology σ(E, E*)
and in the weak-* topology σ(E*, E) for a Hausdorίf locally convex
space E and its dual E* respectively.

DEFINITION 1.1. Let X, Y be topological spaces. A multifunc-
tion /: X-> Y is said to be closed at a point « f l e l if, for every
net {(xa,ya)} in Gr(/), (xa, y) -> (cc0, y0) implies that yoef(xo). Also
/ is said to be closed if it is closed at every point of X.
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If the closedness property is only true for sequences in Gr (/),
we agree to call / sequential closed.

The following result is immediate from Definition 1.1.

PROPOSITION 1.2. A multifunction f:X->Y is closed on X if
and only if its graph is a closed subset of X x Y.

We have another characterization of closedness of multif unctions.

THEOREM 1.3. A multifunction f: X—> Y is closed at a point
xeX if and only if, for every convergent net {xa: aeJ} in X with
limit x, the inclusion ΠαejCl \Jβ^af(xβ) £ f(x) holds.

REMARK. The property Παe^cl [Jnaf(xβ) £ f{x) for convergent
sequence xa —> x is called property (K) in the literature (cf. Cesari
[6]).

Proof. Suppose / is closed at x. Let {xa: aeJ} be a net in X
with limit x, and y e\Ja&Jcl\Jβ,(Xf(xβ). Define D == {(a,G):G is a
neighborhood of y and aeJ with xa e /"((?)}. Clearly D is nonempty.
Order D by defining (α, G) ^ (a', Gr) to mean a ^ α' in J and (?£<?'.
This makes D a directed set. Indeed, given (α, G), (&i, GJ in £>,
there exists a2eJ with α2 ^ α, α2 ^ αx. Since 7/ e Π«ejcl \Ja^β f(xβ)
and G Γl Gx is a neighborhood of 2/> we can find af ^ α2 such that
ajβ, e f-(β n Gx). Then « GnG,)^ (α, G) and (αf, G Π Gx) ̂  (αlf Gx)
proving JD is directed. Now define a map u: D-> J by u(β,β, Ξ α.
Then u is cofinal since given any a e J, (α", G") ^ (α, G) implies
a" ^ α.

For any (a,G)eD define yu{ayG) to be some point in f(xa) Π G.
This is possible since xaef~(G) implying /GO ί l ( ? ^ 0 . Also define
%u(a,G) = α̂ We note that {xu{a,a): (α, G)eD} is a subnet of {α;α:αe J}
as the map u is cofinal. Thus xu{a>G)->x.

Next we claim: yu{a,G)-^y Let iV be a neighborhood of #.
Since yeΓ\aeJQ\\Jβ^af(xβ)f there exists α ' e J such that xa>ef~(N).
Then any (α, G) ̂  (α', JNΓ) implies yuia,G)£G £ JV, proving the claim.

With xu{a,G)-+x, y%{a,σ)-+V, (««(α,G),!/«(.,(?)) €Gr(/) and / being
closed at x, we have yef(x) implying Παe^cl \Jβ^af{xβ) S /(a?).

Conversely, suppose {(α?β, ϊ β ) : α e J } c Gr (/) with (a?β, yβ) -^ {x, y)
and the inclusion Πβ'e^cl U P £ « ' / G O C/G&) is true. Then for each
α' G J, {?/α} is eventually in cl \Jna> f(xβ) and hence so is y. There-
fore y e Γ\a>eJ cl \Jna, f(xβ) Q f{x) implying / is closed at x. •

The next result shows in particular that a closed multifunction
is necessarily closed valued.



42 SHUI-HUNG HOU

PROPOSITION 1.4. Let f.X-*Y be a closed multifunction and
let K be a compact set of X. Then f(K) is closed in Y.

Proof. Let yeclf(K). Choose a net {ya} in f(K) with ya-*y
and {xa} in K such that yaef(xa). Since K is compact, we may
extract a subnet of {xa} converging to some x e K. Thus y e f(x) £

as / has closed graph, and the proposition follows. •

A similar statement to Theorem 1.3 holds for sequential closed
multif unctions.

THEOREM 1.5. Let f: X->Y be a multifunction. If flϊUcl
\Jt=n f(Xk) S f(xo) for any convergent sequence xn —> x0, then f is
seq. closed at x0. The converse is true if, in addition, Y is a first
countable space.

Proof. Let {(xn, yn)} be a sequence in Gr (/) with (xn, yn) ->
(xQ,y0). We show that yoef(xo). Indeed, for each positive integer
m, {yn} is eventually in \Jΐ=mf(xk) and whence y0 e cl \Jΐ=m f(xk).
This shows y0 e ΠZ^ cl \Jΐ=m f{xk) £ f(x0).

For the converse, suppose that Y is first countable, / seq.
closed at x0 and {xn} is a sequence convergent to x0. Let z e Πm=i cl
\Jk=mf(Pk)' We claim: s e f(x0). Indeed, since Y is first countable,
there exists a countable shrinking local base {Vn} at z (i.e., F π + 1 C
Vn for all %). Thus for each m and %, F Λ n U L / W ^ 0 We
can then choose a sequence of positive integers kλ < k2 < and
points s t n e Vn Π /(»*„)• Obviously ^ fc ί i-^^ as w->°o. Therefore ^e
/(»o) by virtue of the seq. closedness of / at a?0. •

Obviously a closed multifunction is necessarily sequential closed.
The converse may not be true unless, extra condition is imposed.

DEFINITION 1.6. A topological space Z is called closure sequen-
tial if for every set AQZ and x e cl A, A contains a sequence con-
verging to x (cf. Wilansky [19]).

A first countable space, in particular a metric space, is closure
sequential. Also the weak closure of a bounded set in a reflexive
Banach space is closure sequential by the following lemma of
Kaplansky (Brezis et al. [3]):

If B is a bounded subset of a reflexive Banach space, then any
element in the weak closure of B is a limit of a weakly convergent
sequence of B.

THEOREM 1.7. Let f: X~> Y be a seq. closed multifunction. If
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the product space X X Y is closure sequential, then f is closed on X.

Proof. Let {(xa,ya)} be a net in Gr (/) and (xa, ya) -> (x0, y0).
Since X x Y is closure sequential and (x0, Vo) 6 cl Gr (/), we can find
a sequence ( « i ) } e G r ( / ) such that (x'n, y'n) -> (α0, ?/0). It follows
then from the seq. closedness of / t h a t (xQ, yQ) eGv (f). This shows
that / is closed. •

2* Upper semicontinuity*

DEFINITION 2.1. Let X be a topological space and E a topo-
logical linear Hausdorff space. A multifunction f:X—>E is said to
be mild upper semicontinuous at a point x0 of X if, for each neigh-
borhood V of the origin 0 in E, there exists a neighborhood Z7 of
x0 such that /(J7) £ /(#0) + ^ ( o r equivalently for any convergent
net {xj with limit xOf eventually f(xa) £ /(#0) + V). We shall say
that / is mild upper semicontinuous if it is mild upper semicontinu-
ous at each point of X.

The above concept of mild u.s.c. is different from the usual
u.s.c. in the literature: (Smithson [16], Kuratowski [14]).

DEFINITION 2.2. Let X, Y be topological spaces. A multifunc-
tion f:X—> Y is said to be u.s.c. at a point xQ of X if, for each
given open set G 2 f(x0), there exists a neighborhood U of x0 such
that f(U) £ G (or equivalently the set f+(G) is a neighborhood of
x0, or equivalently for any net {xa} in X with scα —> cc0, eventually

/ is u.s.c. if it is u.s.c. at each point of X, (or equivalently
/ (G) is an open set of X for every open set G of Y").

We can characterize u.s.c. by means of / " as the next proposi-
tion indicates.

PROPOSITION 2.3. A multifunction f:X-+Y is u.s.c. if and
only iff for each closed set A of Y, f~(A) is a closed set of X.

Proof. Suppose / i s u.s.c. on X. Let A be a closed set of Y.
The relation X\f~{A) = f+(Y\A) implies /"(A) is closed as Y\A and
f+(Y\A) are open. For the converse, let G be an open set in Y.
Since Y\G is closed, then X\f~(Y\G) = /+(Γ\(Γ\G)) - f+(G) is open,
hence / is u.s.c. •

Clearly the u.s.c. in Definition 2.2 implies mild u.s.c. since for
any open neighborhood V of 0 in E, f(x0) + V is open and contains
f(x0). The following example shows that u.s.c. is stronger than
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mild u.s.c

EXAMPLE 1. Let X = [0, 1] and E be the real line. We define
/: X-> E by f(x) == [0,1] for 0 ̂  x < 1 and /(I) s [0,1). / is then
mild u.s.c. However, it is not u.s.c. at x = 1 since /+[( — 1,1)] = {1}
which is not a neighborhood of 1.

The two definitions, however, are equivalent if / is compact-
valued. This follows from the fact that in topologieal linear spaces
for a compact set K contained in an open set G there exists a
neighborhood V of 0 such that K + VQ G (cf Holmes [13], p. 109).

The next two theorems indicate the relationship between mild
u.s.c. (resp. u.s.c.) and closedness of multifunctions.

THEOREM 2.4. // f.X-^E is a mild u.s.c, dosed valued
multifunction, then f is closed.

Proof. Let {(xa, ya)} be a net in Gr(/) that converges to (x, y) e
X x E. Let W be an open neighborhood of 0 in E and choose an
open neighborhood V of 0 such that V + V Q W. Since / is mild
u.s.c. at x, {ya} is eventually in f{x) + V. Thus

yed (/(*)+ V)Qf(x)+ V+ V Q f(x) + W,

whence y e f\w {f(x) + W: W is an open neighborhood of 0} = f(x)
as the set f(x) is closed. •

THEOREM 2.5. Let f:X—>Y be an u.s.c, closed valued multi-
function with Y a regular topological space. Then f is closed.

Proof. Let {(xa, ya)} be a net in Gr (/) with (xaf ya) -> (χf y) e
X x Y. Suppose y & f(x). Since Y is regular, there are disjoint
open sets Gu G2 in Y with y e Gλ and f(x) £ G2. Then by the u.s.c.
of /, f+(G2) is a neighborhood of x. The net {xa} is eventually in
/+(G2) and so {ya} is eventually in G2. Hence y e cl G2 £ Y\G1} con-
tradicting y 6 (?!. Therefore y e f(x) implying / is closed. Π

The following example shows that a closed multifunction is not
necessarily mild u.s.c. and hence not u.s.c

EXAPLE 2. Let X = [0, 1] and E = R\ the 2-dimensional
Euclidean space. Define a multifunction f:X—>E by

f{x) = {(u, v) sR2: — oo ̂ ^ < +

Then / is closed since its graph
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Gr (/) = {(x9 u,v)eR3: 0 ^ x ^ 1, - <χ> ^% < + oo, ^ ^ am}

is closed. But / is not mild u.s.c. at every x of X.

3* Upper semicontinuous multifunctions with compact
values* In 1965, Whyburn [18] gave a characterization theorem
for compact valued, u.s.c. multifunctions. He employed the concept
of "directed family", i.e., a filterbase (see, e.g., Dugundj [9]). His
theorem essentially reads as follows:

A multifunction /: X—> Y is a compact valued, u.s.c. multifunc-
tion of two topological spaces X and Y if and only if it preserves
directedness of families (i.e., if and only if for each filterbase ^
in X converging to a point x e X, any filterbase subordinated to the
image filterbase {f{m)\me^} in Y has a cluster point in fix)).1

We state below a characterization theorem of compact valued,
u.s.c. multifunctions in terms of nets rather than the concept of
filterbase. This theorem improves the previous result of Whyburn.
It reads:

THEOREM 3.1. A multifunction f: X—+Y is compact valued and
u.s.c. at x if and only if, for every net {(xa, ya)} in Gr (/) with
%a-^x> iVa) has a cluster point in fix).

Proof. Let / be compact valued and u.s.c. at x and let {xa} be
a net in X with xa->xeX and yaef(xa). Suppose {ya} did not
have a cluster point in fix). Then for each point y e f{x) there is
an open neighborhood Uy of y such that {ya} is eventually not in
Uy. The family {Uy: y e fix)} forms an open covering of fix). It
follows from the compactness of fix) that there are finitely many
points {yίt --,yn}c: fix) such that fix) c U?=i Uyi = U. Clearly {ya}
is also eventually not in U. Now by the u.s.c. of /, we can find
an open neighborhood V of x so that /(V) £ U. But as xa —> x,
{xa} is eventually in V implying that {ya} is eventually in U.
These contradictory facts establish that {ya} must have a cluster
point in /(a?).

As for the converse, we first show that fix) is compact. For
this, let {ya} be any net in fix). Set xa = x, then xa -> x. Thus
by hypothesis {ya} has a cluster point in fix), proving fix) compact.
It remains to prove that / is u.s.c. at x. Suppose the assertion
were false. Then there exists an open set G containing fix) such
that U n X\f+iG) Φ 0 for every neighborhood U of x. The neigh-
borhood base {UJ at x is directed by set inclusion. Since

1 A point p is said to be a cluster point of a net \xa], if for each neighborhood U
of the point p the net {xa} is frequently in U.
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Ua Π f-(Y\G) = tfβ n X\f+(G) Φ 0 , we can choose (xa9 ya) i n l x Γ
such that xa e 27α and /̂α 6 /(#«) Π Y\G. Clearly {xa} is a net with
limit x. Thus {ya} has a cluster point y in /(#)• We have also
yeY\G since Γ\G is closed. This implies that f(x)ΠY\Gφ 0,
contradicting f(x) c G. Hence / is u.s.c. at x. Π

REMARK. If y is a cluster point of {yj, then {ya} has a subnet
converging to y. Using this fact, we may restate Theorem 3.1 as
below:

A multifunction f:X—>Y is compact valued and u.s.c at x if
and only if, for every net {(xa9 ya)} in Cr (/) with xa —> x, {ya} has
a subnet converging to a point of f{x).

COROLLARY 3.2. A single valued function f: X —> Y is continu-
ous if only if for any convergent net {xa} in X with limit x, f(x)
is a cluster point of {f(xa)}

Proof. This follows from the fact that, for single valued func-
tions u.s.c. is equivalent to continuity. •

With the help of characterization Theorem 3.1 we can derive
some useful facts about compact valued, u.s.c. multifunctions (cf.
Berge [1]).

PROPOSITION 3.3. If f: X—> Y is a compact valued, u.s.c. multi-
function and K is a compact set of X, then f(K) is compact.

Proof. Let {ya} be an arbitrary net in f{K). Choose {xa} in
K such that ya£f(xa). Since K is compact, we may assume that
{xa} converges to some xeK. Therefore by Theorem 3.1 {ya} has a
cluster point in f(x) £ f(K). Hence f(K) is compact. •

PROPOSITION 3.4. Let f: X-+Y be a multifunction with X
Hausdorff. Then Gr (/) is compact in X x Y if and only if X is
compact and f is u.s.c. with compact values.

Proof. If Gr (/) is compact, then X is obviously compact. To
show that / is compact valued and u.s.c, let xa —> x, ya 6 f(xa). Then
($af Va) e Gr (/) and we may extract a subnet (xa9 ya)-*(x', y) 6 Gr (/).
Since xa-±x, we have x' = x whence yef(x). It follows from
Theorem 3.1 that / is u.s.c. with compact values.

Conversely, suppose that / i s u.s.c. with compact values. Let
{(PafVa)) be a net in Gr(/). Since X is compact, we may extract
a subnet of {xj that converges to some point χ0. By Theorem 3.1
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{ya} has a cluster point yQGf(xQ). Therefore (xQ, yQ) is a cluster
point of {(xa, ya)}, proving Gr (/) compact. Π

DEFINITION 3.5. Let X and Y be topological spaces. A multi-
function f: X—> Y is said to be locally compact on X if given any
point x in X, there exists a neighborhood V of x such that f(V)
is relatively compact.

Contrary to the Example 2 of § 2, we have the following result.

THEOREM 3.6. Let f: X—> Y be a closed multifunction. If f is
locally compact on X, then f is a compact valued, u.s.c. multifunction.

Proof. Let {xa, ya)} be a net in Gr (/) with xa —> x. We show
{ya} has a cluster point in f(x). By hypothesis we can choose a
neighborhood V of x such that f(V) is relatively compact. {xa} is
eventually in V and hence {ya} eventually belongs to f(V). Thus
{ya} has a subnet converging to some y e Y which is then a cluster
point of {ya}. As / is closed, we have yef(x). Now an application
of Theorem 3.1 finishes the proof. Π

COROLLARY 3.7. If f:X—*Y is a closed multifunction with its
range f(X) lying in a compact set of Y, then f is a compact valued,
u.s.c. multifunction.

In contrast to Theorem 2.5, a compact valued u.s.c. multifunc-
tion f\X—>Y is automatically closed as long as Y is Hausdorff,
regardless whether Y is regular or not. This is the next theorem.

Theorem 3.8. Let f: X —> Y be a compact valued, u.s.c. multi-
function with Y Hausdorff. Then f is closed.

Proof. Let {(xa, ya)} be a net in Gr (/) with limit (x, y). Since
Y is Hausdorff, y is the only cluster point of {ya}. By Theorem
3.1, {ya} has a cluster point z in f{x), hence y = zef(x). Therefore
/ is closed. •

4* Squential upper semicontinuity* If the properties stated
in Definitions 2.1 and 2.2 are only true for sequences, then we have
the concepts of sequential u.s.c. and sequential mild u.s.c. More
precisely, we have:

DEFINITION 4.1. Let /: X-» Y be a multifunction of two topo-
logical spaces X and Y. f is said to be sequential u.s.c. at a point
x of X if, for any open set G containing f(x) and any sequence



48 SHUI-HUNG HOU

{xn} of X with xn —> x, there is an integer n0 such that f(xn) £ G
for all n ^ w0. Also / is said to be sequential u.s.c. if it is sequen-
tial u.s.c. at every point of X.

Similarly we say a multifunction / from a topological space X
to a topological linear space E is sequential mild u.s.c. at a point
x oί X if, for each neighborhood V of the origin in E and any
convergent sequence xn-+x, there is an integer n0 such that f(xn)Q
f(x) + V for all n ^ n0. Also / is said to be sequentially mild u.s.c.
if it is sequential mild u.s.c. at every point of X

To characterize sequential u.s.c, we need the following defini-
tion (cf. Wilansky [19]):

DEFINITION 4.2. Let X be a topological space and let A be a
subset of X We say that

( i ) A is sequentially open if given any sequence {xn} in X
which converges to a point in A, eventually {xn} is in A; and

(ii) A is sequentially closed if given any sequence {xn} in A
and x in X with xn —> x, then xeA.
Moreover, we say that the space X itself is sequential if every
sequentially closed subset of X is closed in X.

It is easy to verify the following proposition.

PROPOSITION 4.3. Let f:X-*Y be a multifunction, X, Y two
topological spaces.

( i ) f is sequential u.s.c. if and only if f+(G) is sequentially
open for any open set G in Y.

(ii) f is sequential u.s.c. if and only if f~(A) is sequentially
closed for any closed set A in Y.

We now examine the relationship between u.s.c. and sequential
u.s.c.

THEOREM 4.4. An u.s.c. multifunction f:X-*Y is sequential
u.s.c. The converse is true if the space X is sequential.

Proof. Let A be a closed subset of Y. If / is u.s.c, then
/"(A) is closed and hence sequentially closed. Conversely, if X is
sequential and / is sequentially u.s.c, then sequential closedness of
f"(A) implies that /"(A) is closed, and the desired conclusion follows
from Proposition 2.3. •

DEFINITION 4.5. A topological space Y is said to have property
SC (resp. CS) if every sequentially compact (resp. compact) set of
Y is relatively compact (resp. sequentially compact).
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We know that for metric spaces the two properties are equi-
valent. The same occurs for normed linear spaces with weak topo-
logy.

The next result is immediate from Theorem 4.4.

THEOREM 4.6. Let f:X-+Y be a multifunction with closed
values.

(1) If f is compact valued and u.s.c, then it is sequentially
compact valued and sequentially u.s.c, providing Y has property
CS.

(2) If f is sequentially compact valued and sequential u.s.c,
then it is u.s.c. with compact values, providing X is sequential and
Y has property SC.

THEOREM 4.7. A multifunction f: X —> Y is sequentially compact
valued and sequential u.s.c at xQ ify for any sequence {(xn9 yn)} c
Gr (/) with xn —> x0, {yn} has a convergent subsequence with limit in

Proof Let {yn} be any sequence in f(x0). Then by hypothesis
{yn} has a convergent subsequence with limit in f(x0). Hence f(x0)
is sequentially compact. For the sequential u.s.c. of / at x0, let G
be an open set containing f(xQ) and {xn} a sequence in X converging
to x0. We must show that {xn} is eventually in /+(G). Indeed,
suppose the assertion were false. Then {xn} is frequently in
X\f+(G) — f~(Y\G). We may select from {xn} a subsequence {xm}
lying in f~(Y\G). Choose a point ym in f(xm)Π Y\G. Thus by
hypothesis {ym} has a subsequence converging to a point yQ in f(xQ).
Since Y\G is closed, we have also yoe Y\G, whence yoef(xo)Γi Y\G.
This contradicts that f(xo)QG. Hence {xn} is eventually in /+(G),
proving that / is sequential u.s.c at x0. Π

THEOREM 4.8. Let f:X—>Y be a compact valued, u.s.c multi-
function with Hausdorff space Y possessing property CS. Then for
any sequence {(xn, yn)} c Gr (/) with xn —> x, {yn} has a convergent
subsequence with limit in f{x).

Proof. Suppose {(xnf yn)} is a sequence in Gr (/) with xn —> x.
Then the set B = U {xn} U {x} is compact in X. Since / is u.s.c
with compact values, it follows from Proposition 3.3 that f(B) is
compact, whence sequentially compact by property CS. Being a
sequence in f(B), {yn} has a convergent subsequence with limit y.
Since / is also closed (Theorem 3.8) we have y e f(x) and the asser-
tion follows. •
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We are now in a position to state the following theorem.

THEOREM 4.9. Let X be a sequential space and Y a Hausdorff
space with properties CS and SC. Let f: X-> Y be a multifunction
with closed values. Then f is compact valued and u.s.c. (or sequen-
tially compact valued and sequentially u.s.c.) if and only if for
any sequence {(xn, yn)} of Gr (/) with xn -»x, {yn} has a convergent
subsequence with limit in f(x).

Proof. We note that by Theorem 4.6 / is compact valued and
u.s.c. if and only if it is sequentially compact valued and sequen-
tially u.s.c. An application of Theorems 4.7 and 4.8 finishes the
proof. •

5* Property (Q). We shall discuss in this section another pro-
perty of multifunctions, called property (Q). Property (Q) was
introduced by Cesari in [5], and used in a number of variants by
many authors (see, e.g., Olech [15], Castaing and Valadier [4],
Cesari and Suryanarayana [8]). In the present generality it is
convenient to choose the following precise definition:

DEFINITION 5.1. Let f\X->E be a multifunction from a topo-
logical space X to a topological linear space E.

( i ) / i s said to have property (Q) at a point x0 of X if, for
any net {xa: aeJ} in X with xa -> x0, the inclusion

Π clco U f{xβ) S f(x0)
aeJ β^a

holds.
(ii) / i s said to have the sequential property (Q) at xoeX if

the inclusion

ή clco U /GO £ /G*o)
n=l k=n

holds for any convergent sequence xn —> x0. Also we say that / has
property (Q) (resp. sequential property (Q)) if it has property (Q)
(resp. sequential property (Q)) at every point in X.

REMARK. We note that if / has either property (Q) or sequen-
tial property (Q) at xQ, then the set f(x0) is closed and convex. To
see this, simply take xa = x0 for all aeJ in Definition 5.1. Also
obviously property (Q) implies sequential property (Q).

PROPOSITION 5.2. If f:X->E is a multifunction that has pro-
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perty (Q) at x09 then f is closed at x0 and f is also closed at xQ for
E with the weak topology σ(E, E*).

Proof. The assertions follow directly from Theorem 1.3 and the
relations

n ci u f(χβ) s n ciw u f(χβ) c n aw co u fM
aej β^a aej β^a aej βZa

= Π clco U f(Xβ) C f(xo)
aej β^a

for any net xa —> x0. Π

Let G be a finite measure space and E a real Banach space.
Denote by LX(G9 E) the space of all Bochner integrable functions on
G with values in E.

DEFINITION 5.3. Let X be a topological space. A multifunction
f:G x X—>E is said to have sequential property (Q) with respect
to x at a point xQ of X if the inclusion

ίΊ clco U /(«, »*) £ /(*, a?o)
n = l Λ=τι

holds for almost every t in G and any sequence xn —> a?0.
The following is a Banach space version of Cesari's closure

theorem (cf. Cesari [5]).

THEOREM 5.4. Let f:G x X-+E be a multifunction that satis-
fies sequential property (Q) with respect to x in X. Let ζ, ξnf n =
1, 2, , be integrable functions in L1{Gί E), and z, zn, n = 1, 2 ,
functions from G to X, satisfying the relation ξn(t) e f(t, zn(t))
almost everywhere in G, and such that ξn —> ξ weakly in L^G, E),

zn(t) —> z(t) in X for almost every t in G as n —» oo. Then ξ(t) e
f(t, z(t)) almost everywhere in G.

Proof. Since ξn-*ξ weakly, by Banach-Saks-Mazur's lemma
(Ekeland and Temam [11]), there is a sequence of finite convex
combinations {vn} such that

and vn-> ξ strongly in L^G, E). Thus we may assume, by passing
to subsequence if necessary, that vn(t) —> ξ(t) in E for almost every
t in G.

Fix a teG for which vn(ί) converges to ξ(t) in £7 and at which
/(ί, «) has sequential property (Q) with respect to x in X, «n(t) —•
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z(t)f and satisfy the relation ξm(t) e f{ty zm(t)) for all m. We note
that these are true for every point of G modulo a subset of measure
zero. Clearly vn(t) e clco U?=« /(*, **(<)) because ξjf) e f{t, zm(t)) and
vn(t) is a finite convex combination of ξm(t) m ^ n. We observe
that if we denote An = clco \Jΐ=n f(t, z(t)), then {An} is decreasing,
that is, An^Am if m > n.

Since vn(t) -> f(ί), we claim: f (ί) 6 ΠϊU An. Indeed, if £(ί) ί Γl^i An,
then ς(t) ί A^ for some JV. It follows from Hahn-Banach theorem
that we may find a continuous linear functional heE* and a such
that h[ξ(t)] < a < h(z) for all z e AN. Thus h[vn(t)] > a as vn(t) e
An £ A^ for all n ^ N. Since vn(t)->ξ(t), we see that &[£(£)] ̂  OL.
However, this is in contradiction with the fact that h[ξ(t)] < a,
proving that £(ί) e f\n=i An, and whence ξ(t) e f(t, z(t)) by sequential
property (Q). Therefore ξ(t) e f(t, z(t)) almost everywhere in G. Π

The rest of this section states conditions under which a multi-
function has property (Q).

THEOREM 5.5. Let E be a locally convex space and X be a
topological space. If f:X-+E is mild u.s.c. with closed convex
values, then f has property (Q).

Proof. Let xeX and {x^ieD} be a net in X that converges
to x. Let U be an open convex neighborhood of the origin 0 in E
and choose an open convex neighborhood of 0 such that V + F £ U.
Since / is mild u.s.c. at x, there exists a neighborhood N of x
such that f(N) £ /(a?) + V. As α?* —• OJ, there is an i0 e i) such that,
for all i ^ i 0 , f(xi)Qf(x)+ V and hence U*«o /(^) = /(*) + F

The convexity of f(x) + F implies

Π clco U f(x<) £ cl (f(x) + F) £ /(a?) + 7 + 7 g /(s) + C7 .

It follows that Πyez)Clco U<£i/(#<) C/(#) a s ^ *s arbitrary and /(a?)
is closed. •

COROLLARY 5.6. Let f:X-*E be a multifunction with closed
convex values. If either of the following holds:

( i ) f is u.s.c.
(ii) f is locally compact and has closed graph,

then f has property (Q).

Proof. If (i) holds, / is mild u.s.c. The assertion follows from
Theorem 5.5. If (ii) holds, / is u.s.c. by Theorem 3.6. This reduces
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to (i). •

Analogous to Theorem 5.5, we have

THEOREM 5.7. If f: X->E is a sequentially mild u.s.c. multi-
function with closed convex values, then f has sequential property

Proof. The proof is similar to that of Theorem 5.5. with nets
replaced by sequences. •

THEOREM 5.8. Let X be a metric space, E a Banach space
and f:X—>E a multifunction which closed convex values. Suppose
that for any x e X and any sequence {(xn, yn)} c Gr (/) with xn —> x,
{yn} has a weakly convergent subsequence with limit in f(x). Then
f has sequential property (Q).

Proof. By Eberlein-Smulian theorem (Dunford & Schwartz [1]),
a set is weakly compact if and only if it is sequentially weakly
compact. Therefore Ew, the space E endowed with weak topology
σ(E, E*), possesses properties SC and CS. It follows now from
Theorem 4.9 that / is weakly compact valued and u,s.c. from X to
Ew. Therefore, by Theorem 5.6, / has sequential property (Q), i.e.,
for any xn —» x,

ή clw co U /(%) C f{x) .

But clw co Z — clco Z for any set Z in E. Hence

(I clco U /(**) C f(x) . D
Λ = 1 k=n

COROLLARY 5.9. Let V, U, Z be Banach spaces and f be a
function from V x U to Z satisfying: f(vn, un) —* f(v, u) for any
sequence {vn} c V, {un} c U such that vn -^ v and un -^ u. If Γ: V—*
Uw is a weakly compact valued, u.s.c. multifunction and f(v, Γ(v))
is convex for each v e V, then the multifunction g: V~^Z, defined
by g{v) = f(v, Γ(v)), has sequential property (Q).

Proof. It suffices to show that g satisfies the hypothesis of
Theorem 5.8. Let {(yn, zn)} c Gr (g) with vn —> v. We need only to
prove that {zn} has a weakly convergent subsequence with limit in
g(v). By definition of g, there are uneΓ(vn) such that zn=f(vnf un).
Since Γ is weakly compact valued and u.s.c, we can extract, by
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Theorem 4.9, a subsequence un]c-^ueΓ(v). Thus, by the hypothesis
on /, znk = f{vnw unk) -^ f{v, u) e g(v). Π

6* Maximal monotone multifunctions* We consider in this
section multifunctions in a locally convex topological vector space
with monotonicity property.

Let E be a Hausdorff locally convex space and E* its dual with
duality pairing < , ). We shall denote by Er the locally convex
space obtained from E* by endowing it with the weak-* topology
σ(E*E).

DEFINITION 6.1. Let D be a subset of E. A multifunction T:
D—>E* is said to be monotone if (x* — y*, x — y) ^ 0 whenever
sc* e T(x) and y* e T(y). It is called maximal monotone if, in addi-
tion, its graph Gr(Γ), is not properly contained in the graph of a
monotone multifunction on E. The following two lemmas are well
known.

LEMMA 6.2. Let T: D —> E* be a maximal monotone multifunc-
tion and (x0, x*) 6 E x E*. If

<&o* - v*, χ0-y)^o

for any (y, y*) e Gr (T), then x* e T(x0).

LEMMA 6.3. Let T:D->E* be a maximal monotone multifunc-
tion. Then T(x) is a weak-"" closed convex set of E* for every x
of D.

DEFINITION 6.4. A multifunction T:D^E* is said to be locally
bounded at a point x of D if there exists a neighborhood U of x
such that the set T(U) is an equicontinuous subset of E*.

THEOREM 6.5. Let T: D —> £/* be a maximal monotone multi-
function which is locally bounded at each point of D. Then T has
a closed graph in D x E'.

Proof. Let {(xaf x%)} be a net in Gr (Γ) with limit (x0, x*) in
D x Er. It is sufficient to show that yoe T(x0). By the monotonicity
of T, we have <a£, — v*, xa — v) ^ 0 for every (v, v*) in Gr (T) and
every index a. Since T is locally bounded at x0, the set {#J: a^a0}
is equicontinuous for some index a0. Thus xa —> x0, x* -* α?o* give
<x0* — v*, α?0 — v) ^ 0 for all (vf v*) in Gr (Γ). The maximal mono-
tonicity of T implies that xt e T(x0). Π
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COROLLARY 6.6. With the hypotheses of Theorem 6.5,
(1) T is a weak-* compact valued, u.s.c. multifunction from

D to E'.
(2) T satisfies property (Q), i.e.,

Q T(x)

holds for all x e D and any convergent net xa —» x.

Proof. For (1), this follows from Theorem 3.6 while (2) follows
from Corollary 5.6(ii). •

REMARK. It is clear from Theorem 6.5 and Corollary 6.6 that
a maximal monotone multifunction satisfies closed graph property,
u.s.c, mild u.s.c. and property (Q) if it is locally bounded.

If E is a Frechet space, then by a theorem of Fitzpatrick-Hess-
Kato [12] a monotone multifunction from D to E* is locally bounded
at each interior point of D. A consequence of this result and of
Corollary 6.6 is the theorem below.

THEOREM 6.7. Let E be a Frechet space, and T:D->E* a
maximal monotone multifunction with D open. Then T is a weak-*
compact valued, u.s.c. and satisfies property (Q) when T is identi-
fied as a multifunction from D into E1'.

COROLLARY 6.8. Let E be a reflexive Banach space and T: E—>
E* a maximal monotone multifunction. Then T has property (Q).

Proof. This follows from the fact that in E* the weak and
weak-star topologies coincide. Thus clw* coZ = c\w-o,oZ — clcoZ for
any set Z in £7*. Hence, by Theorem 6.7, Παcl co U/̂ « T(s,)£ T(x)
for any convergent net xa —» x. •

REMARK. Corollary 6.8 was also obtained by Suryanarayana [17]
by a different argument.
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