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A SPECTRAL MAPPING THEOREM FOR LOCALLY
COMPACT GROUPS OF OPERATORS

CLAUDIO D Ά N T O N I , ROBERTO LONGO AND

LASZLO ZSIDO

If U is a suitably continuous representation of a locally
compact abelian group G by means of isometries on a Banach
space X, μ —> U(μ) its extension to a representation of the
convolution algebra M(G) and sp(£7) the spectrum of U, then
the spectrum of U(μ) is not always equal to μ(sp(U))~9 but it
is so if the continuous part of μ is absolutely continuous.

1* Introduction* To be more explicit, given a representation
U of G as above one forms a representation of M(G), the Banach
algebra of bounded regular measures on G, given by

U: μ e M(G) > U{μ) = j U(g)dμ(g) e B(X) .

In particular, if G — R, U(μ) can be interpreted in a more classical
way as a function of the infinitesimal generator D — i(d/dg)U(g)\gssQ

and denoted by β(D), where μ is the Fourier transform of μ. Notice
that in this case σ(D) = sp(J7) [5, 9], where σ is the usual spectrum
of the linear operator D and sp( U) is the spectrum of the represen-
tation U (see [2]).

Thus it is natural to study how far this functional calculus can
be extended and a spectral mapping theorem holds. The setting of
our study will be the algebra of local multipliers of L\G).

If μ is a Dirac measure, A. Connes [3] proved that

Even if such a result does not always extend (we shall exhibit coun-
terexamples) we prove it for the class of measures whose continuous
part belongs to L\G).

2* Statement of the main result* Let G be a locally compact
abelian group; by a representation U of G on a Banach space X we
mean a pointwise σ(X, X*)-continuous homomorphism of G into the
group of σ(X, X*)-continuous isometries of X, where X* is the dual
of X or X is the dual of X*. The case of bounded representations
reduces to this one.

Let M{G) be the Banach algebra of all bounded regular measures
on G. Given any algebra L\G) cikίcikί(G), we can form the repre-
sentation of M induced by U:
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(2.1) U(μ) = \ϋ(g)dμ(g) , μeM.

The spectrum of U is a closed subset of the dual G of G defined
by means of Fourier transforms (see [2] for this and related matter)

(2.2) sp(I0 - {peGIU(μ) = 0 — β(p) = 0 , μeM}

and it does not depend on M.
The following lemma will be later generalized.

LEMMA 1. For every μeM(G) we have σ(U(μ))z> β(&v(U))~,
where σ denotes the usual spectrum in B(X).

Proof. We have to show that if pesp(U), then β(p)eσ(U(μ)).
Indeed if pesp(U) there exists a net {xt}czX, \\xt\\ = 1, such that
II U(g)Xi — (pf g)xt || -» 0 uniformly for g varying in a compact subset
KaG. Let ε > 0 and KaG such that \μ\(G\K) < e/4 and choose
x e {Xi} such that

( U(g)dμ(g)x - \ (p, g)dμ{g)x < e/2
JK JK

then

\\U(μ)xi - β(p)Xi\\ ^ ( U(g)dμ(g)xi - I (p, g)dμ(g)Xi
JK JK

+ I \ U(g)dμ(g)xi - ί (p, g)dμ(g)xi < ε
I JG\K JG\K

that entails the lemma. Π

REMARK 1. The reverse inclusion in the above lemma is not true
for every μeM(G): in fact, if G is not discrete, X = L\G) and U(g)
is the translation by g, then, due to asymmetry of M(G), there
exists μoeM(G) such that σ(U(μ0)) Φ μo(G) — (see [11]). By the same
reasoning we can give a counterexample for automorphism groups of
factors. Indeed let a — U' be the transposed action on L°°(G); we
have βo(G) £ σ(U(μ0)) = σ(U'(μ0)) = σ(a(μ0)). If a is an extension
of a to J5(L2(G)), then μo(G) £ σ(a(μ0)) aσ{a{μQ)).

THEOREM 1. For every μeM(G) whose continuous part belongs
to L\G) we have σ(U(μ)) = /e(sp(l7))-.

The proof of this theorem requires some lemmas.

3. Identification of spectra* Let M be a subset of M(fi)\ by
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A{M) we denote the closure in B(X) of {U(μ): μeM}. We recall the
following identification of sp(Z7). [3, Prop. 2.3.7].

PROPOSITION 2. The map pesp(U)—>j(p)eσ(A(L1(G))) defined
by

(3.1) J(p)(U(f)) = ftp) feL\G)

establishes an homeomorphism o/sp(£7) onto the spectrum of A(Lι(G)).

If M is a Banach algebra and L\G) c M c M(G) we split σ(A(M))
into two disjoint sets σ(A{M)) = H{M) (J Ω(M) where H{M) =
{% e σ(A(M))/X \ A(L\G)) - 0} and Ω(M) is the complementary subset.

LEMMA 3. ( i ) The map X e Ω(M) -> % \ A{L\G)) is an homeo-
morphism of Ω(M) onto the spectrum of A(L\G)).

(ii) Let π:A(M)-+A(M)/A(L\G)) be the quotient map. Then
φ 6 σ(A{M)lA{L\G))) —>φ-π is an homeomorphism of σ(A(M)jA(U{G)))
onto H(M).

Proof, ( i ) Let Xoe σ(A(L\G))). By Proposition 2 there exists
pe sp(£7) such that j(p) = Zo. It is enough to show that XQ uniquely
extends to Xeσ(A(M)) determined by X(U(μ)) = β(p). In fact let
feL1 (G), KV) Φ 0. Then X(U(μ) U(f)) = X(U(μ*f)), μeM, thus
X(U(μ))ftp) = β(p)f(p) and %(Ϊ7(/O) = i"(ί>) for any extension X of Zo.

(ii) This fact is known to be valid in more general situations
[10, §15]. •

Let Gd be the group obtained equipping G with the discrete
topology and Ud the representation of Gd naturally derived by U. It
follows that sp(£7rf) = sp(Z7)~ [2], where the closure will be always
taken in Gd the Bohr compactification of G. Proposition 2, with
G == Gd, gives rise to a natural identification of sp(Z7d) with σ(A(Md(G)))

pe sp(Ud) •

()(U(μ)) = fi(p)

where Λfd(G) = Λf(Gd) = L\Gd) is the Banach algebra of discrete
measure on G and μ is the Fourier transform of μ as an element
of L\Gd).

The Banach algebra of measures of interest to us will be

where μe is the continuous part of μ. Let
and J2 = Ω{^) which is homeomorphic to sp(Z7). We define
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(3.3) sp,( U) = {pe sp( Vd)\U e J T s.t. jd(p) = * Γ A(Md)} .

LEMMA 4. 1/ G is nondiscrete spd(t7) is naturally homeomorphie
to £ίf by the following map:

(3.4) p e spd( 17) > X \ A(Md) = j

Proof. If % e 3έ? and % Γ -A(Λfd) ^ 0, then by (3.2) there exists
pesp(Ud) such that X{U{μ)) — μ{p) for every μeM(Gd). Obviously
jd(p) = Z |Ά(Λfd), therefore pespd(ί7) by definition, and the map in
(3.4) is continuous. On the other hand for any pe spd(Z7), jd(p)
extends to X e έ%f by Z( U(μ)) = /i(p) establishing a continuous inverse
of the above map. •

4* Topological lemmas* Let G and Gd be as above. We shall
identify Md(G) and L\Gd). No confusion will arise since, if μeL\Gd)9

then $ f G is the Fourier transform of μ as an element of Md(G).

LEMMA 5. For each compact subset K in sp(ϊ7) we have

Proof. Let us assume that there is a pespd(U) such that p
does not belong to sp(£7)\l£". This will lead to a contradiction.
Indeed if the thesis is not fulfilled there is an open set V in Gd such
that V contains p e spd( U) and V Π (sp( Z7)\JBL) = 0 . This means that
V Π sp(Z7) c ίΓ. Let μ be a measure in L\Gd) = M(Gd) such that
supp(/i)c V,/e(p) = 1. Therefore supp (/i) Π sp (Z7) c K. As if is
compact there exists feL\G) such that U(μ) = J7(/). If Zef f i s
the character corresponding to pespd(Z7) as in (2.4), then X (J7(/)) =
0 and 0 = %(tf(/)) = Z ( ^ ) ) = 1. D

The following lemma can be proved by elementary consideration.

LEMMA 6. Let K be a compact set, F a closed set with KciFa

G. Then F\KcF\K, where, as always, the closure are taken in Gd.

In particular for any compact set i fcsp(ίJ), we have spd(ί7)c

Bp(lΓ)\ίΓ.

5* Proof of Theorem 1* Let μ 6 M(G) be such that μ = μc +
μd with μΰ e L\G) and μd e Md(G). We have to show that /e(sp( 17))"" Z)
<*(JJ(JA)). Since σ(U(μ))czσA(U(μ)) (where σA is the spectrum relative
to s/), it is sufficient to prove that
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It is enough to show that if 0£ jδ(sp(ϊ7))~ then U(μ) is invertible in
j*f. That is Z(ί7(/i)) ̂  0 for every 1 e σ(s/). Assume 00 β (sp( 17))-
and let ε0 > 0 be such that

(5.1) \β(p)\^e0 pesv(U).

If Z e σ ( j / ) there are two possibilities, XeΩ or XeJ?^ (see 3).
(a) If X 6 Ω then t h e r e exists p e sp( 17) such t h a t Z( Ϊ7(j«)) —

for every μ e ̂ €, therefore

(b) If Xe^T let poespd(C/) be such that (cf Lemma 4)

(5.2) X(W)-too)
where μd is considered as an element of Lι{Gd). Let

then, since μc vanishes at infinity, K is compact. Since
\βc(p) + βd(p)\^εo for pesp(£7), we^ have \βd(p)\^ε0/2 for p e
sp(C7)\UL. Since /ed is continuous on Gd we have | ̂ (j)) | ^ εo/2 for

every p in sp(i7)\UL=) spd(?7), and therefore, by (4.2), |X(ϊ7(μ))| =
jδd(p0)| ^ εo/2 > 0 because poe spd(Z7). Π

6* Functional calculus for local multipliers* We consider
now an involutive algebra Wl = 3ft (G, 17) of local multipliers for
Lι(G), namely FeWl iff F is a complex function defined on a neigh-
borhood of sp(C7) and locally belongs to LX(G) at every point pe

Let D0(U) be the union of the spectral subspaces X(E, U) of U
corresponding to compact subsets E of G (cf [2, 12])

(6.1) A(Ϊ7) = U X(E, U) , E compact subset of G .
E

Owing to the regularity of &{G), we can define, for every Fe^Sfi,
the linear operator U(F): D0(U)(zX-* X by

(6.2) U(F)x - U(f)x , x e X{E, U) , JK compact

where / is an arbitrary element of Lι(G) such that / is equal to
F o n a neighborhood of E. In such a way {U(F), FeW\ becomes an
involutive algebra of operators of X on the common dense invariant
domain D0(U) (with involution given by U(F)-+U(F)). Every U{F)
is closable because D(U(F)')f the domain of the transposed of U(F),
is dense in X*, as shown in the following lemma. Note that Uf,
the transposed representation of U, is σ(X*, X)-continuous; if μ e
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M(G), U'{μ) is a bounded linear operator of X* and (U(μ))' = U'(μ).
Define DJJJ')c:X* as in (6.1).

LEMMA 7. D0(ZΓ) is contained in D(U(F)') for every FeWl.

Proof. Fix a compact EaG and <?eX*(#, U'). If xeD0(U)
there exists ϋΓ compact ϋΓcG such that xeX(K, U). Let feL\G)
such that /(p) = F(p) if p belongs to a neighborhood of E \J K; we
have

, φ) = (a?, #(/)'?>) - (x, tP(/)?>) = (a?,

that shows U(F)' => Σ

We recall that if T is a linear operator on a Banach space X,
the extended spectrum Σ CO is defined as the set of the singularities
of the resolvent of T in CU{^>}.

LEMMA 8. For every Fefΰl we have F(sp(U))" cz^(U(F)).

Proof, As Σt(U(F)) is closed, it is enough to prove that
Σ (U(F)) z> F(s$(U))t To show this, we consider the representation
UE: geG->U(g) \ X{E, U) obtained by reducing U to the spectral
subspace relative to EaG. Let EaG be a compact set and feL\G)
such that / = F on a neighborhood of E, so that U(F) \ X(E, U) =
17(/) Γ -ϊίJS', tθ = UE{f). Owing to the regularity of L\G) we have
sp( IP) c sp( Z7) Π E, hence

Σ (U(F)) ZD Σ (17(1P)) Γ X(E, IT) = Σ (^ '

where the second equality is justified by Theorem 1. Since

sp( U) = U sp( UE) , £7 compact subset of G ,
iί,'

the lemma is proved. •

The reverse inclusion in the above lemma cannot be proved for
every bounded J .̂

PROPOSITION 9. Let F be a bounded continuous function in 2W
which is not Fourier transform of a measure of M(G). If U is the
representation of G on L\G) by translations given by (U(g)f)(h) =

h), f e L\G) then Σ (U(F)) 3 ^W( 10 0

Proof. We shall derive from our hypotheses that
cannot be compact. Assuming the contrary there exists a regular
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closed Jordan curve Γ containing ^(U(F)) in the interior Γ. Let

P= (~l/2πi)§r(U(F) - λ ) " 1 ^ . P is a projection of B{L\G)) that

commutes with U{g), geG and decomposes U(F) according to U(F) =

U(F)P + U(F)(I - P). We have Σ (U(F) \ PX) = Σ (W)) n Γ =

Σ(W)," Σ (TO r (/ - JOT = Σ (TO) n (C\f) = 0. As t/(F)P
is bounded and commutes with U(g), geG, U{F)P is a multiplier of
L\G) [11]. Therefore U(F)(I - P) =U(F) - U(F)P is a local multi-
plier. As

by Lemma 8 we have that U(F)(I — P) is a multiplier by a function
vanishing on sp(ί7) - G, thus U(F)(I - P) - 0. •

REMARK 2. The case of unbounded local multiplier F often
reduces to that of a bounded one, for example (F — λ)~\ if λ does
not belong to the closure of the range of F. Note that if G = R
and D is the generator of U, the spectral mapping theorem for
F(D) - E7(F) assumes the usual form Σ(^U>)) = F ( Σ (/>))•

Some functions may be of particular interest. If jP(ί) = e* + e~*,
the closure of F(D) is the inverse of the symmetric resolvent of D
[1]. If F(t) = ef, then F(D) is the analytic generator of U [1]; in
this case the spectral mapping theorem does not hold [4, 13], indeed
either Σ (F(D)) = F(Σ (D)) °* Σ (F(D)) = C. The second alternative
being true for every nontrivial one parameter ^-automorphism group
of a commutative C*-algebra.
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