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COUNTABLE DECOMPOSITIONS OF E*

DAVID G. WRIGHT

We investigate the nature of upper semicontinuous de-
compositions of En that contain only countably many cellular
nondegenerate elements. Such decompositions do not in
general yield decomposition spaces which are homeomorphic
to En. However, we consider certain additional restrictions
on the decomposition which insure that the decomposition
space is homeomorphic with En(n ^ 5). It is interesting to
note that these same restrictions do not guarantee that such
a decomposition of E* yields a decomposition space homeo-
morphic with EB.

1* Introduction* R. H. Bing has exhibited [3] a very simple
decomposition of E3 for which the decomposition space fails to be a
topological manifold. The decomposition consists of points and a
null sequence (that is, only finitely many elements of the sequence
have diameter greater than an arbitrary ε > 0) of cellular sets each
of which is contained in one of two fixed affine planes. Furthermore,
an arc contained in the straight line which is the intersection of
these two planes meets every nondegenerate element of the de-
composition.

In contrast with the 3-dimensional example of Bing, countable,
cellular, upper semicontinuous decompositions of En(n ^ 5) yield
decomposition spaces which are homeomorphic with En if there exists
a tame arc or even a tame polyhedron of codimension at least two
that meets all of the nondegenerate elements in the decomposition.
We shall prove this fact and set forth other conditions which imply
that such decompositions yield spaces homeomorphic with En.

2. Preliminaries* All decompositions in this paper are upper
semicontinuous; that is, if G is a decomposition of X, then each
element of G is compact and the natural projection π:X—>X/G is
closed. If G is a decomposition of X we let NG denote the union
of the nondegenerate elements of G; hence, NG is a subset of X.

We use Bn and En to denote the w-cell and Euclidean w-space,
respectively. A subset K of En is said to be cellular if there exists
a sequence Bl9 B2, J53, , of topological w-cells in En such that for
each i, Bi+1 is contained in the interior of Bt and K — Π Bt. A
compact subset of En is said to be cell-like if it admits an embedding
in some Euclidean space as a cellular subset. We say that a decom-
position of En is cellular (resp. cell-like) if each element of the
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decomposition is cellular (resp. cell-like). A decomposition with only
countably many nondegenerate elements is called a countable decom-
position.

A continuous function is called a map. Let / and g be maps
from X into a metric space S. We say that g is an ε-approximation
of / if for each x in X, the distance between f(x) and g(x) is less
than or equal to ε. We say that a closed subset X of En (or a space
homeomorphic with En) has embedding codimension greater than k,
if each closed tame polyhedron L of dimension less than or equal to
k can be moved off X by a small ambient isotopy of En with support
arbitrarily close to I ί l i [ 9 ] . A metric space S satisfies the disjoint
disk property [5] if any two maps of the standard 2-cell B2 into S
can be approximated by maps having disjoint images.

We will have need of the following known facts which we state
without proof.

THEOREM 2.1 (Lifting to within ε theorem) [1], [11], [12], [14].
Let G be a cell-like upper semicontinuous decomposition of En,
π: En —» En/G the natural projection, f a map from a finite poly-
hedron K into EnjG (which is a metric space). Then for each
ε > 0 there is a map f: i£ —> En such that πof is an ε-approximation
off.

The following theorem due to R. H. Bing [4] was stated only
for dimension three and in slightly different terms. Nevertheless,
Bing's proof works equally well in the following setting.

THEOREM 2.2. Let H be a cellular upper semicontinuous decom-
position of En. If the closure of NH contains only countably many
elements of H, then EnjH is homeomorphic with En.

The following remarkable theorem is due to R. D. Edwards [8].
We state it only for decompositions of En.

THEOREM 2.3. Let G be a cell-like decomposition of En. If En/G
is finite dimensional and satisfies the disjoint disk property, then
En/G is homeomorphic with En.

3* Countable cellular decompositions of En. When contrasted
with the Bing decomposition of §1, our first theorem shows that
countable decompositions of En(n ^ 5) behave differently than coun-
table decompositions of E\

THEOREM 3.1. Let G be a cellular upper semicontinuous decom-
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position of En(n ^ 5) such that G contains only countably many
nondegenerate elements. Suppose P is a polyhedron of dimension
at most (n — 2) which is embedded in En as a tame closed subset.
If P meets every nondegenerate element of G, then En/G is homeo-
morphic to En.

Proof. The diagram in Figure 1 will aid the reader in keeping
track of various maps. We begin by letting π: En —• En/G be the
natural projection. Since π | (En — NG) is one-to-one and π{NG) is
countable, it is easily seen [10, page 44] that En/G is finite dimen-
sional. Hence, we will complete the proof by showing that En/G
has the disjoint disk property.

Let /, g be maps of B2 into En/G. By Theorem 2.1 there is a
map /: B2 —> En so that π°f is an ε-approximation of /. By general
position [13] we may also assume that / is a tame embedding of B2

into En which meets P in only finitely many points.
Let H be the upper semicontinuous decomposition of En consisting

of points and the nondegenerate elements of G which meet f{B2).
Let πλ\ En -> En/H be the projection map and π2: E

nlH-> En/G be the
map given by π2 = πoπΐ1.

LEMMA 3.2. The decomposition space EnjH is homeomorphic
with En.

Proof of Lemma 3.2. By Theorem 2.2 we need only show that
NH, the closure of NH, contains only countably many elements of H.
Clearly NH contains only countably many elements of H. If the
point p is a limit point of NH9 that is not itself a point of NH9 then
there exists a sequence of nondegenerate elements of H which
converge to p. But each nondegenerate element of H meets both
f{B2) and P. Hence p must be one of the finite number of points
in the intersection of f{B2) and P. Therefore, the closure of NH

contains only countably many elements of H.

LEMMA 3.3. Let Gr be then decomposition of EnjH consisting of
elements TΓΓ1^), X β En/G. Then Gr is a cell-like upper semicontinuous
decomposition of En/H (Recall that En/H is homeomorphic with En).
Furthermore, the map π2 is essentially the natural projection of
En/H onto (En/H)/G'.

Proof of Lemma 3.3. The proof is straight-forward. Nonde-
generate elements of G' are homeomorphic with nondegenerate
elements of G. The map π2 is easily seen to be closed and onto.

We now finish the proof of Theorem 3.1. By Theorem 2.1 there
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is a map g: B2 —> En/H so that π2°g is an ε-approximation to g. We
may also assume that g(B2) Π fti(NH) = 0 since π^NΉ) contains only
countably many points. Hence, πrlo9 is a map from B2 to J5n whose
image misses NH. By a slight general position adjustment if neces-
sary we may assume in addition that πΐλog{B2) does not meet f{B2).
It is now an easy matter to check that ττ°/ and π2°g have disjoint
images and are the desired approximations to / and g, respectively.

The proof of Theorem 3.1 can easily be adjusted to give a proof
of the following theorem.

THEOREM 3.4. Let G be a cellular upper semicontinuous decom-
position of En(n ^ 5) such that G contains only countably many
nondegenerate elements. Suppose K is a closed subset of En which
has embedding codimension greater than two and which meets every
nondegenerate element of G. Then EnjG is homeomorphic to En.

4* Generalizations* R. H. Bing [2] and W. T. Eaton [7] have
constructed decompositions of En consisting of points and a Cantor
set worth of tame arcs. The resulting decomposition spaces have
been called dogbone spaces. The reader who is familiar with these
decompositions will realize that there is a tame arc in each En (which
lies in a hyperplane which slices the dogbones in half) which meets
every nondegenerate element. Consequently, Theorems 3.1 and 3.4
cannot be strengthened by dropping the hypothesis that the decom-
position has only countably many nondegenerate elements.

Daverman has given an example [6] of a nonmanif old decomposition
of En(n ^ 5) consisting of points and a null sequence of cellular sets.
Daverman's example can be obtained by starting with a modified
dogbone decomposition of En and then "tubing" together [15] certain
of the nondegenerate elements of H to obtain the nondegenerate
elements of the Daverman decomposition. It turns out that the
closure of the nondegenerate elements of the modified dogbone
decomposition H has embedding codimension equal to two and meets
all of the nondegenerate elements of Daverman's decomposition.
Therefore, the dimension restriction in Theorem 3.4 is the best possible.

We now consider the dimension restrictions in Theorem 3.1.
Clearly we may not assume that the polyhedron has dimension n since
En itself could serve for the polyhedron. In many cases a polyhedron
of dimension (n — 1) is sufficient to insure that the decomposition
space is homeomorphic with En.

THEOREM 4.1. Let G be a cellular upper semicontinuous decom-
position of En(n ^ 5) such that G contains only countably many
nondegenerate elements. Suppose P is a polyhedron of dimension
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at most (n — 1) which is embedded in En as a tame closed subset
and which meets every nondegenerate element of G. If for each
element g of G and for each open (n — l)-simplex σ of P g Γ\σ has
embedding codimension greater than one σ, then En/G is homeo-
morphic with En.

COROLLARY 4.2. Let G be a cellular upper semicontinuous
decomposition of En(n ^ 5) such that G contains only countably
many nondegenerate elements each of which has dimension at most
(n — 3). Suppose P is a polyhedron of dimension at most in — 1)
which is embedded in En as a tame closed subset. If P meets every
nondegenerate element of G, then En/G is homeomorphic with En.

Proof of Corollary 4.2. If g is an element of G and σ an open
(n — l)-simplex of P, then dimension (g f] o) ^ n — 3. Hence, g Γ) o is
nowhere dense in σ and g Π o cannot separate any open subset of
σ [10, p. 48]. Hence, g Π o has embedding codimension greater than
one in σ.

Proof of Theorem 4.1. Once again we make reference to Figure
1; however, the proof will be slightly different. We let π: En ->
En/G be the natural projection. As before we need only show that
En/G has the disjoint disk property.

Let /, g be maps of B2 into En/G. By Theorem 2.1 there is a
map /: B2 —> En so that π°f is an ε-approximation of /. By general
position arguments, we may also suppose that K — f{B2) Π P is a
tame 1-dimensional polyhedron which meets the {n — 2)-skeleton of
P in a finite number of points and that for each open (n — 1)-
simplex σ of p and each nondegenerate element g of G we have
f(B2) Π o Π g — 0 . Furthermore, we assume that / is a tame
embedding. Let H be the upper semicontinuous decomposition con-
sisting of points and the elements of G that meet f(B2). By Theorem
3.1 En/H is homeomorphic with En. We define the natural maps πx

and π2 as in the proof of Theorem 3.1. (See Figure 1.)

FIGURE 1
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LEMMA 4.3. Let h: B2-+ En/H. The map h can be approximated
by a map hx\ B2-±En/H such that h±(B2) Π πλ(K) = 0 .

Proof of Lemma 4.3. Let h:B2^En/H be a map. Let h' be
a close approximation of h so that h\B2) misses the image under πx

of the finite number of nondegenerate elements of H that meet K.
By Theorem 2.1 we find a map h"B2~->En so that π^h" is a close
approximation of hf and such that h'\B2) misses the finite number
of nondegenerate elements of H that meet K. By general position
we may also assume that h"(B2) misses K. Hence, π^h" is a close
approximation of h that misses πx(K).

We now conclude the proof of Theorem 4.1. By Theorem 2.1
we find a map g: B2 —> ϋ^/iϊ so that τr2o# is an ε-approximation to g.
By Lemma 4.3 we may assume that g(B2) misses πx(K). Since i ϊhas
only countably many nondegenerate elements, we may also assume
that g(B2) misses the image of these elements under πt. The closure
NH of NH is easily seen to be contained in NH U K. Hence πzι°g is
a map from B2 to En whose image misses NH. By a slight general
position adjustment we may assume in addition that πΓlog(B2) does
not meet f(B2). The maps π°f and π2og have disjoint images and
are the desired approximations to / and g, respectively.

REFERENCES

1. S. Armentrout and T. M. Price, Decompositions into compact sets with UV properties,
Trans. Amer. Math. Soc, 141 (1969), 433-442.
2. R. H. Bing, A decomposition of Ez into points and tame arcs such that the decom-
position space is topologically different from Ez, Ann. of Math., (2) 65 (1957), 484-500.
3. 1 Point-like decompositions of E3, Fund. Math., 50 (1962), 431-453.
4. , Upper semicontinuous decompositions of Es, Ann. of Math., (2) 65 (1957),
363-374.
5. J. W. Cannon, Shrinking cell-like decompositions of manifolds, Codimension three,
Ann. of Math., (2) 110 (1979), 83-112.
6. R. J. Daverman, A nonshrinkable decomposition of Sn determined by a null sequence
of cellular sets, Proc. Amer. Math. Soc, 75 (1979), 171-176.
7. W. T. Eaton, A generalization of the dogbone space to En, Proc. Amer. Math. Soc,
39 (1973), 379-387.
8. R. D. Edwards, Approximating certain cell-like maps by homeomorphisms, (man-
uscript). See Notices Amer. Math. Soc, 24 (1977), A-649, S751-G5.
9. , Demension Theory, I, Geometric Topology, Proceedings of the Geometric
Topology Conference held at Park City, Utah, 1974 (edited by L. C. Glaser and T. B.
Rushing), Springer-Verlag (New York), 194-211.
10. W. Hurewicz and H. Wallman, Dimension Theory, Princeton, 1941.
11. G. Kozlowski, Factorization of certain maps up to homotopy, Proc. Amer. Math.
Soc, 2 1 (1969), 88-92.
12. R. C. Lacher, Cell-like mappings 1, Pacific J. Math., 30 (1969), 717-731.
13. C. P. Rourke and B. J. Sanderson, Introduction to Piecewise-linear Topology,
Springer-Verlag, 1972.



COUNTABLE DECOMPOSITIONS OF En 609

14. S. Smale, A Vietoris mapping theorem for homotopy, Proc. Amer. Math. Soc, 8
(1957), 604-610.
15. D. G. Wright, A decomposition of En(n ^ 3) into points and a null sequence of
cellular sets, General Topology and its Applications, 10 (1979), 297-304.

Received March 14, 1980 and in revised form July 21, 1981.

UTAH STATE UNIVERSITY

LOGAN, UT 84322






