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ON HEREDITARY RINGS AND NOETHERIAN F-RINGS

KARL A. KOSLER

The purpose of this paper is to examine conditions under
which (1) a left noetherian left F-ring is left hereditary
and (2) a left noetherian left F-ring is a two sided noetherian
F-ring. For (1), left noetherian left F-rings which satisfy
the restricted left minimum (RLM) condition are examined.
The RLM condition is shown to be equivalent to E(R)IR a
semisimple left ϋJ-module. Consequently, hereditary is equi-
valent to E(R)!R semisimple in the two sided case. Two
sided noetherian F-rings which are critically nice are also
examined. In this case, hereditary is shown to be equivalent
to E{R)IR injective and smooth. For (2), a theorem of
Faith's concerning left QJ-domains is extended to left
noetherian left F-rings.

l Introduction and definitions* A ring R is called a left
V-ring provided every simple left i?-module is injective. The defi-
nition of F-ring is due to Villamayor who has shown that a ring
is a left F-ring if and only if every left ideal is the intersection
of maximal left ideals. Consequently, all left F-rings are semiprime.
Kaplansky has shown that a commutative ring is a F-ring if and
only if it is regular. It follows that every commutative noetherian
F-ring is semisimple artinian. Cozzens [4] showed that this result
does not extend to the noncommutative case by producing an
example of a nonartinian, two sided hereditary noetherian F-domain
over which all cyclic modules are semisimple or free. This condi-
tion on cyclics forces every quasi-injective module to be injective.
A ring with all its quasi-injective left iϋ-modules injective will be
called a left Ql-ring. According to Boyle [1], a left ζ)/-ring is left
noetherian. Note that since a simple module is quasi-injective, a
left Ql-ring is a left F-ring.

As with Cozzens' example, all the known examples of left
QJ-rings are left hereditary. Cozzens and Johnson [5] produced
examples of two sided noetherian F-rings which Boyle and Goodearl
[3] demonstrated to be neither hereditary nor QI. Also, there is
no known example of a one sided noetherian F-ring or QJ-ring. In
this paper, we will consider the problem of determining when a
left noetherian left F-ring is left hereditary and when a left F-ring
is a right F-ring.

Throughout, all rings will be associative with identity, all R-
modules will be unitary left jβ-modules and maps between modules
will be JS-homomorphisms. If N is a submodule of a module M9
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then we will write N ^ M. In case N Π K Φ 0 for all 0 Φ K <: M,
then N is called essential in M and we will write N^eM. For a
module M, E(M), SocΛf and KdimM will denote the injective hull,
socle and Krull dimension of M respectively. It is assumed that
the reader is familiar with the notions of singular, nonsingular and
uniform modules as presented in [9]. We also use the notions of
Krull dimension, critical module and smooth module as given in [11].
Throughout this paper, whenever we use the terms hereditary,
noetherian, F-ring or Ql-ring unqualified by "left" or "right", this
will mean that the term applies to both the left and right.

In § 2, left noetherian left F-rings which satisfy the restricted
left minimum (RLM) condition are examined. A module M satisfies
the RLM condition provided M/K is artinian whenever Kf^eM. It
is shown that the RLM condition is equivalent to E{R)/R semisimple.
As a consequence, hereditary is equivalent to E(R)/R semisimple in
the two sided case.

The purpose of § 3 is to further investigate the role E(R)/R
plays in determining when a noetherian F-ring is hereditary. A
necessary condition for hereditary is that R be critically nice (all
finitely generated uniform modules are critical). In this case, R is
hereditary iff E{R)/R is injective and smooth.

In § 4, left-right symmetry is examined. A theorem of Faith's
which states that a left ^/-domain with the RLM condition is right
QI iff it is right Goldie is extended to left noetherian left V-rings.

2* The restricted left minimum condition* A module M is
said to satisfy the restricted left minimum condition, denoted RLM,
provided M/K is artinian for all K^eM. A ring R is said to
satisfy the RLM condition provided the left ϋ?-module R satisfies
the RLM condition. In this section, we investigate left noetherian
left F-rings which satisfy the RLM condition.

LEMMA 2.1. Let R be a semiprime ring with Krull dimension.
Then R satisfies the RLM condition iff KάimR <; 1.

Proof. By Gordon and Robson [11; 6.1], Kάim i2 = sup {Kdim R/I+
l\I^eR}. H R satisfies the RLM condition, then KdimR/I<*0
for all essential left ideals /. Thus, KdimR^l. Conversely, if
i f d i m . β ^ l , then KdimR/I^O for all l£eR. Hence, R/I is
artinian for all essential left ideals I.

The RLM condition has been shown by Faith [7] to be sufficient
for a left QI ring to be left hereditary. Michler and Villamayor
[12] have shown that KdimR ^ 1 is sufficient for a left noetherian
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left F-ring R to be left hereditary. Therefore, if all cyclic singular
left jB-modules are semisimple, then by 2.1, KdimR^ 1 and R is
left hereditary. As the next result shows, KdimR^l and the
RLM condition on R are equivalent to all singular (cyclic) left R-
modules semisimple.

THEOREM 2.2. If R is a left noetherian left V-ring, then the
following are equivalent:

(1) R satisfies the RLM condition.
(2) KdimR^l.
(3 ) All singular left R-modules are semisimple.

Furthermore, if (l)-(3) hold, then R is left hereditary.

Proof. (1) implies (3). Let M be a singular left i?-module and
let 0 Φ x e M. Then Rx ~ R/I where I ^eR and hence, Rx is
artinian. Thus, SocRx <^e Rx. Since R is a left noetherian left
F-ring, SocRx is injective. Therefore, SocRx is a direct summand
of Rx. This is impossible unless Soc Rx = Rx. Therefore, every
cyclic submodule of M and hence, M is semisimple.

(3) implies (1). Let / be an essential left ideal of R. Since
R/I is singular, R/I is finitely generated semisimple. It follows that
R/I is a finite direct sum of simple modules. Therefore, R/I is
artinian.

The equivalence of (1) and (2) follows from 2.1.

According to 2.2, if a left noetherian left F-ring R satisfies the
RLM condition, then E(R)/R is a semisimple left i?-module. In this
case, E(R)/R semisimple characterizes the RLM condition.

THEOREM 2.3. Let R be a left noetherian left V-ring. Then R
satisfies the RLM condition iff E(R)/R is a semisimple left R-module.

Proof. Suppose E(R)/R is semisimple. Clearly, it suffices to
show that every cyclic singular left iϋ-module is semisimple. Let
I^eR. Then there is a regular eel and Rc^eR. The mapi?—>
Re given by r -^rc extends to an isomorphism E{R) —> E{Rc). Since
E(R) — E{Rc), passing to the quotient yields an isomorphism E{R)/R^
E{R)/Rc. Thus, E(R)/Rc is semisimple. Now, R/I ̂  E(R)/I =
(E(R)/Rc)/(I/Rc). Therefore, R/I is semisimple.

The converse follows from 2.2.

For a two sided noetherian F-ring R, Michler and Villamayor
[12] have demonstrated that KάimR^l and hereditary are equi-
valent. This result together with 2.3 allows us to characterize
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hereditary in terms of the left ϋί-module E{R)/R. This is in con-
trast to Boyle and Goodearls result in [3] where E(R)/R is required
to be injective on both sides.

COROLLARY 2.4. A noetherian V-ring R is hereditary iff E(R)/R
is a semisimple left R-module.

Proof. According to Michler and Villamayor [12; 4.4], hereditary
is equivalent to KάimR <̂  1. The result follows from 2.2 and 2.3.

3* E(R)/R and critically nice rings* A module U is called
critical provided K dim U/K < K dim U for every 0 Φ K <; U. Boyle
[2] has shown that every finitely generated uniform left iϋ-module
over a left Ql-ring is critical. Following Golan and Papp [8], we
will call a ring over which every finitely generated uniform left R-
module is critically nice. Since a hereditary noetherian F-ring is
a Ql-ring (Boyle [1; 5]), critically nice is necessary for a noetherian
F-ring to be hereditary. Our purpose here will be to examine
E(R)/R when R is critically nice and extend some of our previous
results.

LEMMA 3.1. If R is a left noetherian ring, then the following
are equivalent'.

(1) R is critically nice.
( 2 ) If A Φ 0 is finitely generated, then every finitely generated

submodule of E(A)/A has Krull dimension strictly less than the
Krull dimension of A.

Proof. (1) implies (2). Let A Φ 0 be finitely generated and let
F 5Ξ; E{A)/A be finitely generated. There are Ulf , Un uniform
submodules of A such that U1 0 0 Un ̂ e A. Then F is an epi-
morphic image of a finitely generated F'^EiUJ/U^ @E(Un)IUn.
Since Ff is finitely generated, there are finitely generated FJUt ^
E{ Ut)l Ut such that Fτ ^ FJ Ux 0 0 FJ Un. Therefore, K dim F^
K dim F' ^K dim (FJU,® ••• @FJUn) = K dim FJUj for some j .

Since Uό <^ A, K dim Uά ^ iΓdim A. Also, Fά is critical. Thus,
KdimF^ Kdim Fά/Uά < Kdim Fό = Kdim Uά ̂  Kdim A.

(2) implies (1). Let U Φ 0 be finitely generated and uniform,
and let 0 Φ K ^ U. Then K dim K ^ K dim U. Since U/K ^
E{U)jK - E(K)/K, Kdim U/K <KdimK^ Kdim U.

A module M is called smooth provided K dim F — K dim H for
all nonzero finitely generated submodules F, H of M. According to
2.4 and 2.2, R hereditary implies that E(R)/R is smooth and injec-
tive. In case R is critically nice, the following result shows that
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the reverse implication holds.
Note that by [7; 2, 3], we may freely use the hypothesis that

our ring is a simple ring.

THEOREM 3.2. A simple noetherίan V-ring R is hereditary
iff R is critically nice and E(R)/R is smooth and injective.

Proof. Sufficiency. According to 2.4, it suffices to show that
E{R)/R is semisimple. Consequently, it suffices to show that every
cyclic sub module of E{R)/R is injective. Let 0 Φ C <; E(R)/R be
cyclic. Then C=R/I where I<>eR. As in the proof of 2.3, E(R)/R=
E(R)/Rc where eel is regular. Thus, E{R)/Rc = E(R/Rc)0 E'.
Also, E(R)/R = (E(R)/Rc)/(R/Rc) = E(R/Rc)/(R/Rc)(BE'. Thus, if 0 Φ
F^E(R/Rc)/(R/Rc) is finitely generated, then KάimF < K dim R/Re
by 3.1. However, F imbeds in E(R)/R=E(R)/Rc and hence, KdimF =
K dim R/Re which is a contradiction. It follows that E(R/Rc) =
R/Rc. Thus, R/Rc = E(I/Rc) © E". Now, R/I = (R/Rc)/(I/Rc) s
E(I/Rc)/(I/Rc)®E". Thus, if 0 Φ K ^ E(I/Rc)/(I/Rc) is finitely
generated, then KdimK < Kdiml/Rc by 3.1. However, since R/I
imbeds in E{R)/R ^ E(R)/Rc and i£ imbeds in R/I, if dim i?/J =
if dim iΓ = K dim i?/ifc = K dim J/J?c which is a contradiction. It
follows that E(I/Rc) = I/Re. Therefore, R/I ^ E" is injective.

Necessity follows from the remark prior to 3.1 and by 2.4.

Since a Ql-ring is critically nice by Boyle [2], we immediately
obtain the following corollary.

COROLLARY 3.3. A Ql-ring R is hereditary iff E(R)/R is
smooth and injective.

4. Left-right symmetry* In this section, we examine the ques-
tion of symmetry for left noetherian left F-rings which satisfy the
RLM condition. We determine that right Goldie is equivalent to
the ring being a right noetherian right F-ring. As a corollary to
this result, we obtain a theorem of Faith's.

LEMMA 4.1. Let R be a simple right Goldie ring. Then R is
right noetherian iff R satisfies the ascending chain condition on
finitely generated essential right ideals.

Proof. The forward implication is trivial. For the reverse
implication, let U Φ 0 be a uniform right ideal of R. By [10; 1.2],
there is a 1 — 1 map R—>Un where Un is a direct sum of n copies
of U for some n. Thus, if every submodule of U is finitely gener-
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ated, then U and hence R is right noetherian. Therefore, it suffices
to show that every uniform right ideal of R is finitely generated.
If not, then there is a uniform right ideal U with an infinite
ascending chain Kx < K2 < < U where each Kt is finitely gener-
ated. Since R is right Goldie, there are finitely generated right
ideals Ul9 , Um such that Z70 TJX 0 © Um <>e R. Thus, if F~
•Ki θ ϋί Θ © E7», then Ft ^eR for all i and Fx < F2 < < R
is an infinite ascending chain which is a contradiction. Therefore,
every uniform right ideal of R is finitely generated.

THEOREM 4.2. Let R be a simple left noetherian left V-ring
which satisfies the RLM condition. Then R is a right noetherian
right V-ring iff R is right Goldie.

Proof Sufficiency. By 2.2, R is left hereditary. If R is right
noetherian, then by Small [13], R is right hereditary, and by
Boyle and Goodearl [3; 2], R is a right F-ring. Thus, it suffices to
show that R is right noetherian.

Let 0 Φ Iλ <; I2 <L <; R where each It is a finitely generated
essential right ideal of R. Since R is right Goldie, there is a
regular c e Ix and hence, Io = cR is essential in R. For every i, let
/<* = Hom^ (7t, i?) and let gt: If-»It*i be given by ^(Z) = / | / t _ x .
Since each I* is essential in JS and i2 is nonsingular, gt is 1 — 1 for
all i. Define a 1 - 1 map ht: If -> JB for all ί by Λ//) = /(c). Let
Jί = hi(If) for all i. It is easily verified that each Ji is a left ideal
and that since each & is 1 — 1, R ^ Jo^ Jx^ . Also, since each
I* contains the inclusion map, c e Ĵ  for all i. Thus, since iϋ/iϋc is
artinian, there is an n for which Jn = Ĵ +fc for all ά. It is well
known that this forces In = /n+fe for all k. By 4.1, i? is right
noetherian.

Necessity is trivial.

COROLLARY 4.3 [6; 22]. Let R be a left Ql-domain which satis-
fies the RLM condition. If R is right Goldie, then R is a right
QI-ring.

Proof. By 4.2, R is a right noetherian right F-ring. By
Small [13], R is right hereditary. According to Boyle [1; 5], R is
a right Ql-ring.
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