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ON EXTENSIONS OF NETS

D. JUNGNICKEL AND S. S. SANE

(s, r, μ)-nets are generalizations of the well-known Bruck
nets; here any two nonparallel blocks intersect in μ points,
any parallel class consists of s blocks and there are r
parallel classes. We generalize the notion of transversals
from the Bruck nets to the case of arbitrary μ. This
notion is used to study extensions of a given net. We call
a net step-ί-extendable iff t new parallel classes can be
adjoined. It is known that a symmetric (s, /0-net (i.e., an
(s, sμ, μ)-net whose dual is likewise an (s, sμf μ)-net) is step-
1-extendable; we show that it is step-2-extendable if and
only if s divides μ and step-ί-extendable (for t^S) if and
only if there exists an (s, t, μ/s)-net. We then give an
alternative, matrix-free proof for the results of Shrikhande
and Bhagwandas on the completion of (s, r, μ)-nets with
deficiency 1 or 2. We also construct an infinite series of
(4, r, μ)-nets of deficiency 2 that cannot be completed. We
discuss a conjecture that would have interesting consequences
for the possible parameters of affine 2-designs.

1* Introduction* An (s, r, μ)-net is an affine resolvable 1-design
with r parallel classes of s blocks each such that any two nonparal-
lel blocks intersect in μ points. The well-known Bruck nets are
the case μ — 1. These structures have been introduced by Drake
and Jungnickel [8] but have in fact been studied for a long time
either in the dual setting (called "transversal designs", see e.g.,
Hanani [9]) or in the guise of orthogonal arrays. It is well-known
that r is bounded above by (s2μ — l)/(s — 1) with equality if and
only if the net is in fact an (affine) 2-design. Such nets are called
complete: a necessary condition here is obviously that s — 1 divides
μ — 1. If s — 1 does not divide μ — 1, then there is a better bound
due to Bose and Bush [1]. In this paper, we are concerned with
the possibility of extending nets by adjoining new parallel classes
of blocks. It turns out that a generalization of the notion of a
transversal (well-known for Bruck nets) is helpful in this connection.
Another useful tool (though only for nets with a large number of
parallel classes) is the following: In any (s, sμ + t, μ)-net, the
minimum number of blocks joining two points is t; and the joining
number t induces an equivalence relation on the point set. This
generalizes a result of Hine and Mavron [10] who had considered
the case t — 0. These basic results are obtained in § 2 after review-
ing the definitions and known facts.
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In §3, we study extensions of symmetric (s, μ)-nets, i.e., of
(s, r, μ)-nets whose duals are likewise nets with the same para-
meters; so in particular r = sμ in this case. It is known that these
are characterized among all (s, sμ, μ)-nets as those where the equi-
valence classes (as obtained by the result mentioned above) have all
cardinality s. Symmetric nets have been studied quite extensively
recently (see e.g., [7], [10], [11] and [12]) and are also related to
generalized Hadamard matrices and to relative difference sets.
Mavron [14] gives a good survey on these structures (called "hyper-
nets" there). It is well-known (and trivial to see) that any
symmetric net admits a step-1-extension (i.e., one may adjoin one
parallel class). We show that a symmetric net admits a step-2-
extension iff s divides μ and a step-ί-extension (t ^ 3) iff there
exists an (s, t, μ/s)-net. This generalizes a result of Hine and Mavron
[10] who have investigated the possibility of extending a symmetric
net to a complete net.

In § 4, we consider values of s and μ for which a complete net
could exist, i.e., s — 1 divides μ — 1. Here an (s, r, μ)-net is said to
be of deficiency d = (s2μ — l)/(s — 1) — r. We then give a geometric
matrix-free proof of the results of Shrikhande and Bhagwandas [19]
about the completion of nets of deficiency 1 or 2 (there proved in
the language of orthogonal arrays) and construct an infinite series
of (4, r, μ)-nets of deficiency 2 that cannot be completed; to our
knowledge, these are the first known examples with μ Φ 1. We
also construct various other series of (s, r, μ)-nets for large values
of r that are not extendable. Section 5 discusses a conjecture that
would have interesting consequences on the parameters of affine 2-
designs. We use the language and notations of Dembowski [5]; in
particular, points are denoted by lower case and blocks by upper
case letters. Also, [x, y] is the number of blocks joining the points
x and y and [x] is the number of blocks through x; [X, Y] and [X]
are defined dually. All incidence structures considered will be finite
and there will be no repeated blocks; hence blocks may be considered
to be point sets. The line through two points x,y (x Φ y) is the
intersection of all blocks through x and y. We call blocks X, Y with
X — Y ox [X, Y] = 0 parallel and w r i t e X\\ Y; x\\y is defined dually

for points.

2* Definitions and basic results*

DEFINITION 2.1 (Drake and Jungnickel [8]). An (s, r, μ)-net is
an incidence structure satisfying
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(2 D "* s a n e ( ϊ u i v a l e n c e relation on the set of blocks such that
each parallel class partitions the point set;

(2.2) Any two nonparallel blocks intersect in μ points;

/g g\ There are r ^ 3 parallel classes, and some parallel class has
precisely s ^ 2 blocks.

Here μ is an positive integer. A Bruck net then is just an (s, r, 1)-
net. An (s, r, μ)-net with r = sμ will be called a square (s, μ)-net;
a square (s, μ)-net whose dual is also a square (s, /^)-net is called
symmetric.

We remark that the dual structure of a net is usually called a
transversal design; references [9] to [12] use this setting. The use
of the term "symmetric" as defined here agrees with that of [7],
[11] and [12]; but Hine and Mavron [10] use "symmetric" in the
sense of "square" and Mavron [14] calls symmetric nets "hypernets".

THEOREM 2.2. An (s, r, μ)-net is a tactical configuration with
parameter v — s2μ, b = rs, r and k — sμ; also, each parallel class
has precisely s blocks. Furthermore

(2.4) r ^ (s2μ - l)/(β - 1)

with equality if and only if the net is an (affine) 2-design with
parameter λ = {sμ — ϊ)/{s — 1). An (s, r, μ)-net attaining the bound
(2.4) is called complete; so a necessary condition for completeness is
that s — 1 divides μ — 1. As an (s, r; μ)-net is the same as an affine
1 — {μs2, μs, r)-design with r ^ 3, we will extend our definition of
{s, r, μ)-net to r — 1 and 2 by defining this also to be an affine
1 — {μs2, μs, redesign.

These results have been proved independently by many authors;
we refer the reader to [8, § 5] for simple proofs. The bound (2.4)
may in fact be improved if s — 1 does not divide μ — 1; this has
been done (in the language of orthogonal arrays) by Bose and Bush
[1]. The following result has been proved in the dual setting in
[10, Theorem 2.2].

THEOREM 2.3 (Hine and Mavron [10]). Let Σ be an (s, r, μ)-net
and assume the existence of parallel points (i.e., of points x, y with
[xf y] = 0). Then

(2.5) r ^ sμ

with equality if and only if [x, z] = [y, z] for all points z Φ x, y,
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whenever x\\y. Thus in a square (s, μ)-net, \\is an equivalence
relation on points] the parallel classes will be called cosets.

Theorem 2.3 may be used to characterize the symmetric (s, μ)-
nets:

COROLLARY 2.4 (Hine and Mavron [10]). In a square (s, sμ, μ)-
net Σ> every coset consists of s points iff the dual Σ ' of Σ is
resolvable: in which case Σ is symmetric and the cosets of Σ &re
the parallel classes of Σ '

For a proof (in the dual setting), see [10, Corollaries 2.3 and
2.4]. Essentially the same result has also been obtained in [11, § 3],
The following result will be crucial for our proofs in § 4. It gener-
alizes Theorem 2.3 and can in fact be obtained quite easily from
this result.

COROLLARY 2.5. Let Σ be an (s, sμ + t, μ)-net, where t is a
nonnegative integer. Then

(2.6) [x, y]^ t for all points x, y

and [x, y] = t implies that [x, z] = [y9 z] for all z Φ x, y.

Proof. Choose any two points x, y and let [x, y] — u. Now
remove the u parallel classes determined by the u blocks joining x
and y from Σ to obtain an (s, sμ + t — u, μ)-net Σ ' As we have
n\\y ίn Σ'> we conclude sμ + t — u ^ sμ from Corollary 2.4 which
yields (2.6). If in fact t — u, then [x, z] = [y, z] for any z Φ x, y
in Σ ' by Theorem 2.3. But then clearly the corresponding assertion
holds in Σ> a s t ^ e blocks of Σ through x that are not in Σ ' a r e

precisely the μ blocks joining x and y (by (2.1)).

It is of course also possible to prove Corollary 2.5 directly by
a counting argument. We have not done so, as a very similar
counting argument will be presented in the proof of Theorem 4.7.
We note the following important consequence of Corollary 2.5.

COROLLARY 2.6. Let Σ be an (s, sμ + t, μ)-net where t is a
nonnegative integer. Then the points of Σ may be partitioned into
disjoint classes such that any two points in the same class have
joining number t, whereas any two points in distinct classes have
joining number > t. Also, the joining number of two points in
distinct sets depends only on the sets to which they belong.
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Again, we will call the equivalence classes on the point set
determined by the minimal joining number cosets. The coset of the
point x will be denoted by (x); similarly, the parallel class of the
block X will be denoted by (X).

We now give some examples that show that it is in general
impossible to say anything about the size of the cosets (x). More
examples with still other coset sizes will be obtained in § 3.

EXAMPLES 2.7.

(a) By Corollary 2.4, in any symmetric (s, μ)-net, the cosets
all have size s. Known examples include the values s — p\ μ —
pj(p a prime) or μ = 2 (cf. e.g. [11, § 2]).

(b) There are complete nets, i.e., affine designs, with the para-
meters of an affine space, that are not affine spaces (see e.g., Mavron
[13] for a very general construction method). In these examples,
there are lines of size m with 2 ^ m < s (this can be seen directly,
but also follows from the result of Dembowski [4], that an affine
design is in fact an affine space if all lines have size s > 2). Remov-
ing the (sμ — l)/(s — 1) parallel classes of blocks determined by such
a line L leaves a square (s, μynet with a coset of size m.

(c) Take any affine design (with parameters s, μ) and remove
1 resp. 2 parallel classes; the resulting cosets will then all have size
sμ resp. μ.

The last example of course exhibits facts that have to be
proved if one conversely wants to extend a net of "deficiency" 1
resp. 2 to a complete net which is the topic of § 4. We conclude
this section by generalizing the concept of a transversal from Bruck
nets to the case of arbitrary μ.

DEFINITION 2.8. Let Σ be an (s, r, ju)-net. A s e t T oί points
of Σ is called a transversal for ^ iί T intersects every block of
Σ in precisely μ points.

Note that 2.8 implies that every transversal of an (a, r, μ)-net
has precisely sμ points. We want to use transversals for extending
nets. Two more definitions are needed:

DEFINITION 2.9. Let Σ be an (s, r, μ)-net and Σ ' a ^ (s, r', μ)-
net on the same point set, where r' > r. Σ i s s a id to be embed-
dable into Σ ' if all blocks of Σ a r e a l s o blocks of Σ'ί then Σ ' *s
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called an extension of Σ Σ is called step-t-extendable, if it can be
embedded into an (s, r + t, μ)-net Σ ' Σ is called completely ex-
tendable, if it can be embedded into a complete net. Σ is called
maximal, if it is not extendable at all.

DEFINITION 2.10. Let Σ be an (s, r, /*)-net a n ( * * a positive
integer. Then a system of ts transversals of Σ i s a s e t {̂ V
i = 1, - ",t; j = 1, , s} of ts transversals of Σ satisfying

Γ2 7Ϊ \T (ΛT \ - \

(0 if ^ = h and j Φ k .

Then the following lemma is obvious:

LEMMA 2.11. Let Σ δβ αw (s, r, μ)-net and t a positive integer.
Then there is a one-to-one correspondence between the step-t-exten-
sions of Σ and the systems of ts transversals of Σ

3* Extensions of symmetric nets. The following observation
about the transversals of a symmetric net is crucial for the study
of extensions of such nets.

PROPOSITION 3.1. Let ^ be a symmetric (s, μ)-net. Then a set
T of sμ points of 'ΣΛ is a transversal if and only if it is a union
of (necessarily μ) cosets of Σ

Proof. In a symmetric net, any block meets any coset precisely
once (by the dual of (2.1)); thus clearly any union of μ cosets is a
transversal. Conversely, let T be a transversal and let x be any
point of T; it will be sufficient to show that the number a of points
of T not parallel to x is s(μ — 1), as each coset has precisely s
points. Now count the number of flags (y, Y) with x Φ yeT and
xIY to obtain the equation 0-(sμ — a) + μa = sμ(μ — 1), i.e., a =
s(μ — 1) as asserted. Here we have used the fact that any block
meets T precisely μ times, that [x] = sμ and that [x, y] — 0 or μ in
a symmetric net.

COROLLARY 3.2. Let S, T be two distinct transversals of a sym-
metric (s, μ)-net and assume \Sf\T\~q. Then s divides q and
S D T is the union of q/s point classes.

THEOREM 3.3. Let Σ be a symmetric (s, μ)-net with μ Φ 1 and
let t be an integer ^ 3. Then every step-t-extension of Σ induces
an (s, t, μ/s)-net on the set of cosets of Σ whose blocks are the trans-
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versals used in the extension. Conversely, every (sy t, μ/s)-net can
be obtained in this way (for given Σ )

Proof Let Σ ' be a step-ί-extension of Σ ; by Lemma 2.11, this
gives a system {Ttj: i — 1, , t; j == 1, , s} of ts transversals of
Σ By Proposition 3.1, each Ti5 is the (disjoint) union of μ cosets
of Σ We now define an incidence structure Π on the set of cosets
of Σ ( a s points) with the transversals Tiό as blocks by

(3.1) (x)ITί3 if and only if (x)aTίό .

Clearly we obtain s2m points and each block has sm points, where
we put m = μ/s. Because of 2.10 it is obvious that || is an equi-
valence relation satisfying (2.1) for Π; *n fact, the parallel classes
are the sets {Ttj: j = 1, , s} for ί = 1, , t. By 2.10 and Corol-
lary 3.2, nonparallel blocks intersect in m points of Π Hence Π
is an (s, t, m)-net as asserted. The converse assertion is proved in
[10, 2.7] and also in [14, 4.8. (ii)].

We remark that the basic idea of a net decomposing into two
subnets one of which is defined on cosets as points is contained in
Mavron's paper [13, 1.2], though Mavron deals only with complete
nets. The following consequence of 3.3 generalizes results of [10]
and [14].

COROLLARY 3.4. Let Σ be a symmetric (s, μ)-net. Then Σ is
always stepΛ-extendable; it is step-2-extendable iff s divides μ. Σ
is step-t-extendable for t ^ 3 iff there exists an (s, t, μ/$)-net.

The assertion on step-1-extensions is due to Hanani [9] who
has in fact proved a slightly more general result in the dual setting.
We now use 3.4 to construct some examples of square nets where
all cosets have size 1.

PROPOSITION 3.5. Assume the existence of a symmetric (s, μ)-
net with μ Φ 1. Then there is a square (s, μ)-net for which all
cosets have size 1.

Proof. Extend the symmetric (s, μ)-net by adjoining one paral-
lel class as in 3.3. As μ Φ 1, it is clear that this extended net has
the same cosets as the symmetric net. Now omit one of the original
parallel classes of the symmetric net; it is easily seen that still all
point pairs are joined, as each block of the symmetric net meets
each coset only once and as points in the same coset are joined



444 D. JUNGNICKEL AND S. S. SANE

exactly once after the extension process. The reader might compare
this with Examples 2.7. We also remark that the (s, sμ + 1, μ)-net
constructed in Theorem 3.3 is in fact a divisible partial design on 3
associate classes with parameters N3 = s, N2 = μ, iVΊ = s, λx = 1,
A,2 = μ + 1 and λ3 = μ. See Raghavarao [15, § 8] for the parameters
used; we use the shorter term "partial design" instead of "partially-
balanced incomplete block design".

We now mention three more corollaries to Theorem 3.3.

COROLLARY 3.6 (Hine and Mavron [lo]). A necessary condition
for the completion of a symmetric (s, μ)-net with μ Φ 1 is that s—1
divides μ — 1 and that s divides μ. A necessary and sufficient
condition is the existence of an (s, (sμ — l)/(s — 1), μ/s)-net, i.e., of a
complete net for s and μ/s.

COROLLARY 3.7. Let Σ be a symmetric (s, μ)-net with μ Φ s.
Then the following assertions are equivalent:

( i ) s divides μ;
(ii) Σ is step'2-extendable;
(iii) Σ is step-7-extendable.

Proof, (iii) trivially implies (ii), and (i) and (ii) are equivalent
by Corollary 3.4. But if s divides μ, then μ/s is an integer Ξ> 2 by
assumption; hence by a result of Hanani [9], there exists an (s, 7,
μ/s)-net. Thus (i) implies (iii) by Corollary 3.4.

COROLLARY 3.8. A symmetric (s, s)-net has a step-t-extension
(t ^ 3) if and only if there exists a Bruck net with parameters
(s, t, 1). In particular, there always is a step-S-extension.

We remark, that it is possible to generalize Theorem 3.3 as
follows: Assume the existence of an equivalence relation ~ on the
point set of the given symmetric net Σ such that x\\y implies
x ~ y and that all —classes have the same cardinality, say ns.
Then a system of ts transversals of Σ consisting of complete ~
-classes corresponds to an (s, t, μ/ns)-net. As we have no applica-
tions for this result, we have only stated the case ~ = || in Theorem
3.3.

It is worthwhile to have a name for the nets constructed in
Theorem 3.3.

DEFINITION 3.9. Let Σ ^ e a symmetric (s, μ)-net and let Σ ' be
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a step-ί-extension of Σ (with ί ^ 3). Then the net Π induced on
the cosets of Σ (as in the proof of Theorem 3.3) is called the net
induced by Σ '

It is then easy (though lengthy) to prove the following exten-
sion of Theorem 3.3.

THEOREM 3.10. Let Σ be a symmetric (s, μ)-net with μφl and
let Σ ' be a step-t-extension of Σ with t ^ 3. Then Σ ' is step-u-
extendable (u a positive integer) if and only if the net induced by
Σ ' is step-u-extendable. In particular, Σ ' is maximal if and only
if the net induced by Σ ' is maximal.

COROLLARY 3.11. Let Σ be a symmetric (s, μ)-net. If s divides
μ, then Σ c&n be extended to a maximal (s, sμ + t, μ)-net if and
only if there exists a maximal (s, t, μ/s)-net. Here necessarily ί|Ξ>7.
On the other hand, for s not a divisor of μ the maximal extensions
of Σ a r e precisely the stepΛ-extensions.

Proof. Apply 3.10 together with 3.3, 3.4 and 3.7.

Corollary 3.11 may be used in the recursive construction of
series of maximal nets for large values of r. In particular, we
get the following improved version of [11, Theorem 3.4]:

THEOREM 3.12. Assume the existence of the series of symmetric
(s, tsn)-nets where s does not divide t and n is any nonnegative
integer. Then there exists a maximal (s, t(sn+1 + sn + f-s) + 1,
tsn)-net for all n.

Proof. We use induction on n. The case n — 0 is true by
Corollary 3.11 as s does not divide t. Assume the theorem is true
for a given value of n; then it is also true for n + 1, as is seen
by using the induction hypothesis and a symmetric (s, ίsn+1)-net in
Corollary 3.11.

COROLLARY 3.13. There exists a maximal (s, t(sn+1 + sn + +
3 + 1, tsn)-net in the following cases:

( i ) s = p\ t = pj, i > j , p a prime;
(ii) s an odd prime power, t = 2;
(iii) both s and t — s — 1 prime powers)
(iv) s = 3, t = 4.

In fact, this holds whenever s is a prime power provided there
exists a generalized Hadamard matrix GH(s, t) (s does not divide t)
in the elementary abelian group of order s.
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Proof, (i) to (iv) follow from the general case by using known
Gif-matrices. If s is a prime power, there is a GH(s, 1) in the
elementary abelian group of order s; then the well-known Kronecker
product construction yields GH(s, st), GH(s, s2t), etc. But any GH(s, μ)
gives rise to a symmetric (s, μ)-net (with a nice collineation group,
in fact). Proofs of these assertions as well as a definition of GH-
matrices can be found in [11]. A list of known Gίf-matrices is in
[12, Examples 6.11].

At this point, it should be emphasized that Giϊ-matrices are
not equivalent to nets (except for s = 2, see Drake [7]): a GίZ-matrix
is a stronger concept, actually being equivalent to a net admitting
a certain type of collineation group, see [11].

REMARK 3.14. In extending a symmetric (s, μ)-net as in Theorem
3.3, the coset sizes will all remain equal to s as long as t < μ. As
soon as t = μ this will in general not be true any longer. For
instance, take an (s, sd)-τιet and extend it by a symmetric (s, s^"1)-
net (so t = μ = sd); it is easily seen that this yields coset size s2.
This may be used recursively to construct (s, r, sd)-nets with coset
size s\ i = 1, , d + 2 cf. Examples 2.7. This construction method
in fact yields divisible partial designs. We just state the simplest
case and leave it to the reader to construct more partial designs
(on more than 2 classes) by a recursive method similar to that in
Theorem 3.12.

PROPOSITION 3.15 (cf. [14, 4.8. (iii)]). Assume the existence of
symmetric (s, sμ)-and (s, μ)-nets. Then there exists an (s, s2μ + sμ,
sμ)-net with coset size s2, that is simultaneously a divisible design
with parameters Xι = sμ and A2 = sμ + μ (i.e., points are joined λx

times if they are in the same coset and λ2 times otherwise).

Values for s and μ that may be used are in fact given by (i)
to (iv) of Corollary 3.13; more values may be found in the list of
Gfl-matrices in [12] (note that s may divide μ here).

4* Nets with small deficiency* In this section we are only
concerned with pairs (s, μ) for which a complete net could exist, i.e.,
we assume that s — 1 divides μ — 1. We will abbreviate the value
of λ in a complete net by c, i.e.,

(4.1) c = {Sμ- 1)1(8 - 1)

the maximum possible value of r (the value in a complete net) then
is
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(4.2) rm a x = sμ + c

by Theorem 2.2. We recall

DEFINITION 4.1. Let Σ be an (s, r, μ)-net where s — 1 divides
jtf — 1. Then the deficiency d of Σ is defined by

(4.3) d = rm a x — r = βμ + c — r .

Before dealing with possible completions of nets of small deficiency,
we will construct series of maximal nets with small d showing that
there is not much hope for very strong completion theorems.

THEOREM 4.2. Let s be a prime power and assume the existence
of a maximal Bruck net of deficiency d Φ 0. Then there also exist
maximal nets with parameters s, μ — sn and deficiency d for all
nonnegative integers n.

Proof We use induction on n; the case n = 0 is true by as-
sumption. If the theorem holds for a particular value of n9 it also
holds for n + 1: To see this, use the induction hypothesis and a
symmetric (s, sw)-net (which exists, as s is a prime power) in Corol-
lary 3.11. Note that this indeed leaves the value of d invariant.

Maximal Bruck nets with small deficiency have found some
interest, motivated by Bruck's completion theorem [2]. We now
use Theorem 4.2 together with results of Bruen [3] and the table
in Drake [6, § 3] (who used the language of orthogonal Latin
squares instead of nets) to obtain some infinite series of maximal
nets with small deficiency.

EXAMPLES 4.3. Let n be any nonnegative integer. Then there
exists a maximal (s, ry sn)-net of deficiency d in all of the following
cases:

( i ) d = 2, s = 4;
(ii) d = 3, s = 5 or 9;
(iii) d = 4, s = 7, 8 or 25;
(iv) d = 5, 8 = 7 or 8;
(v) s an arbitrary prime power = 1 (mod4), d = s — 2.

To prove (v), one uses the following result of Mann which is discus-
sed in Drake [6, § 2]: Let x be any positive integer; then there exist
Latin squares of order ix + 1, respectively, with a subsquare of
order x which do not have an orthogonal mate. To our knowledge,
series (i) above yields the first examples of maximal nets with
d — 2 and μ Φ 1. In the remainder of this section, we consider
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nets with deficiency 1 or 2 and give alternative matrixfree proofs
of the results of Shrikhande and Bhagwandas [19].

LEMMA 4.4. Let x and y be two distinct points of an (s, sμ +
t, μ)-net with deficiency d (so t — c — d). Then:

(4.4) t ^ [x, y] ^ 2μ - t + 2(t - l)/s

(4.5) If d = 1, then [x, y] = c — 1 or c

(4.6) // d = 2, ίftew c -2^[x,y]^c .

Proof (4.4) is the dual of Theorem 8.5.9 in Raghavarao [15];
the lower bound follows also by our Theorem 2.5. For d — 1, t =
c — 1; then after some simplification, (4.4) implies [#, 2/]̂ Sc + (s —2)/s.
But (s - 2)/s < 1, which yields (4.5). (4.6) is a rather difficult
involving a lot of computations and has recently been proved by
Shrikhande and Singhi [20].

PROPOSITION 4.5 (Shrikhande and Bhagwandas [19]). Any net
of deficiency 1 can he completed.

As the proof of 4.5 is both well-known and easy, it will be
omitted.

We now consider the case of deficiency 2. In view of Example
2.7.(c) the cosets here should have size μ; we first prove this fact
using (4.6).

LEMMA 4.6. Every coset of an (s, sμ + c — 2, μ)-net has size μ.

Proof Let xi be the number of points y with [x, y] = i; here
c - 2 ^ i ^ c by (4.6). Clearly

(4.7) Σ Xi = s2μ - 1
i = c—2

counting flags (T/, Y) with ?/ ^ ^ j y in two ways yields

(4.8) Σ fat = (sμ + c- 2)(sμ - 1)

and counting triples (y, X, Y) with x, ylX, Y and y Φ x, Y Φ X
yields

(4.9) Σ ί(ί - l)«i = ( ^ + c - 2)(8jM + c -
i = c—2

Multiplying (4.7) by c and subtracting (4.8) from it yields
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(4.10) 2xe_2 + xc_λ = 2(sμ - 1)

similarly, (4.8) and (4.9) yield

(4.11) 2(c - 2)xc_2 + (c - l)xβ_t = 2(βjeι + c - 2)(jκ - 1) .

(4.10) and (4.11) yield the assertion.

The following result is in case s = 2 and 3 due to Shrikhande
and Bhagwandas [19]; the general case is due to Shrikhande and
Singhi [20] who proved (4.6) above and then could just quote a
result of [19], called Theorem B in [20]. This result has been proved
using matrix arguments in [19]; we here give an alternative matrix-
free proof using the geometric notions developed in this paper.

THEOREM 4.7 (Shrikhande, Bhagwandas, Singhi). Any (s, sμ +
c — 2, μ)-net Σ with μ Φ 1 and s Φ 4 can he completed.

Proof. We first want to define a 2-class-association scheme (i.e.,
a strongly regular graph) on the s2 cosets of Σ From now on, we
will denote cosets by capital letters P, Q, R. For distinct cosets
P, Q, we define [P, Q] = [x, y], where xeP and yeQ are arbitrary;
note that this makes sense by Corollary 2.6. Call P and Q first
associates (written P ~ Q) if [P, Q] = c — 1 and second associates
otherwise. Now for any point x in P, the number of points y with
[x, y] — c — 1 is precisely 2(s — l)μ; this follows with #c_2 = μ — 1
from (4.10). But whenever [x, y\ — c — \, then also [x, z] = c — 1
for all £ 6 (y). As each coset has μ points, it follows that the
number of first associates of every coset P is 2(β — 1).

Now let P - Q and put A(P): = {R: R ~ P, R Φ Q) and A(Q): =
{s:S~Q, SΦ P}. Clearly | A(P) \ - | A(Q) | = 2(β — 1) — 1. We want
to show that always | A(P) Π A(Q)\ = s — 2. To this end, choose
a? ~ P and y ~ Q and put α* = [#, z] and 6Z = [#, z] for every point
z Φ x, y. First count all flags (z, Z) with #IϋΓ to obtain

(4.12) Σ α. = Σ 6. = (c - l)(8j" - 2) + (βju - I)2 .

Then count triples (z, Z, W) with x, zIZ, W9 Z Φ W; this gives

Σ az(az - 1) - Σ bz(bz - 1) = (c - l)(c - 2)(μ - 2)
( ' } +{*μ~ 1)0" - l)(2(c - 1) + *iκ - 2) .

Finally, counting all triples (z, Z, W) with zIZ, W, xIZ, ylW (but
not necessarily Z Φ W) gives

Σ ajb. = (c - l)(ejEf - 2) + (β - l)(c - 2)(jeι - 2)
( ' + 2(c - l)(βjM - !)(/£ - 1) + (8jM - 1)(8JM - 2)μ .
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Using (4.12) to (4.14), we obtain

(4.15) Σ (α, - bzf = 2{μ - 1) + 2(* -

Up to now, all summations were over all z Φ x, y. But if z e P,
then az = c — 2 and 62 = c — 1, i.e., (az — bzf = 1; a similar argument
holds for z e Q . Thus we obtain from (4.15)

(4.16) Σ (α, - 6Z)
2 = 2(β - l)/ι .

Now let RΦ P,Q and put α β = [P, 5 ] and δ^ = [Q, R]. For z e R
we have α2 and bz equal to c — 1 or c, thus (α, — bzf = 0 or 1; but
this is independent of the particular choice of zeR by Theorem
2.5. As each R contains μ points z, we conclude from (4.16)

(4.17) Σ (aR-bRf = 2(s-l).
RΨP,Q

Here each summand of (4.17) is either 0 or 1. Also, a summand 1
occurs if and only if [P,R]Φ[Q,R], i.e., iff Re(A(P)\A(Q))ϋ(A(Q)\
A(P)). But as \A(P)\ = \A(Q)\, it is clear that \A(P)\A(Q)\ =
\A(Q)\A(P)\. Hence by (4.17), 2|A(P)\A(Q)\ = 2(* - 1), i.e., \A(P)\
A(Q)\ = 8 - 1 . But then clearly \A(P) Π A(Q)\ = s -̂  2, as asserted.

Thus we have proved that ~ defines an association scheme with
parameters v = s2, nx — 2(8 — 1) and p\x = s — 2 on the set of cosets
of Σ But a well-known result of Shrikhande [16] implies that
this is an Z/2-association scheme (note that s Φ 4 by assumption), i.e.,
the cosets can be labelled Pίό (i, j = 1, , s) such that Piά ~ Phk if
and only if i = h or j = k and (i, i) ^ (fe, Λ). We want to show
that Tlf " -, Ts with Γ̂  = Ui -̂ y i s a system of s transversals of
Σ ; then this may be used to extend Σ to a net of deficiency 1 by
Lemma 2.11, which may then be completed using Corollary 3.4
(alternatively, T[ = (Ji Pa defines another system of s transversals
and Tu , Ts, T[, , T's together are a system of 2s transversals).

Let X be any block of Σ> P a nY coset and yeP a point. Let
yt denote the number of points Φy on X that are joined to y by
precisely i blocks. Then clearly yc_2 + ye_x + ye = sμ — 1, if we
assume ylX first. Counting all flags (z, Z) with y Φ zIZ Φ X yields
the further equation (e — 3)τ/c_2 + (c — 2)yc_1 + (c — l)yc = (μ —
c — 3). Both equations together yield

(4.18) 2yc_2 + yc_x = 2(JM - 1) for ylX .

A similar argument gives

(4.19) 2yc_2 + yc_, = 2^ for ylX .

But (4.18) and (4.19) show that in any case
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(4.20) 2|XΠP| + Σ\XnQ\ =2μ.
q~p

In the following summations, all indices range from 1 to s. Put
rij = \XΓ\Piί\. (4.20) yields

(4.21) 2rτj + Σ rik + Σ rmi = 2μ

and

(4.22) 2 * v + Σ r α + Σ * W = 2 / *

where if j, f are fixed and j Φ ?. Then subtracting (4.22) from
(4.21) gives

2(n, - rίjf) + (rid, - rίd) + Σ O™; - rmj>) = 0 ,

i.e., Σm rmj = E m rwi, for all i, i'. Hence s Σm rm i = Σ .i ^ i = l-̂ l =
sμ and so finally Σ m r w i = μ for all j . But this shows that every
Tj meets every block X precisely μ times; hence Tu , T8 is indeed
a system of s transversals of Σ a n ( i * ^ e theorem is proved.

We remark that the case of deficiency 2 for μ = 1 had already
been settled by Shrikhande [17]. It might also be mentioned that
a net of deficiency 3 can be completed provided that s ^ 104
(Shrikhande and Singhi [21]); for s — 2 nets of deficiency ^6 may
be completed (Verheiden [22]). We also remark that counting
arguments in analogy to (4.13) and (4.15) may be used to give a
direct proof of Corollary 2.5 without referring to the results of
Hine and Mavron (There of course one assumes that [x, y] = £.) We
finally note the following result, which is an immediate consequence
of Theorem 3.10 and the completion theorem for Bruck nets (see
Bruck [2]).

PROPOSITION 4.8. Let Σ be an (s, r, s)-net of deficiency d that
contains a symmetric net. Then Σ c a n be completed provided that

(4.23) s > \{d - 1Y + (d- If + (d- If + A(d - 1) = p(d - 1) .

Of course then, the examples of maximal nets of small deficiency
obtained from Theorem 4.2 necessarily have s ^ p(d — 1).

5* A conjecture* In this final section we consider connections
between symmetric and complete nets. We first note

PROPOSITION 5.1. Let μ be an odd positive integer for which a



452 D. JUNGNICKEL AND S. S. SANE

Hadamard matrix of order 4μ exists. Then there exists a complete
(2, μ)-net that does not contain a symmetric net.1

Proof. It is well-known that the existence of a Hadamard
matrix of order 4μ implies the existence of a Hadamard-3-design Σ
on 4μ points, which is in our terminology a complete (2, μ)-net (see
e.g., Hanani [9, §2.1]). If Σ contains a symmetric (2, μ)-net Π>
then Π can be completed; hence s = 2 divides μ by Corollary 3.6
a contradiction.

Proposition 5.1 provides infinitely many complete nets with s — 2
not containing a symmetric net. But no example of this type is
known for s Φ 2. This leads us to the following

CONJECTURE 5.2. Any complete net with s Φ 2 contains a sym-
metric net.

We conclude this paper with a discussion of Conjecture 5.2.
First, it would yield the following interesting result:

THEOREM 5.3. Assume the validity of Conjecture 5.2. Then a
complete (s, μ)-net with s Φ 2 exists if and only ifμ = sd(da non-
negative integer) and s is the order of an affine plane.

Proof. First let Σ be a complete (s, μ)-net with s Φ 2. By
assumption, Σ contains a symmetric (s, μ)-net Π As Π can be
completed, we conclude that s divides μ (unless μ = 1, in which case
Σ is an affine plane; the assertion holds trivially then) and that
there exists a complete (s, μ/s)-net by Corollary 3.6. The assertion
follows by induction. Conversely, let s be the order of an affine
plane and let μ = sd. We use induction on d to show the existence
of a complete (s, sd)-net. The case d = 0 is trivial. So assume the
existence of a complete (s, sd)-net for a particular value of d. Using
this net and the affine plane of order s, one may construct a sym-
metric (s, sd+1)-net by a result of Mavron [13, Theorem 1.4] which
then may be completed by Corollary 3.6 (also by [13, Theorem 1.3]).

Thus Conjecture 5.2 yields a weaker version of Shrikhande's
Conjecture 2 in [18], where the condition "s is the order of an
affine plane" has been replaced by "s is a prime power". In view
of all the work that has already been done on the question whether
or not a projective plane has to have prime power order, there

1 Note that the value of r is determined for a complete net by s and μ; we thus
define a complete (s, μ)-net as an (s, (s2μ—ϊ)/(s—ϊ), μ)-net.
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seems more hope to prove the restricted version of Shrikhande's
conjecture. Conjecture 5.2 proposes a possible method of attack.
We next give a reformulation of Conjecture 5.2. Now any line in
a complete net with parameters (s, μ) has at most s points and the
parallelism on the block set induces a parallelism on the line set
(cf. Dembowski [5, 2.1.19 and 2.2.11]). Also, a parallel class is a
set of pairwise parallel lines partitioning the point set (this need
not be the case). Cf. Dembowski [5, 2.1.19 and 2.2.11]. We then
have the following result that is essentially due to Mavron [13,
Theorem 1.2]. His proof applies if one realizes that the cosets
of a symmetric subnet of a complete net form a parallel class of
lines.

PROPOSITION 5.4. Let Σ be a complete (s, μ)-net. Then the
symmetric (s, μ)-nets contained in Σ a r e ^n a one-to-one corres-
pondence with those parallel classes of lines of Σ containing only
lines of s points each.

COROLLARY 5.5. Conjecture 5.2 holds if and only if each com-
plete (s, μ)-net with s Φ 2 oontains at least one parallel class of
lines of size s.

THEOREM 5.6. Let Σ be a complete (s, μ)-net with s Φ 2 and
μ Φ 1. Then Σ contains at most (s2μ — l)/(s — 1) symmetric (s, μ)-
nets and equality holds if and only if Σ is isomorphic to the system
of points and hyperplanes of an affine space.

Proof By Proposition 5.4, the number of symmetric (s, μ)-nets
contained in Σ equals the number of parallel classes of lines of
size s of Σ As any parallel class partitions the point set, this is
just the number of lines through a given point P of Σ ; as there
are s2μ — 1 points Φp and as each of the lines under consideration
has s — 1 points Φp, we obtain the upper bound of the assertion.
Also, if equality holds, then every line has to be of size s. But
this implies that Σ is a n affine space by Dembowski's theorem [4].
Finally, if Σ is an affine space, then it is easily seen that we have
the desired number of parallel classes of lines (which then all have
size s).

We finally remark, that Conjecture 5.2 does not say anything
about the net-completion problem of § 4. To obtain results in this
direction using the containment of a symmetric net one would have
to strengthen Conjecture 5.2 considerably; in fact, the necessary
induction process would require that any net with more than sμ
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parallel classes contains a symmetric net. But this is completely
false; the following result gives counterexamples of very small
deficiency.

PROPOSITION 5.7. For any prime power s and for any positive
integer n, there exists an (s, r, sn)-net of deficiency d = n + 2 that
does not contain a symmetric net.

Proof. Consider the affine space AG(n + 2, s); its points and
hyperplanes form a complete (s, sn)-net. Now choose n + 2 linear
subspaces of dimension n + 1 which intersect in 0 only. Then
removing the n + 2 parallel classes determined by these subspaces
yields a net Σ of deficiency n + 2. If Σ contained a symmetric
net Π> then the cosets of Π would form a parallel class of lines
of size s of AG(n + 2, s); in particular, the coset of 0 would have
to be contained in the removed n + 2 subspaces, which is absurd.

We state one more result in this direction.

PROPOSITION 3.8. Any (s, sμ + t, μ)-net Σ with t < μ contains
at most one symmetric net.

Proof. Assume that Π is a symmetric net contained in Σ K
is then easily seen that the cosets of Π a r e the cosets of Σ a n ( i
that two points in distinct cosets have >μ blocks in common in
Σ Any other square net Π' contained in Σ i s obtained by remov-
ing t parallel classes of Σ> at least one of which belongs to Π
But then it is obvious that any two points of Π' al%e still joined
at least once, as μ > t and so Π is not symmetric.

Note added in proof. Recent results of S. J. Dow ("Partial
protective planes". Ph. D. thesis, Univ. of Florida, Gainesville,
1982) and of the first author (D. Jungnickel: "Maximal partial spreads
and translation nets of small deficiency", to appear) on Bruck nets
of small deficiency allow to add the following cases to Examples 4.3:
(vi) s = q2 a prime power, d = q; (vii) s = p2,p an odd prime, d =
p - 1 .
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