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DUALITY AND COHOMOLOGY FOR ONE
RELATOR GROUPS

ROGER FENN AND DENIS SJERVE

1* Introduction* Let G be a group having a one relator presen-
tation and some fundamental integral class [G] e H2(G). The object
of this paper is to study the cap product homomorphism [G] Π :
H\G) A) -> H2_i(G; A) where A is a left G module and A is the right
G module identified with A as an abelian group and whose scalar
multiplication is given by ag = g~ιa for aeA,geG. If this homo-
morphism is an isomorphism we say that G satisfies Poincare duality
with respect to A.

For example consider the fundamental group G of an orientable
surface M. In this case the homomorphism [G] Π is an isomorphism
for all G modules A. Such a group is said to satisfy Poincare
duality. Recently Miiller [11, 12] has shown that a one relator group
satisfying Poincare duality over A for all G modules A is isomorphic
to the fundamental group of some orientable surface; thus answering
a question of Johnson and Wall in [9]. Actually Mϋller's result is
stronger than this since it applies to a larger class of groups than
one relator groups. However, we will restrict our attention to one
relator groups and study duality for fixed coefficients A.

In § 2 various preliminary work relating Fox derivatives and
Magnus expansions is given and in § 3 there are some results for Z
coefficients. In particular Theorem 3.4 proves that any group satis-
fying Poincare duality over the integers has a presentation of the
form {xl9 , x2g\[xl9 x2] [x2g_ly x2g]W = 1} where W lies in the third
term of the lower central series of the free group on xl9 •• ,x2ff.
Note that if W = 1 then the presentation reduces to that of a
surface group. This result has been proved independently by
Ratcliffe, [15].

In § 4 an explicit formula for the homomorphism [G] ΓΊ on the
chain level is given in terms of a Hessian matrix di(ddV) of Fox
derivatives, where V is the relator.

Using the theory developed in this paper and results from [16]
it is routine to verify the claims made in the following examples.

EXAMPLE. The group G = {xl9 x2\[xi, x2][x2, [x2, xx]] — 1} satisfies
Poincare duality over Z. Now let A be the Laurent polynomial ring
Z[Z] on the generator t with the G module structure induced from
the homomorphism φ:G-+ Z[t] defined by φ(Xj) = 1, φ(x2) = t. If G
were to satisfy Poincare duality over A then it would be true that
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the ideal in A generated by the Fox derivatives φ{dVldx^)9 φ(3V/dx2)9

where V = [xl9 x2][x29 [x2, %i]], is the augmentation ideal (1 — f). But
a simple calculation gives φ(dV/dx2) — 0, φ{dVjdx^) = 1 — t + (1 — £)%
and hence G does not satisfy duality with respect to A.

EXAMPLE. Consider the group G = {xl9 , cc4| V = 1}, where
F = [>!, ίc2][ 3̂, #4][>i, [#2, #3]]. Let A be the integral Laurent poly-
nomial ring in variables tl9 , ί4 made into a G module by the
homomorphism φ: Z[G] —• A, 0(α?<) — ̂  Then the ideal generated by
the Fox derivatives φ(βtV) is the augmentation ideal (1 —t19 , 1 — Q
and hence [G] Π : H\G; A) -* H0(G; A) is an isomorphism. A short
calculation gives H\G; A) = 0, H2(G; A) = 0, and yet G does not satisfy
Poincare duality over A since if it did the matrix [φdt(djV)] would
be invertible over A. But the ideal generated by the first row is
(ί2 — 1, 1 — 2t8) and therefore this matrix is not invertible.

2* The free differential calculus and Magnus expansions* In
this section we collect various results on Fox derivatives. Standard
references are [4, 5, 6, 7, 8]. Throughout F will denote the free
group on xu ---,xn and ε:Z[F]-*Z will denote the augmentation
homomorphism. The usual anti-automorphism Z[F] —> Z[F] will be
written / - > / .

For 1 <; i <; n we let 3̂  be the Fox derivative d/dxt and for any
finite sequence I — (il9 , ir), where 1 ^ ik <̂  n, we let 3, denote
the higher order derivative dh 3 V If r = 0 put 37 = id and set
6j equal to the composite edz for any J.

If multiplication of sequences is by juxtaposition then induction
on the length of a sequence will prove:

LEMMA 2.1. For any sequence K and /, geZ[F] we have
εAfθ) = Έtu=κ 6/(/Xr(flO> where the summation is over all ordered
pairs (I, J), including (K, φ) and {φ, K), such that IJ = K.

Thus it follows that et:F-^Z gives the exponent sum of χt in
a word and eli[ίjr, ft] = ei(flr)εi(Λ) — βί(ft)εi(gr) for g, heF. Now let α be
the free associative power series ring on the noncommuting vari-
ables ai9 , an and with coefficients in Z. For any sequence / =
(ilf , ir) let α7 denote the monomial ah α<r, where α̂  = 1 by
convention. The Magnus expansion is defined to be the homomor-
phism M: F —> α, xt —> 1 + α*. Induction on word length easily proves:

LEMMA 2.2. For any K and feF we have εκ(f) = Mκ(f).

The following describes chain rules for Fox derivatives. Thus
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s u p p o s e F is f r e e o n xlf ••-,$» a n d G i s f r e e o n ylf -—,yp. I f
φ: G -» F is a g r o u p h o m o m o r p h i s m t h e n

LEMMA 2.3. (a) et(φ(g)) = Σί-i Φ(Vk)K(g)f

(b) for g e [G, G] we fcαvβ eίό{φ{g)) — Σ*,ι=i$

As an example suppose G is free on yl9 , 2/2ί/ and W = [2/̂  τ/2]

5/2,-1,1/2J. Then

+ 1 if (ft, 1) = (2i - 1, 2£) for some ί, l ^ i ^ g

— 1 if (ft, 1) = (2i, 2i — 1) for some i , 1 ^ i ^ g

0 otherwise .

Thus the 2g by 2g matrix composed of the second order partials
εkl(W) is the skew symmetric matrix

-1 oJ θ ' " Θ L-i 0.
It is not a coincidence that this matrix is also the cup product

matrix for the orientable surface of genus g.

3* Poincare duality with untwisted Z-coefficients* Throughout
this section K = {xl9 , xn \ V = 1} will denote a one relator presen-
tation of the group G where the relator V belongs to [F, F] and is
assumed not to be a proper power.

If 1—>j?—•ί7—>G—>1 is the exact sequence of this presentation
then the Hopf formula gives H2(K) = R/[R, F] = Z with generator
[K] = V'[RfF]. The other homology groups can be described as
follows: .HI(JBL) is free abelian on the cosets xlt —-,xn moά[F9 F]9

H\K) is free abelian on the dual classes xf, ••-,#? and H\K) = Z
by evaluation u—> (u, [K]).

Define the cup product matrix A = (α^ ) over the integers by
the formula

ai3 - (xf U xh [K]> = <«?, [X] Π x?> .

Now [ίΓ] Π is automatically an isomorphism for i = 0, 2 and so
if satisfies Poincare duality over Z if and only if [K] Π : H\K) —>
JH"I(UL) is an isomorphism. This implies the following well known
result.

THEOREM 3.1. Using the notation above K satisfies Poincare
duality over Z if and only if AeGLn(Z).

See for example [15].
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Suppose now that n = 2g and V = [xl9 x2] [#2ί,-i, #2ff] so that
JKΓ is a surface. Then it is easily checked that the cup product
matrix (aίβ) is equal to the matrix (e{i) defined in the previous section.
This is also a consequence of the following general result.

THEOREM 3.2. Suppose K = {xlf , xn \ V = 1} is such that
V 6 [F, F] is not a proper power. Then the cup product matrix
aiό = (x* U xϊ, [K]> = 6ijy).

Proof. See Porter [14] or Fenn, Sjerve [3].

COROLLARY. K satisfies Poincare duality over Z if and only if
the n x n matrix εtj(V) is invertible over Z.

There are several effective procedures for computing siά(V). For
example we can use the Magnus expansion or if V = [Ulf VJ •
[U,, V9] then

eti(V) = Σ 5{Uk)} .

It follows that if we write V in the form

V = Tίisi^n fa, *A "V, where V e [F, [F, F]]

then

ai3- if i < j

0 if i = j

, - t t y t i f i > j

This together with 3.2 gives the following result due to Labute
and Shapiro-Sonn, [10] and [17].

THEOREM 3.3. Suppose K = {xlf , xn\ V = 1} where V is writ-
ten in the form given by *. Then the cup product matrix for K is
given by the skew symmetric matrix

o

If K satisfies Poincare duality over Z then the following theo-
rem, which has been proved independently by Ratcliffe [15], shows
that the relator V can be made almost like that of a surface.

THEOREM 3.4. Suppose K satisfies Poincare duality over Z.
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Then K has the homotopy type of

— /Ύ» <τ* I Γ'T <v 1 ΓΎ Ύ* 1XΛΊ

where V e [F, [F, F]].

Proof. If NeAut(F) is an automorphism then the complex
{xlf - , xn\ V = 1} has the homotopy type of {ŝ , , xn\N(V) — 1}.
Let A9 B be the respective cup product matrices. Then there exists
UeGLn(Z) such that B = UAUT. Conversely if B is congruent to
A then there is an Ne Aut (JP) such that B is the cup product matrix
of {xlf , xn\N(V) — 1} as can be seen using routine calculations
with Nielsen transformations.

Now if K satisfies Poincare duality then A is a nonsingular
skew symmetric matrix and so by well known results in linear alge-
bra is congruent to

? ί l ® ® Γ ? ϊ l » see e £ t 1 3 l
By using the above argument K may be made into the required

form.
Finally we note the following corollary to the above results.

THEOREM 3.5. Let Uly Vu •••, Ug> Vg be words in the free group
on xίy , x2g. Then {xlf , x2g\[Ulf F J [Ug, Vg] = 1} satisfies
Poincare duality with respect to Z-coefficients if and only if, the
group {xu , x2g\ U, = Vx— = Ug = Vg — 1} is perfect.

Thus there exists a correspondence between presentations of
perfect groups on an even number of generators with defect zero
and group presentations satisfying Poincare duality over Z. For
example the binary icosahedral group J* has the defect zero presen-
ta t ion {xlf x2\U = V = 1} where U — xxx2xxx2^ and V = x

Therefore the group presentation

JL3L —^ \*vi> «̂ 2 I «^l»^2 ^l«^2 *^1 X2X\X^Xi X2X X ^ ^ ^ ^

of the group G satisfies Poincare duality with Z coefficients. Notice
that K cannot possibly satisfy duality for twisted coefficients since
this would force G to be isomorphic to Z φ Z and there is a homo-
morphism of G onto the binary icosahedral group.

4* Poincare duality with twisted coefficients* As in the pre-
vious section K = {xlf , xn \ V = 1} will denote a presentation of
the group G such that V e [F, F] is not a proper power.
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The presenting homomorphism φ: F-+G induces a ring homo-
morphism φ: ZF -» ZG also denoted by φ.

In this section we will obtain necessary and sufficient conditions
for G to satisfy Poincare duality with respect to a fixed G module
A. To do this we need the duality map on the chain level. Thus
let A = Z[G] and let C* denote the usual chain complex associated
to the Lyndon resolution, i.e., C* is

o — > Λ J L + A ® .-®A-^A—>o,

n copies

where

di(\, , λ j = Xάφfa) - 1) + + K(Φ(%n) - 1) .

Now define D: Hom^ (Cif A)-+ A (g)Λ C2_i as follows:

i = 0 , ί?: A • A is D: α > a

i = 1 , Z ? : A 0 φ A > A φ φ l is given by the formula

D(au , αn) = (•••, — Σ Φ(^ί(^jV))aj> *)
i

ith coordinate

THEOREM 4.1. D: Hom^ (C#, A) -> A (g)̂  C^ is α c k m map.

Proof. We must verify the commutativity of the diagram

0 > Horn, (Co, A) - ^ Horn, (Cu A) — Hom^ (C2, A) > 0

(4.2) μ

Thus

But

Σ (ΦixT1) - tfflβtfiV)) = ί* Σ (tfΓ1 - 1)9,(3,7) = ί* Σ δΛWfo - 1)
i i i
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Therefore

(d^DXa,, , an) = - Σ φΦsV)as = (Dod?)(au • , an).

On the other hand

xJ - l)α, , (φ{xn) - l)α)

= ( , ~ Σ ΦΦldiVmiXi) - l)a, •••).

However

= φ Σ ^[(xj1 -
} 3

since

^[(^r - 1)3,7] = Sifo-1 - 1)5(3,7) + (αr - 1)3,(3,7)

(recall that ε(djV) = $(3^) - ε/7) = 0 because Ve [F, F]). Hence

= ^ ( Σ 3 ί (7)(x ί - 1))
3

= -{6(3,(7)) since φ(V) = 1 .

This shows that (Ddf)(α) = (•••, ̂ (377)α, •) = (d2D)(a). •

The chain transformation Z>: Hom^ (C#, A) —> A (g^ C* is clearly
natural in A and so the induced map in homology D*: H*(G; A)—>
iί^(G; A) is functional in A. The cap product homomorphism [G] (Ί :
.#*(£; A) -* ^ ( G ; A) is also f unctorial in A. In the next theorem
we prove that D* = [G]f] , but first we compare D*, [G]Γ\ • for the
special case H\G)-^ H^G). We have

• • , 0, 1, 0, , 0) = ( , - Σ ΦidiidiWδu, •••)

(since the module structure on the coefficients is given by augmen-

tation). Now -6(3,(3^0) = -ediϊβkV) = εdtdk(V) because edt(f) =

-εdtif) for feF. Therefore

= Σ <»** U %*,
i i

according to (3.2). But we also have
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[G] n xs = Σ <χΐ, [G] n χt>χt = Σ <χΐ u %*, [<?]>»«.

Thus we proved that

D* = [G]Γ) : H\G; Z) > H^G; Z) .

THEOREM 4.3. D+ = [G] n •: #*(G; A) -> JEΓ̂ CG; A) /or any A.

Proof. The method of proof is modelled on some of the proofs
in [1, 2]. For any A the homomorphism D*: H2(G; A)-> H0(G; A) is
induced by the chain map D: Hom^(C2, A) —» A ® Co, D: a—> —a.
Thus D*: iF((x; A) —> H0(G; A) is the homomorphism

A/(Σ M3*V)) > A/(Σ *>M%i) - 1)) induced by a > -a .

It follows that D*: H%G; Z)-> H0(G; Z) is an isomorphism. Since
both of these groups are infinite cyclic and [G] Π : H\G\ Z) —>
iZO(G; Z) is also an isomorphism we must have

Z>* = e Π : iϊ2(G; Z) > HQ(G; Z) , where e = ±[G] .

Now consider the coefficient sequence 0 —> I[G] -> 1̂ —> Z —> 0 of
left A modules. Conjugating we get the exact sequence 0 —> I[G] -»

Λ-^Z—>0 of right A modules. Then the functoriality of D* and
e Π gives the commutative diagram

> iϊ2(G; yl) - ^ H2(G; Z) > 0

D* I Γ ° ' ^ 1 J e n * I JD# = e n
H0(G; I[G]) > H0(G; A) - ^ U H0(G; Z) > 0 .

But ε*; JϊoCβ; -4") —> iϊoC^; Z) is a monomorphism since the homomor-
phism H0(G; I[G]) —> H0(G; A) may be identified with the homomorphism

I[G]/I[G] I[G] > A/A J[G] induced by /[G] £ ^ .

Chasing around the second square in the diagram now gives

D* = e Π •

The group G admits a finite resolution of Z by finitely generated
free A modules and hence the functor H*(G\ •) commutes with direct
sums. From this fact it follows that

* = e Π : fP(G; M) • H0(G; M) for any free module M .

any module A we choose some presentation
By naturality there is a commutative diagram
Given any module A we choose some presentation 0—> N-+ M —>A
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H\G; M) - ^ H\G; A) > 0

D^eΠ DJ I e Π

HQ(G; M) A , HQ(G; A) > 0 .

Note that φ+: H2(G; M) -> H\G; A) is an epimorphism since G has
cohomological dimension 2. Commutativity of this diagram now im-
plies that

ΰ , = eί l : H\G; A) > H0(G; A) for any module A .

Now consider the commutative diagram

> H\G; M) > H\G; A) > H\G; N) >

DJ L n D* L n LD* = eπ

> HX{G; M) > J3i(G; A) > iϊo(G; N) > • • • ' .

iίί is a free right module and so Hλ{G\ M) = 0. Therefore H&GfA)
H0(G; N) is a monomorphism, and this implies that

D* = β* Π : i ϊ^G; A) > H^G; A) for all A .

Finally we look at the commutative diagram

> H\G; M) > H\G; A) > H\G; N) > -

eΠ DJ leΠ

> H2(G; M) > H2(G; A) > H^G; N)

H2(G; M) = 0 as M is free and therefore

D* = eΠ -:H\G;A) > H2(G; A) for all A.

To prove that e = [G] we use the functoriality of D* and [G] Π
with respect to the variable G, while keeping the coefficients fixed at
Z. If G has the presentation {χu - , xn\ V = [ϋi, FJ [Ugf Vg] - 1}
let 7Γ be the surface group {yl9 , y2 g | [^, y j [ ^ ^ i/2J - 1}. We
also have the obvious degree 1 map φ:π —> G. Then there are classes
eG 6 H2(G), eκ e H2(π) and a commutative diagram

— 6τc I I

It has already been noted that D* = [TΓ] Π : f ί 1 ^ ) -> iZ"^). This
coupled with the fact that D*\ H\π)-> Hx{π) is an isomorphism
implies that eπ = [TΓ]. If [G]*, [π]* are the cohomology classes dual
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to [G], [π] respectively then

εi>*([G]*) = eφ*D*φ*([G]*) = ε^2)*([π]*) (as φ*([G]*) = [π]*)

where ε:HQ( )-*Z is the augmentation. Hence

and therefore <[£]*, β*> = εeG Π [(?]* - sJ9*([G]*) = 1. This proves
that eG = [G].

By chasing around diagram 4.2 we prove the following theorem.

THEOREM 4.4. With the notation above, G satisfies Poincare
duality with respect to A if, and only if, D: φ? A -> φ? A is an
isomorphism.

As an example of this theorem consider the case A — Z with
the trivial module structure. Then

Φidi(dsV))a = 6(3,(3,10)* =

But for any / 6 F we have

Therefore -^(3,(3iV
r))a = εa^/F)^ = εέj(F)α. This means that the

cap product map D: Ή.omΛ(Cl9 Z)-*Z<g)Λ Clf that is D: Z © 0 Z->
Z φ φ Z , becomes

In other words D is the n x n matrix [εi3 (V)], a result in agreement
with 3.2.

As another example consider the A module Z[Gab], where the A
module structure is induced by the abelianization homomorphism
a:G-+ Gab. For convenience set ί, = aφ(xt), l^i^n. Then Z[Gab]
is the Laurent polynomial ring on the variables tl9 * , ί n . If
J>(*i> > O i s a Laurent polynomial then the module structure is
given by

Φ(x?) p(tu -•-, tn) = trp(tlf -- ,tn), l ^ i ^ n .

THEOREM 4.5. G satisfies duality for Z[Gab] coefficients if, and

only if, the matrix [α3i(3yV)] is invertible over Z[Gah\.

Proof Since φ: F-+G induces an isomorphism Fab = Gab we have

, tn) = - α O / β ^ M ί x , , tn)
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where a:F-*Fab again denotes abelianization. But a{f) = — α(/)
and so the duality map D: Z[GJ φ © Z[GJ_-+ Z[Gab] © ©
Z[Gab] may be identified with the matrix [αd4(9, F)]. Π

We can generalize this result by replacing Gab by an abelian
group J and letting a: G —> J be some homomorphism. Then G satis-
fies duality for Z[J] coefficients if, and only if, the n x n matrix
[βdt(βjV)] is invertible over Z[J]9 where β = aφ:F—>J.
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