KNOT GROUPS IN S^{4} WITH NONTRIVIAL HOMOLOGY ${ }^{1}$

A. M. Brunner, E. J. Mayland, Jr., and Jonathan Simon

Abstract

In this paper we exhibit smooth 2 -manifolds F^{2} in the 4 -sphere S^{4} having the property that the second homology of the group $\pi_{1}\left(S^{4}-F^{2}\right)$ is nontrivial. In particular, we obtain tori for which $H_{2}\left(\pi_{1}\right) \cong Z_{2}$ and, by forming connected sums, surfaces of genus n for which $H_{2}\left(\pi_{1}\right)$ is the direct sum of n copies of Z_{2}. Corollaries include: (1) There are knotted surfaces in S^{4} that cannot be constructed by forming connected sums of unknotted surfaces and knotted 2 -spheres. (2) The class of groups that occur as knot groups of surfaces in S^{4} is not contained in the class of high dimensional knot groups of S^{n} in S^{n+2}.

If F is a compact manifold ($\partial F=\phi$) in the n-sphere $S^{n}(n \geqq 4)$ then, using Alexander duality and the fact that $H_{2}\left(\pi_{1}\left(S^{n}-F\right)\right)$ is a homomorphic image of $H_{2}\left(S^{n}-F\right)$, it is easy to show that $H_{2}\left(\pi_{1}\left(S^{n}-F\right)\right.$) is no larger than $H^{n-3}(F)$. In the case where F is a 2 -sphere in S^{4}, this is Kervaire's proof [6] that $H_{2}\left(\pi_{1}\left(S^{4}-F\right)\right)=0$. Since the property of vanishing second homology is so important in characterizing knot groups of spheres in spheres [6], it is interesting to ask [7, Problem 4.29] [14, Conjecture 4.13] whether it is shared by other manifolds F in S^{4}. The answer we obtain is "sometimes".

For example, if F^{2} is a closed, orientable 2 -manifold embedded in S^{4} in a standard way (i.e., contained in the equatorial 3 -sphere), then $\pi_{1}\left(S^{4}-F^{2}\right) \cong Z$, which has trivial second homology. If we form the connected sum (analogous to composing knots $S^{1} \subset S^{3}$) of such a surface F^{2} with a knotted 2 -sphere S^{2}, then the group of the knotted surface $F^{2} \# S^{2}$ in S^{4} is just $\pi_{1}\left(S^{4}-S^{2}\right)$; as noted above, this has trivial homology.

On the other hand, in $\S 2$, we shall exhibit smooth tori (of genus 1) F^{2} in S^{4} such that $H_{2}\left(\pi_{1}\left(S^{4}-F^{2}\right)\right) \cong Z_{2}$. Such a torus cannot be expressed as the connected sum of an unknotted torus and a knotted 2 -sphere. Furthermore, $\pi_{1}\left(S^{4}-F^{2}\right)$ cannot occur [6] as the knot group of some $S^{n} \subset S^{n+2}$. By spinning, we can generate knotted embeddings of the n-torus $S^{1} \times \cdots \times S^{1}$ in S^{n+2} having the same "unusual" knot groups.

In §3, we establish a connected-sum lemma, $H_{2}\left(\pi_{1}\left(S^{4}-F_{1}^{2} \# F_{2}^{2}\right)\right) \cong$ $H_{2}\left(\pi_{1}\left(S^{4}-F_{1}^{2}\right)\right) \oplus H_{2}\left(\pi_{1}\left(S^{4}-F_{2}^{2}\right)\right)$. By composing the tori found in $\S 2$, we can therefore construct surfaces of any genus n, for which

[^0]the second homology of the knot group is $Z_{2} \oplus \cdots \oplus Z_{2}$ (n summands). Thus, using the upperbound $H^{1}(F)$ mentioned above, we conclude that the groups that occur as knot groups of surfaces of genus n in S^{4} are a proper subset of the groups that arise from surfaces of genus $2 n+1$.

It seems plausible that the number $2 n+1$ (last sentence above) can be pushed closer to n. For surfaces of genus 1, we have been unable to find knot groups with second homology larger than Z_{2}, and we are left with the question: Are there tori in S^{4} whose knot groups have second homology equal to (even close to) the theoretical upperbound $Z \oplus Z ?^{2}$ In this connection, it may be noted that the example given in [12] of a homomorphic image, G, of a knot group $\left(S^{1} \subset S^{3}\right)$ with $H_{2}(G) \neq 0$ actually has $H_{2}(G) \cong Z_{2}$; the groups G one obtains by killing the longitude of a knot with Property R [11] have $H_{2}(G) \cong Z$ [4].

1. Preliminaries. The spaces and subspaces we discuss are smooth or polyhedral. All homology groups are taken with integer coefficients. If G is a group and $x, y \in G$, then $[x, y]$ denotes $x^{-1} y^{-1} x y$; if $A, B \subseteq G$ then $[A, B]$ denotes the smallest normal subgroup of G containing $\{[a, b]: a \in A, b \in B\}$.

There are several (equivalent) definitions of the second homology of a group.

Definition 1.1. If X is a connected $C W$-complex with $\pi_{1}(X) \cong$ G and $\pi_{n}(X)=0(n \geqq 2)$ then for each $p, H_{p}(G)$ is defined to be $H_{p}(X)$.

Definition 1.2. If Y is connected $C W$-complex with $\pi_{1}(Y) \cong G$, and $\sum_{2}(Y)$ denotes the subgroup of $H_{2}(Y)$ generated by all singular 2-cycles representable by maps of a 2 -sphere into Y, then $H_{2}(G)=$ $H_{2}(Y) / \sum_{2}(Y)$. (Informally, $H_{2}(G)=H_{2}(Y) / \pi_{2}(Y)$.)

Definition 1.3. If F is a free group, $\theta: F \rightarrow G$ an epimorphism, and $R=\operatorname{ker} \theta$, then $H_{2}(G)=R \cap[F, F] /[F, R]$.

The equivalence of 1.1 and 1.2 is clear, once one shows that 1.1 is unambiguous, since a space X (as in 1.1) can be built from Y (as in 1.2) by adjoining cells of dimension $\geqq 3$. The equivalence of 1.2 and 1.3 is shown in [5]. For computing $H_{2}(G)$, it may be convenient to view G as a quotient of some group A that (is not free but still) has trivial second homology. The following lemma of J. Stallings [13] provides the necessary instructions.

[^1]Lemma 1.4. If A is a group and N is a normal subgroup of A then there is a (natural) exact sequence

$$
H_{2}(A) \longrightarrow H_{2}(A / N) \longrightarrow N /[A, N] \longrightarrow H_{1}(A) \longrightarrow H_{1}(A / N) \longrightarrow 0 \text {. }
$$

Lemma 1.4.1. If A is a group with $H_{2}(A)=0, N$ is a normal subgroup of A such that $N \cong[A, A]$, and $G=A / N$, then $H_{2}(G) \cong$ $N /[A, N]$.

Proof. This is just a special case of Lemma 1.4.

Lemma 1.5. Suppose a group G has a presentation of the form $\left\langle a, b ; b=w^{-1} a w\right\rangle$, where w is some word in a and b. Then $H_{2}(G)=0$.

Proof. Let Y be a 2-complex formed by attaching one disk to a wedge of two circles, such that $\pi_{1}(Y) \cong G$. By counting cells, we see the Euler characteristic of Y is 0 . Since $\beta_{0}(Y)=\beta_{1}(Y)=1$, we conclude $\beta_{2}(Y)=0$ and so, since Y is 2-dimensional, $H_{2}(Y)=0$. According to Definition 1.2, $H_{2}(G)=0$.

Lemma 1.6. Suppose a group G has a presentation of the form $\left\langle a, b ; b=w^{-1} a w,[b, y]=1\right\rangle$, for some words w, y in a and b. Then $H_{2}(G)$ is isomorphic to the cyclic subgroup generated by $[b, y]$ in the group $C=\left\langle a, b ; b=w^{-1} a w,[a,[b, y]]=1,[b,[b, y]]=1\right\rangle$.

Proof. Let $A=\left\langle a, b ; b=w^{-1} a w\right\rangle$ and let N be the normal subgroup of A generated by $[b, y]$. By Lemma 1.5, $H_{2}(A)=0$. By Lemma 1.4.1, we then have $H_{2}(G) \cong N /[A, N]$. The subgroup $[A, N]$ is the kernel of the obvious map of A onto C, so $H_{2}(G)$ is isomorphic to the image of N under this map; this image is precisely the cyclic subgroup of C generated by $[b, y]$.
2. Examples of tori in S^{4}. Our first example is illustrated in Figure 1, in the form of successive cross-sections (as in § 6 of [3]). We originally obtained this torus T by the methods of [16], so T is a symmetric ribbon surface. We can, at this point, either compute $\pi_{1}\left(S^{4}-T\right)$ from Figure 1 as in [3], or start with a suitable presentation of the group and invoke [16]. In either case, we have the following.

Proposition 2.1. If T is the torus in Figure 1 then the group $G=\pi_{1}\left(S^{4}-T\right)$ has a presentation

$$
\left\langle a, b ; b=a^{-1} b^{2} a b^{-2} a, b=\left[b a^{-1}, a^{-1} b\right]^{-1} b\left[b a^{-1}, a^{-1} b\right]\right\rangle
$$

$\square \square$

A torus with $H_{2}(G) \cong \boldsymbol{Z}_{2}$
Figure 1
Theorem 2.2. If G is the group in 2.1 then $H_{2}(G) \cong Z_{2}$.
Proof. Let λ denote $\left[b a^{-1}, a^{-1} b\right], w$ denote $b^{-1} a^{-1} b^{2} a b^{-2} a, A=$ $\langle a, b ; w=1\rangle$ and $C=\langle a, b ; w=[a,[b, \lambda]]=[b,[b, \lambda]]=1\rangle$. By Lemma 1.6, $H_{2}(G)$ is isomorphic to the cyclic subgroup of C generated by $[b, \lambda]$.

First note that in A, hence in $C, b^{-1} \lambda b=\lambda^{-1}$. (To see that $b^{-1} \lambda b \lambda=1$ in A, first cyclically reduce $b^{-1} \lambda b \lambda$; then replace a subword, $a^{-1} b^{2} a b^{-2} a$, of this with " b "; then note that the word so obtained is a cyclic permutation of w^{-1}.) Thus $[b, \lambda]=\lambda^{2}$ and $[b$, $[b, \lambda]]=\lambda^{4}$ in A.

In C, since $[b,[b, \lambda]]=1$, we have $\lambda^{4}=1$, i.e., $[b, \lambda]^{2}=1$. We thus have $H_{2}(G) \cong 0$ or Z_{2}; to establish the latter, we need to show λ^{2} (i.e., $\left.[b, \lambda]\right) \neq 1$ in C. Since $\lambda \in[C, C]$, we can compute the order of λ in C by computing its order in [C, C].

Claim 2.3. [C, C] has a presentation $\left\langle B_{0}, B_{-1} ;\left[B_{0},\left[B_{0}, B_{-1}\right]^{2}\right]=\right.$ $\left.\left[B_{-1},\left[B_{0}, B_{-1}\right]^{2}\right]=\left[B_{0}, B_{-1}\right]^{4}=1\right\rangle$, where $\lambda^{2}=\left[B_{0}, B_{-1}\right]^{2}$.

Proof of 2.3. To establish 2.3, we can use the ReidemeisterSchreier process [9, §2.3], with coset representatives $\left\{a^{n}\right\}_{n \in Z}$ and rewriting function $\rho(b)=\rho(a)=a$, applied to the presentation $C \cong$ $\left\langle a, b ; w=\left[a, \lambda^{2}\right]=\lambda^{4}=1\right\rangle$. The presentation initially obtained will have infinitely many generators $B_{n}\left(=a^{n}\left(b a^{-1}\right) a^{-n}, n \in Z\right)$, but almost all the generators and relations can be eliminated, leaving 2.3. Alternatively, we can argue as follows.

Let $D=\left\langle u, v ;\left[u,[u, v]^{2}\right]=\left[v,[u, v]^{2}\right]=[u, v]^{4}=1\right\rangle$. The function $\theta(u)=v, \theta(v)=v u$ sends $[u, v]$ to $[u, v]^{-1}$ and therefore defines an automorphism of D. Extend D to a group $\widetilde{D}=\left\langle D, b ; b^{-1} g b=\theta(g)\right.$, all $g \in D\rangle$. We then have $D=[\widetilde{D}, \widetilde{D}]$, and $\widetilde{D} \cong\left\langle u, v, b ; b^{-1} u b=v\right.$, $\left.b^{-1} v b=v u, \quad[u, v]^{4}=\left[u,[u, v]^{2}\right]=\left[v,[u, v]^{2}\right]=1\right\rangle$. Use $v=b^{-1} u b$ to eliminate the generator v, introduce a new generator $a=u^{-1} b$, and use $u=b a^{-1}$ to eliminate the generator u. Since, as noted earlier, the relation $w=1$ implies $b^{-1} \lambda b=\lambda^{-1}$, it is easy to show that \widetilde{D} is exactly C. We know $D=[\widetilde{D}, \widetilde{D}]$, and if we identify u with B_{0}, v with B_{-1}, we obtain 2.3.

We now map $[C, C]$ onto the group $\mathscr{D}_{8}=\left\langle B_{0}, B_{-1} ; B_{0}^{2}=B_{-1}^{2}=\right.$ $\left.\left(B_{0} B_{-1}\right)^{8}=1\right\rangle$ by setting $B_{0}^{2}=B_{-1}^{2}=1$. Under this map, $\lambda^{2} \rightarrow\left(B_{0} B_{-1}\right)^{4}$. Since the order of $B_{0} B_{-1}$ in \mathscr{D}_{8} is exactly 8 [2, §§4.3, 4.4], we conclude $\lambda^{2} \neq 1$ in C. This completes the proof of Theorem 2.2.

Remark 2.4. It can be shown that the group $A=\langle a, b ; b=$ $\left.a^{-1} b^{2} a b^{-2} a\right\rangle$, sometimes called the Fibonacci group, is a Z_{2}-extension of the group K of the "figure-8" knot [8, §V.2]. By erasing the lower band in Figure 1, we can see a symmetric ribbon 2 -sphere with knot group A. The elements b^{2} and $\lambda=\left[b a^{-1}, a^{-1} b\right]$ are, respectively, the meridian and longitude for K. The fact that K admits on outer automorphism α (conjugation by b in A) with certain properties (e.g., $\alpha(\lambda)=\lambda^{-1}$) can be used as the basis for an alternate proof that $H_{2}(G) \cong Z_{2}$. This analysis is the motivation for our next examples, and, in fact, the group G_{1} below is isomorphic to the group G of Theorem 2.2.

We originally built the groups H_{n} (below) as Z_{2}-extensions of the knot groups \mathscr{K}_{n} of the knots $K(n, n)$ shown in Figure 2. By $\left[10, \quad\right.$ p. 229-230], $\quad \mathscr{K}_{n} \cong\left\langle a, b, t ; t^{-1} a^{n} b t=a^{n}, t^{-1} b^{n} t=a^{-1} b^{n}\right\rangle$. The

function $\theta(t)=t, \theta(b)=t^{-1} b^{n} t b^{-n}$ defines an automorphism of \mathscr{K}_{n} such that $\theta^{2}(g)=t^{-1} g t$ (all $g \in \mathscr{K}_{n}$). Let $H_{n}=\left\langle\mathscr{K}_{n}, s ; s^{2}=t, s^{-1} g s=\theta(g)\right.$ (all $\left.\left.g \in \mathscr{K}_{n}\right)\right\rangle$, and $\lambda=\left[s^{-1} b^{n} s, b^{n}\right]$ (=the longitude of $K(n, n)$). We can show, using arguments similar to [10, proof of Cor. 4.7] that for n odd, centralizing [$b, \lambda]$ in H_{n} does not kill [$\left.b, \lambda\right]$. It follows that for n odd, $H_{2}\left(G_{n}\right)=Z_{2}$, where $G_{n}=H_{n} /[b, \lambda]$. The proof below is somewhat removed from its knot theoretic origins, but the notation is consistent with the preceeding remarks.

Theorem 2.5. There exists an infinite family $\left\{G_{n}\right\}$ of groups such that
(i) For each n, there is a smooth torus $T_{n} \cong S^{1} \times S^{1} \cong S^{4}$ such that $\pi_{1}\left(S^{4}-T_{n}\right) \cong G_{n}$.
(ii) $G_{m} \neq G_{n}(m \neq n)$.
(iii) $H_{2}\left(G_{n}\right) \cong Z_{2}(n$ odd).

Proof. (Remark: Our proof that $H_{2}\left(G_{n}\right) \neq 0$ requires n to be odd, though another argument might make the assumption unnecessary.) Let $G_{n}=\left\langle b, s ; s^{-2} b^{n} s^{2}=s^{-1} b s b^{n},[s, \lambda]=1\right\rangle$, where $\lambda=\left[s^{-1} b^{n} s, b^{n}\right]$.

Claim 2.6. $\quad G_{n}$ has a Wirtinger presentation

$$
\left\langle x, s ; x=\left(s^{-1} x s^{-1}\right)^{n} s\left(s^{-1} x s^{-1}\right)^{-n}, s=\lambda^{-1} s \lambda\right\rangle
$$

where $x=b^{n} s b^{-n}$ (and λ now is expressed as a word in x and s.
Proof of 2.6. Rewrite the relation $s^{-2} b^{n} s^{2}=s^{-1} b s b^{n}$ as $b=s^{-1} b^{n} s^{2} b^{-n} s^{-1}$. Introduce the new generator x and replace the first relation with $b=s^{-1} x^{2} s^{-1}$. Use the latter to eliminate the generator b.

Claim 2.7. For each n, G_{n} is the group of a smooth torus in S^{4}.

Proof of 2.7. This follows from 2.6 and the methods of [16]. Figure 1 illustrates how to weave bands between two unknotted curves, following the instructions of a Wirtinger presentation of a group, to obtain a surface with that knot group.

Claim 2.8. For $m \neq n, G_{m} \not \equiv G_{n}$.
Proof of 2.8. These groups are distinguished by their Alexander polynomials $\left(\Delta(t)=n t^{2}+t-n\right)$.

Claim 2.9. For each $n, H_{2}\left(G_{n}\right) \cong 0$ or Z_{2}.
Proof of 2.9. Let $H_{n}=\left\langle b, s ; s^{-2} b^{n} s^{2}=s^{-1} b s b^{n}\right\rangle$ and let $\lambda=\left[s^{-1} b^{n} s\right.$, $\left.b^{n}\right]$ in H_{n}. Note that $s^{-1} \lambda s=\left[s^{-2} b^{n} s^{2}, s^{-1} b^{n} s\right]=$ (substitute) $\left[s^{-1} b s b^{n}\right.$, $\left.s^{-1} b^{n} s\right]=\lambda^{-1}$.

We observe that G_{n} is obtained from H_{n} by killing $[s, \lambda]$ and so, by Claim 2.6 and Lemma 1.6, $H_{2}\left(G_{n}\right)$ is isomorphic to the cyclic subgroup of $C_{n}=H_{n} /\left[H_{n},[s, \lambda]\right]$ generated by $[s, \lambda]$. Since $[s, \lambda]=$ λ^{2} in H_{n}, we have $[s,[s, \lambda]]=\lambda^{4}$. Thus, in $C_{n},[s, \lambda]^{2}=\lambda^{4}=1$, so $[s, \lambda]$ has order 1 or 2 in C_{n}.

Claim 2.10. $H_{2}\left(G_{n}\right) \cong Z_{2}$ for n odd.
Proof of 2.10. From the proof of 2.9, we have $\lambda^{4}=1$ in C_{n} and need to show $\lambda^{2} \neq 1$. We shall construct a homomorphic image D_{ν} of C_{n} in which λ^{2} is central but nontrivial.

Let F denote the free nilpotent group of class $2\langle u, v ;[[X, Y]$, $Z]\rangle$. By a theorem of Gruenberg [9, §6.5], F is residually a finite 2-group. Thus, since $[u, v]^{2} \neq 1$ in F, there is, for some integer m, a group \hat{F} in the variety of groups satisfying the laws $[[X, Y], Z]=$ 1 and $X^{2^{m}}=1$ that is a homomorphic image of F, and in which [u,v] has order 2^{r} for some $r \geqq 2$. Since \hat{F} is nilpotent of class 2, the cyclic subgroup generated by $[u, v]$ is central, hence normal, and we can pass to a quotient F^{*} in which $[u, v]^{4}=1$ (but $[u, v]^{2} \neq$ 1). Since F^{*} is nilpotent and generated by (the images of) u and v, any commutator $[g, h]$ equals some power of $[u, v]$, so $[g, h]^{4}=1$. Thus we may choose F^{*} to be the free group of rank 2 in the variety defined by the laws $X^{2^{m}}=[[X, Y], Z]=[X, Y]^{4}=1$.

For any integer ν, the free group $\langle x, y\rangle$ has an automorphism τ given by $\tau(x)=y, \tau(y)=y^{\nu} x$. Since F^{*} is a reduced free group (i.e., (free group)/(verbal subgroup)), τ induces an automorphism τ^{*} of F^{*}. Let D_{ν} be the extension of $F^{*}, D_{\nu}=\left\langle u, v, t ; t^{-1} u t=v, t^{-1} v t=\right.$ $v^{\nu} u$, relations for $\left.F^{*}(u, v)\right\rangle$. By eliminating $v\left(=t^{-1} u t\right)$, we obtain $D_{\nu}=\left\langle u, t ; t^{-2} u t^{2}=t^{-1} u^{\nu} t u\right.$, relations for $\left.F^{*}\left(u, t^{-1} u t\right)\right\rangle$. Note that in
$D_{\nu},\left[u, t^{-1} u t\right]$ has order exactly 4 . We now restrict ν so that $\nu n \equiv 1$ modulo (2^{m}).

The group $C_{n}=H_{n} /\left[H_{n},[s, \lambda]\right]$ has a presentation $\left\langle b, s ; s^{-2} b^{n} s^{2}=\right.$ $\left.s^{-1} b s b^{n},\left[b, \lambda^{2}\right]=\lambda^{4}=1\right\rangle$. Add the relation $b^{2 m}=1$ to obtain a homomorph \hat{C}_{n} of C_{n}. Introduce a new generator $r=b^{n}$. By choice of ν, we then have $r^{\nu}=b$; using this to eliminate b, we obtain $\widehat{C}_{n} \cong$ $\left\langle r, s ; r^{2^{m}}=1, s^{-2} r s^{2}=s^{-1} r^{\nu} s r,\left[r, \lambda^{2}\right]=\lambda^{4}=1\right\rangle$, where $\lambda=\left[s^{-1} r s, r\right]$. The mapping $r \rightarrow u, s \rightarrow t$ defines an epimorphism of \widehat{C}_{n} onto D_{ν}. Since λ^{2} is central and has order exactly 2 in D_{ν}, this completes the proof of 2.10 .
3. Connected sums. As with classical knots, one can compose knotted surfaces T_{0}, T_{1} in 4 -space (assuming T_{0}, T_{1} are separated by a flat 3-plane or 3 -sphere) by connecting T_{0} and T_{1} with a straight arc α and using α as a guide for an annulus from T_{0} to T_{1}. We denote the surface so obtained by $T_{0} \# T_{1}$. The group $\pi_{1}\left(S^{4}-T_{0} \# T_{1}\right)$ is of the form $G_{0} *_{\mu_{0}=\mu_{1}} G_{1}$, where $G_{i}=\pi_{1}\left(S^{4}-T_{i}\right)$ and μ_{i} is a meridian of T_{i} (in particular, μ_{i} generates $G_{i} /\left[G_{i}, G_{i}\right]$). The following lemma implies that second homology of groups is additive under this type of composition.

Lemma 3.1. Let G and H be groups, $g \in G, h \in H$, and suppose g has infinite order in $G /[G, G]$ and h has infinite order in H. Let \mathscr{G} denote $G *_{g=h} H$. Then $H_{2}(\mathscr{G}) \cong H_{2}(G) \oplus H_{2}(H)$.

Proof. Let X_{G}, X_{H} be connected, aspherical $C W$-complexes with fundamental groups G, H. Adjoin a cylinder $S^{1} \times[0,1]$ to the disjoint union of X_{G} and X_{H} using attaching maps of $S^{1} \times\{0\} \rightarrow X_{G}$, $S^{1} \times\{1\} \rightarrow X_{H}$ that trace out g, h. The space W so obtained has $\pi_{1}(W) \cong \mathscr{G}$. Furthermore, since g and h are of infinite order, it follows from [15, Theorem 5] that W is aspherical. According to Definition 1.1, $H_{2}(\mathscr{G}) \cong H_{2}(W), H_{2}(G) \cong H_{2}\left(X_{G}\right)$, and $H_{2}(H) \cong H_{2}\left(X_{H}\right)$. Since, by hypothesis, $\langle g\rangle \rightarrow G /[G, G]$ is injective, the Mayer-Vietoris sequence for $\left(W, X_{G} \cup S^{1} \times[0,1), \quad X_{H} \cup S^{1} \times(0,1]\right)$ states that $H_{2}(W) \cong H_{2}\left(X_{G}\right) \oplus H_{2}\left(X_{H}\right)$.

Theorem 3.2. If T_{0}, T_{1} are surfaces in S^{4} with knot groups G_{0}, G_{1} respectively, then $H_{2}\left(\pi_{1}\left(S^{4}-T_{0} \# T_{1}\right)\right) \cong H_{2}\left(G_{0}\right) \oplus H_{2}\left(G_{1}\right)$.

Corollary 3.3. The tori exhibited in §2 are not compositions of unknotted tori with knotted 2-spheres.

Corollary 3.4. For each $n \geqq 1$, there exists a closed orientable
surface of genus n, F_{n}, in S^{4} such that $H_{2}\left(\pi_{1}\left(S^{4}-F_{n}\right)\right) \cong \underbrace{Z_{2} \oplus \cdots \bigoplus Z_{2}}_{n}$.
Acknowledgments. We wish to thank Dennis Johnson and Dennis Roseman for helpful conversations. We also wish to thank the referee for several helpful suggestions.

Remark. We have learned that T. Maeda ("On the groups with Wirtinger presentations", Math. Seminar Notes, Kwansei Gakuin Univ., Sept. 1977) also has obtained an example of a group with nontrivial second homology $\left(Z_{2}\right)$ that occurs as $\pi_{1}\left(S^{4}-F^{2}\right)$ for some surface F^{2}. More recently, using methods similar to ours, C. Gordon has obtained tori in S^{4} with $H_{2}(G)=Z_{n}$ for any desired $n \geqq 0$. Finally, R. Litherland has found tori realizing all the groups $Z_{p} \oplus Z_{q}(p, q \geqq 0)$.

References

1. A. M. Brunner, E. J. Mayland, Jr., and J. Simon, A knot group in S^{4} with nontrivial second homology, (Preliminary report), Notices Amer. Math. Soc., 25 (Feb., 1978), Abstract 78T-G34, A-257.
2. H. S. M. Coxeter and W. O. Moser, Generators and Relations for Discrete groups (2nd ed.), Springer-Verlag, 1965. (Ergebnisse der Math., Band 14).
3. R. H. Fox, A quick trip through knot theory, Topology of 3-Manifolds and Related Topics, M. K. Fort, ed., Prentice Hall, 1962, 120-167.
4. F. Gonzalez-Acuña, unpublished lectures, University of Iowa, 1974-75.
5. H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comm. Math. Helv., 14 (1942), 257-309.
6. M. Kervaire, Les noeuds de dimensions supérieures, Bull. Soc. Math. France, 93 (1965), 225-271.
7. R. Kirby, Problems in low dimensional manifold theory, Proc. A. M. S. Summer Inst. in Topology, Stanford, 1976, to appear.
8. W. Magnus, Noneuclidean Tesselations and Their Groups, Academic Press (Pure and Applied Mathematics, v. 61), 1974.
9. W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, J. Wiley (Interscience), 1966.
10. E. J. Mayland, Jr., On residually finite knot groups, Trans. Amer. Math. Soc., 168 (1972), 221-232.
11. L. Moser, On the impossibility of obtaining $S^{2} \times S^{1}$ by elementary surgery along a knot, Pacific J. Math., 53 (1974), 519-523.
12. K. Murasugi, On a group that cannot be the group of a 2 -knot, Proc. Amer. Math. Soc., 64 (1977), 154-156.
13. J. Stallings, Homology and central series of groups, J. Algebra, 2 (1965), 170-181.
14. S. Suzuki, Knotting problems of 2 -spheres in 4 -sphere, Mathematics Seminar Notes, Kobe University, 4 (1976), 241-371.
15. J. H. C Whitehead, On the asphericity of regions in a 3-sphere, Fund. Math., 32 (1939), 149-166.
16. T. Yajima, On a characterization of knot groups of some spheres in R^{4}, Osaka J. Math., 6 (1969), 435-446.

Received June 4, 1978 and in revised form November 19, 1980. The first author was supported by the National Research Council of Canada, Grants A-5614 and A-5602. The
second author was partially supported by N.R.C. Grant A-8207. The third author was supported by N.R.C. Grants A-5614 and A-5602, and a University of Iowa Developmental Assignment; additional assistance was provided by N.R.C. A-8207 and N.S.F. Grant MCS76-06992.

University of Iowa
Iowa City, IA 52242

[^0]: ${ }^{1}$ A preliminary report on this paper appeared as [1].

[^1]: ${ }^{2}$ See concluding Remark.

