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RANDOM MAPPINGS WITH CONSTRAINTS ON
COALESCENCE AND NUMBER OF ORIGINS

JAMES ARNEY AND EDWARD A. BENDER

In § 2 we tabulate for easy reference probability distri-
butions associated with some functions of random mappings
on large sets (e.g., number of points on cycles, size of the
component containing x) when the number of immediate
predecessors of each point is required to lie in some set &.

Our results allow the number of origins to be restricted,
a useful constraint in some shift register situations. Although
limiting the number of immediate predecessors to {0,1,2}
and constraining the number of origins is in some ways a
poor model for random shift registers, we show in §§ 3 and
4 that most of the tabulated results fit shift register data
quite well.

Derivations of our results are given in §§ 5 through 9.

1* Introduction and terminology* Let X be an n element set
and let φ be a mapping from X to X. We can picture φ as a directed
graph with vertices X and edges (x, φ(x)), xeX. We use the graph
theory terminology component and cycle. The component containing
x is denoted K(x). For sufficiently large m, φm{x) lies on a cycle
denoted G{x). The least m such that φm(x) e C(x) is called the tail
length of x and written t(x). The six length of x, written s(x), is
the length of the path from x to the first repeat; i.e., t{x) plus the
size of C(x). If x lies on a cycle, the set of u e X such that
φnu)(u) — x is called the tree of x and is written T{x). It consists
precisely of those elements which first "hit" a cycle at x when φ
is iterated. If xeT(u), we define T(x) = T(u). The elements of
φ~\x) are called the immediate predecessors of x. The number of
points with r immediate predecessors is denoted by nr(φ). The ele-
ments of U φ~%x), where the union ranges over all i ^ 0 are called
the predecessors of x. The number of points with r predecessors is
denoted by Nr(φ). A point without predecessors is called an origin.
The number of origins is no(φ) — N^φ). Let Pi(φ) = n^)/n, the
probability that a point chosen at random has exactly i immediate
predecessors, then we call Σ* (i — ̂ Viiψ) = MΦ) the coefficient of
coalescence of φ. Many authors have employed this concept. Among
the equivalent definitions are

(a) the variance of the number of predecessors of a random
point,

(b) (n — 1) times the probability that two distinct elements have
the same immediate successor,
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(c) the expected number of other immediate predecessors to the
immediate successor of a randomly selected point.
The equivalence of these four definitions is easily established by
simple counting arguments. We use #(S) to denote the cardinality
of S. For example, %(C(x)) is the length of the cycle of x.

Let ^ be a set of nonnegative integers including zero and at
least one integer greater than one. Let τ be the set of mappings
from X to X such that the vertices of the associated directed
graphs all have indegrees lying in 3fm In other words, if φ e τ and
nt(φ) Φ 0, then i e 2$. Three special types of 3ί have been con-
sidered in the literature:

(a) all nonnegative integers,
(b) the integers 0 and k,
(c) the integers between 0 and k inclusive.

Rubin and Sitgreaves [9] and Harris [6] discuss (a). Rubin and
Sitgreaves also discuss (b) and (c), and Harris also discusses (a) when
1-cycles are forbidden. We establish results for all 3f. The total
number of vertices in the graph of φ can be computed by counting
the immediate predecessors of each point. This gives us n = Σ* %0-P)-
It follows that n must be a multiple of gcd(£&), the greatest common
divisor of the elements in 3ί.

We can ask for the distributions of various quantities over τ;
however, we must be clear just what we are asking for. One
possibility is to define a function f(φ) and ask for its distribution
assuming that all φ 6 τ are equally likely. This gives us information
about the overall appearance of a random map. The number of
cycles of a map is an example of this. Another possibility is to
define a function g(x9 φ) and ask for its distribution assuming that
all (x, φ) e X x τ are equally likely. This gives us information about
the appearance of a random map when viewed from a radom point.
The tail length of a point is an example of this. We usually write
g(x) instead of g(x, φ) to emphasize the fact that we are choosing a
random point. When f or g can be obtained simply by counting
(e.g., the cycles of <p, or the number of points between x and a
cyclic point), it is quite likely that the distributions, or at least the
means, can be computed asymptotically. See Table II in the next
section. Another type of function is

f(φ) = max g(x, φ) .

Since this requires more than simple counting, it is much harder to
deal with. See § 4.

Of particular interest is the case n = 2ι and £& = {0, 1, 2}. This
has some of the properties of shift registers of length I because in
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such divices a state has at most two predecessors. This model fits
shift register data fairly well, but predicts .293% origins whereas
the average number of origins for a random shift register of length
I is n/i = 2*~2. (This is easily proved; see below.) The number of
origins for a shift register might be restricted for other reasons.
For example, when the recursion is written in the form

(1.1) xz = f(xlf , xt_x) + xog(xlf , Xι-d ,

then the number of origins is precisely the number of solutions to
g = 0. (The expected number of zeros of g is 2l-1/2, proving the
earlier claim that the expected number of origins in a random shift
register is w/4.) If there is no further information about / and g,
we might look at data for random functions with this many origins.
Thus, it is of interest to restrict the mappings in τ to have a
specified number of origins. This can sometimes be done by writing
down explicit sums. We are unable to specify the number of origins
when using generating functions; however, a compromise is possible;
assign to φ a probability proportional to yn°, where y is chosen so
that the expected value of nQ = no(φ) has a particular value (e.g.,
1/4 for random shift registers). Setting y = 1 gives the unconstrained
case. This is done for two reasons. First, this is a natural approach
when using generating functions. (See [2] for some applications.)
Second, assigning this probability to φ leads to a distribution for
which the variance of nQ(φ) is relatively small. Table II includes
both the constrained and unconstrained cases.

We would like to thank L. Liporace, G. Soules, and C. Terry
for their help.

2* Summary of results* The following notation is used in the
tables.
£& the set of possible values for the number of immediate pre-

decessors of points;
φ a mapping such that the number of immediate predecessors

of each point is in 2$ and, possibly, such that the number
of origins is specified;

d the greatest common divisor of the elements of Z&\
n the number of points being mapped (always a multiple of d);
Σ ' sums ranging over those nonzero m e £& for which the fac-

torials in the sum make sense;

9 = l/(Σ'/3m~7(m - 1)!) 09 is defined below);
X = p Σ ' /3w~7(m - 2)! (β is defined below).
When there is no constraint on the number of origins:

β is the positive root of Σ'(w& — l)βm/ml — 1,
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G{r) = 1 + (r - l)2/λ,

When the number of origins is asymptotic to nf:
β is the positive root of Σ ' ( m — ntf — l)/3m/m! = 0,
G(r) = (λ + (r - I)2 - r2/)/(λ - / - λ/),
2/ - //3/(θ;

Nr(φ)

— Σ *

given a density function /, Pr {variable = j} = f(j);
the size of the set S;
the number of points with exactly r immediate predecessors
under <p;
the number of points x having a total of r predecessors,
including x, under φ\

l)Wi(9>)M, t ^ e coefficient of coalescence of 9>;
the number of cyclic elements of φ;
the number of cycles of φ; i.e., the number of components
of φ;
the cycle that x leads into;
the component containing x;
the number of points in a set of t randomly chosen points
that lie in the same component as x; Pr {kt(x) = t] is the
probability that t + 1 randomly chosen points lie in the same
component;
the tree of tails at the cycle point x leads into;
the tail length of x;
the six length of x; i.e., t(x) + #(C(a?)).

The parameters needed in Table II for some cases of particular
interest are given in Table I. If f(j) is given as a "probability
density function" entry in Table II, it means that the maximum
difference between the true cumulative distribution function and the
one computed using the table entry approaches zero. (For $(K(x))
it is necessary to restrict the maximum to i < % . ) A somewhat
stronger statement in terms of density functions is

Una max (|Pr {item = j} - /(j)|/max /(&)) = 0 ,
n-»0 j k

TABLE I. Parameters for Cases of Particular Interest

m(φ)

C{x)
K(x)
kt(x)

T(x)
t(x)
s(x)

&

[0, oo)
{0, k)
[0,k]

{0,1, 2}
{0,1, 2}

no(φ)

free
free
free
free
fn

β

1
(&!/(& - l))1/k

2//(l - 2/)

/ 5 * - D/A;

Vϊ-1
1/(1 - 2/)

1
Λ - l

Λ? + jS — ΛjS
2 - V 2

2/
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TABLE II. Asymptotic Means and Probability Densities

273

item

immed. pred.
nr(φ), r e ^

total pred.
NΛφ)

1 « r « n
coalescence

λ(φ)

cyclic elts.
e(φ)

no. cycles
m(φ)

cycle length
#«%»))

comp. size
#(#(»))

same comp.
kt(x)

tree size
#(Tfe))

tail length t(x)

six length s(x)

mean

r = 0: μ — pynlβ
rφO: μ = npβr'ιlrl

ndj\f2πλr%

if d\{r~l)

λ

Vπn/2λ

~-^/πnl2λ
LA

2n/S

2t/Z

nIZ

probability density function

normal with variance μ — G(r)μ2!n

distribution unknown

normal: see Section 9

(jλln) exp (-fλJ2n)

normal: mean — variance

V2πλ!nφ(jV λ/n)

l/(2nVl - j/n) for d \ j and j « n

conjecture: 1/2Vnj j > 1

same mean and distribution as #(C(a?))

same mean and distribution as c(φ)

Sec.

9

8

9

5

5

5

7

7

7

5

6

where the domain of j in the maximum is restricted for #(JBL(OJ)).

The last column in Table II gives the section where the results for
that entry are proved. The variance for nr(<p)9 the first entry in
Table II, should be set to zero if the value of nr(jp) is forced; i.e.,
if # ( ^ ) = 2 or if the number of origins is fixed and either r = 0
or # ( ^ ) = 3. The variance of λ is not given because of its com-
plexity. See § 9 for its computation.

3* Comparison with shift register data* We generated shift
registers of lenth ten at random subject to the constraint that no(<p)
take on some preassigned value. For each value of n0 we produced
2000 different registers. We choose 2000 to reduce sampling error.
Since the amount of work grows like 2ι where I is register length,
it is necessary to keep I reasonably small. For I = 10, our crude
program took about two minutes per value of n0. We were quite
surprised at the accuracy of the fit with n0 — 4 since Table II con-
tains asymptotic results that are based on n0 —> ©o.

The means of various items in Table II for these data sets are
shown in Table III. The largest difference between the theoretical
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TABLE III. Data from Ten Long Shift Registers

item

c(φ)

m(φ)

#«%*))

t(K(x))

property-

data mean
Table II mean
max. diff.

data mean
Table II mean
(3.1) mean
max. diff.

data mean
Table II mean
max. diff.

data mean
Table II mean
max. diff.

data mean
Table II mean
max. diff.

the number of origins

256

55.78
56.72

.03

4.096
3.466
4.043

.15

28.93
28.36

.04

693.33
682.67

.03

342.69
341.33

.01

32

152.58
160.42

.04

4.989
3.466
5.083

.15

78.63
80.21

.02

695.94
682.67

.03

343.52
341.33

.11

4

418.40
453.75

.08

6.071
3.466
6.122

.13

212.73
226.87

.03

654.58
682.67

.07

272.20
341.33

.37

and the observed cumulative distributions, denoted by "max. diff.",
is a finer measure of how well Table II fits shift register data.
Earlier runs with 500 random shift registers and the Monte Carlo
rule that variance due to sampling is inversely proportional to the
number of examples indicates that a max. diff. of about .04 is to be
expected in Table III because of sampling variation.

The values of nr(φ) and X(φ) are not studied because they are
completely determined. We have not included t(x) or s(x) because
they are very closely connected with #(C(#)) and c(φ) respectively,
as discussed in the next section. We have excluded Nr(φ) and kt(x)
because determining them seems to be quite time consuming. The
distribution for the latter should be good since it is derived from
that for #(iΓGiO) in § 7.

Most of the predictions fit the data rather well even when there
are as few as four origins; however, the predicted number of cycles
is significantly low and the fit for #(T(aO) is not very good. The
poor fit for the #(Γ(αO) distribution suggests that either the distri-
bution conjectured in Table III is incorrect or the structure of shift
registers is important for this statistic.

The m(φ) discrepancy appears to be due to the fact that In210

is rather small. We can obtain the improved estimate

(3.1) m(φ) e* -i- In (n/2\) + 7
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by studying the generating function — (1 — R^lnil — R) in the
paragraph leading to (7.10) more carefully. Here 7 = .5772156649-
is Euler's constant. This estimate is shown in Table III. The fit
to the m(φ) cumulative distribution can probably be improved by
obtaining a more accurate estimate for the variance as we did for
the mean. It appears that we should add the term ττ2/6 to the
asymptotic value given in Table II.

A discussion of estimates for average maxima and a comparison
with the same shift registers used in Table III appears in § 4. Com-
ments on models of shift registers appear in the last section.

4* The average of a maximum* As remarked earlier, study-
ing the distribution, or even just the mean, of a maximum is usually
quite difficult. In these remarkable paper [10] Shepp and Lloyd
obtain the asymptotic distribution for the length of the rth longest
and rth shortest cycles of a random permutation. The basic idea
is that asymptotically the cycle lengths are independently distributed
Poisson random variables. It is quite likely that this idea can be
used to obtain distributions of various maxima associated with ran-
dom mappings. Our results are much more modest: We use Shepp
and Lloyd's result to deduce cycle length information for random
mappings and give crude methods for estimating other maxima.

Shepp and Lloyd have shown that the expected value of the
maximum cycle length of a random permutation on [1, c] is .62432965c.
Using Lemma 1 in § 6 and averaging over all φ we obtain

(4.1) average maximum cycle length ~ .62432965c(<p) .

We now turn our attention to K(x) and T(x). If αέ denotes a
sequence of nonnegative numbers with maximum value α0, then

<̂  α0 ^ 1/Σ #f

Suppose the α/s are either %(K(x)) where x runs through a repre-
sentative of each component, or #(T(aO) where x runs through the
cyclic points. Then Σ &t — n and Σ <fi is n times the average given
in Table II. This leads to the bounds

(4.2a) 2n/S ̂  max %(K(x)) ^ V2βn = .816n

(4.2b) n/Z ̂ max#(T(aO) ^ njλ/Ύ = .577™ .

The question arises: What should we do with these estimates? One
possibility is to average them, but then we must decide which aver-
age to use. Arbitrarily choosing the arithmetic mean we get

(4.3) max #(K(x)) ^ .7416rc and max #(Γ(a?)) ** .4553^ .
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TABLE IV. Maxima for

item

comp.

tree

cycle

quantity-

data max.
(4.3) est.
(4.4) est.

data max.
(4.3) est.
(4.4) est.

data max.
Sh.-L. theory

Sh.-L. data

Ten Long Shift Registers

the number of origins

256

781.9
759.4
819.0

493.4
466.2
512.0

35.2
35.4
34.8

32

787.4
759.4
819.0

501.1
466.2
512.0

96.8
100.2
95.3

4

758.2
759.4
819.0

447.4
466.2
512.0

263.2
283.3
261.2

Another method for estimating a maximum uses the idea that,
once the component associated with the maximum is removed, what
is left can be treated as a new graph which has a maximum, and
so on. Let the fraction of points which belong to the maximum
component of a graph be r, then we have

(4.4) - Ifnf ™ %{K{x))n = 2n2/Z .

The left hand side is a geometric series. We have, after summing
and manipulating, r/(2 — r) ^ 2/3 and so r & 4/5. Using this approach
for tree we obtain r/(2 — r) ^1/3 and so r ^ 1/2. Table IV compares
the predictions with data from the shift registers used in the previous
section. The last two lines refer to predictions based on Shepp and
Lloyd's result. The "theory" case uses the predicted value for c(φ)
and the "data" case uses the observed value.

5* Relations between six, tail, and cycle lengths* In this
section we show that if the asymptotic density function for one of
s(x), t(x)f c(φ) and #(C(x)) is known, then the asymptotic density
functions of the other three are easily obtained. At the end of
the section we derive the asymptotic density function for m(φ)
using the density for c{φ) and the corresponding result for permu-
tations.

We begin with

LEMMA 1. Let a set X and numbers nr and c be given. Let
& be the set of all mappings φ from X to X with c(φ) = c and
nr{φ) = nr for all r. Then the distribution of cycle lengths of the
mappings in £^ is independent of X and the nr's. In particular,
it is the same as the distribution for permutations on a set of c
elements.
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Proof. It suffices to show the last assertion in the lemma. Let
φ e S?. Break all edges of the associated graph that lie on cycles.
The c resulting trees were equally likely to arise from any other
recombination of them that forms a permutation of their roots. •

We will establish the following simple relationship between c(φ)
and Jt(C(αO):

(5.1) Pr {#«?(*)) = j] = Σ Pr {c{φ) = k}/k .

Before proceeding with the derivation we observe that a point in a
random permutation of [1, k] belongs to a cycle of length j ^ k with
probability 1/k. To see this arrange [1, k] in a one line permutation
at random, create cycles by breaking the permutation before πύ if
π, < %i for all j < i, and look at the length of the cycle containing
ft. The derivation of (5.1) is now straightforward: the left side of
(5.1) can be rewritten as

= j and c(φ) = k}

= V Pr {#(CG*0) = j\c(φ) = k) Pr {C(φ) = k) .Σ
The conditional probability equals 1/k by Lemma 1 and our observa-
tion about random permutations of [1, ft].

Let F(j) and f(j) be the density functions for #(C(x)) and c(φ)
respectively. We can rewrite (5.1) as F(j) = Σ f(k)/k or, equiva-
lently, f(j) = j(F(j) — F(j + 1)). These lead to the asymptotic results

(5.2) F(j) = [tt^dv and f(j) = -jF'(j)
Ji

We now show that t(x) and #(C(aO) have asymptotically the same
distribution and that a relationship like (5.1) holds asymptotically
for s(x) and t(x). Choose a point x at random and construct its six,
except for the final closure. Even allowing for indegree restrictions
and constraints on the number of origins, it is easy to see that all
closures, except possibly the one which makes x cyclic are equally
likely. For asymptotic purposes, this cyclic closure is unimportant
since 3ί contains a number exceeding 1. It follows that t(x) and
#(C(cc)) have asymptotically the same distribution and that

Pr {t(a ) = j\s(x) = k) - 1/k for 0 < j < k .

(We do not know if this holds for j — 0.) This is enough to deter-
mine the distribution of s(x) just as we proved (5.1): for j > 1 we
have
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Pr {«(») = j} = Σ Pr {«(») = j \ s(x) = k} Pr {«(») = ft}

~ Σ Pr {s(a?) = k}/k as i > oo .
k>j

Since ί(αj) and %{C(x)) have asymptotically the same distribution,

Pr {#(C(aO) = Λ - Σ Pr {«(«) = k}jk as i > <*> .

Comparing this with (5.1) we see that Pr {six) = j) ~ Pr {ciφ) = i}.
For a fixed i we obtain the desired result trivially since both the six)
and ciφ) density functions approach zero rapidly. The asymptotic
density function for six) is determined in the next section.

We now assume that the asymptotic density function for ciφ)
is given and derive the asymptotic density function for m(<p). We
need the result of Goncarov [5] that the number of cycles in a
random permutation on a k element set is asymptotically normally
distributed with mean and variance lnfc. Combining this result
with Lemma 1 we have

Pr {m(φ) = t] ~ Σ Pr {ciφ) = k) Pr {t \ ΨQa k, In &)} ,

where Ψiμ, v) denotes the normal distribution with mean μ and
variance v. The table entry for miφ) now follows easily from the
table entry for ciφ). (All that is needed about the distribution of
ciφ) is its mean, the fact the mean is unbounded as n —> oo y and
the fact that asymptotically the distribution is clumped near its
mean.)

6. The density function for six length* Rubin and Sitgreaves
obtain simple expressions for Pr {six) = s} when £& contains all non-
negative integers and when £2f = {0, k). See their formulas (7.2) and
(13.24). We determine the asymptotic density function for six) in
general by essentially the same method that they use for the case
& = [°, k] Let ^γ\ g i b e those points with indegree i. Then
Mt = %i^ri)- Let Ch(A|J5) denote the number of ways to choose A
subject to the condition B. By a simple counting argument

(6.1) ch((φ, ^ L

Let S(x) - {φ\x), k^\}, SΪ = ̂ Π Π S(x), and β4 = #(^t). We have

Ch((φ, x)\^T,s{x) = s, #(C(x)) = c < s, s, xeΛϊ, φ*{x)e&%)

= ΠCh(^t) Ch(a;) Ch(93s(a;)) Ch(order for the six)
i

x Ch (successors for points not in the six)
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x (n - β)!/(Π ϋ ^ Ό d l (» ~ l)!84)(fc - l ) ! ' *- 1 ^ - 2)! .

Rearranging, summing over c < s, j, and k9 and using Σ βy = β — 1,
we obtain

Ch ((<?, x)\^s{x) = 8, #(C(aj)) < β, a)

(A - IK) Π

Dividing this by (6.1) we obtain

Pr {s(x) = 8, t(x) Φ 0, and

(6.2)

~Γ \8i

The modifications for the case c = s are straightforward. They arise
from three differences; first, the start of the six is now no different
from any of the other points on the six, second, #($(#)) = s, one
larger than it was before, and, third, there is no need to sum over
c and j. We obtain

Pr {s(x) = 8, t(x) = 0, and

( 6 ' 3 ) =((Λ-8)!8!/tt Λ!)Π
i

We now express the sum of (6.2) and (6.3) over all s as the
coefficient of an analytic function. The coefficient of zί in (1 + kz)r is

[Ak1 and so the coefficient of z* in k(k — l)rz(l + kz)r~ι is (k — l)ί(r* }k*.

Recalling that in (6.2) Σ si = 8 — 1, we obtain

= (^ + 1 - g)! (8 - 1)!
(6.4) n.n\

x Coefef Γπ (1 + iz)n{ 5 + Σ fc(fc

+ kz

The coefficient of 2s can be determind by the saddle point method.
A description of this technique is given in de Bruijn [4]. Let f(z)
be the function from which we wish to extract the coefficient. By

the Cauchy Residue theorem, the coefficient of z* is <j> (f(z)dz)/(2πiz8+1)

where the contour is \z\ = r — s/n. We have

11 + kz|2 = (1 + krf - 2kr(l - cos θ) - (1 + kr)2exp (~krθ2/(l + kr)2)



280 JAMES ARNEY AND EDWARD A. BENDER

arg (1 + kz) = arctan ((fcr sin 0)/(l + kr cos 0)) ~ krθ/(l + fcr) .

Prom this we can conclude that only very small values of θ contri-
bute significantly to the contour integral and in this range

f(z) ~ f(r) exp (iθa Σ knjn(l + kr) - sθ2 Σ knJ2n(l + kr)2) .

Note that

Σ knk/n(l + kr) = Σ &%M + O(Σ rk(k - l)nk/n) and

Σ knJ2n(l + fcr)2 = Σ W 2 w + O(Σ rfc(fc - ΐ)njn) .

When wfc is near its expected value, npβh~1/k\ for ke& and k
we may use this in place of w* to simplify the above equation:

/(r) exp (~θ2s/2

Using this in the contour integral we obtain the estimate

(6.5a) Coef f(z) - f(r)/rsl/2πs .

Using Stirling's formula

k\ - ι/2πk(k/e)k ,

and [1, (3.8)] we have

(6.5b) (n + 1 - 8)1 (s - 1)!/%-^! - ]/2π[s(s/en)sexp (s2/2n) .

We also have

fix) - Π (1 + kr)nKs/n + (s2/n) Σ k(h ~ 1)%M(1 + Air))

(6.5c) - exp ( Σ nk(kr - k2r2/2))(s/n + λs2/w)

- exp (s - (1 + X)s2/2n)(Xs2/n) .

Combining (6.4) and (6.5) we obtain

(6.6) Pr {s(x) = s | ^ } - (λ«/w) exp (-Xs2/2n) ,

where the asymptotic result requires s —» oo and sM2/3 -^ 0. Outside
this range the density function is very small. Because the variance
of nr(φ) is proportional to it mean, it follows that #(̂ /<!) ~ nr(φ)
with probability 1. Consequently, we may remove the conditioning
on ^ T in (6.6).

?• Generating functions* In this section we develop generating
functions and use them to study the means of no(φ), m(φ), #(K(x)),
#(C(α?)), #(T(αO), UriΦ)* a n ( i λ(9>), respectively. This illustrates the
ease with which generating functions can often be used to study
means. We also determine the asymptotic density function for
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%(K(x)) and kk(x). Until the last paragraph of the section, we assume
that gcd(^) = 1. Recall the convention introduced in § 2 that Σ '
indicates a sum over all nonzero me £& for which the factorials in
the sum make sense. The quantities we compute are weighted by
yn° as noted at the end of § 1. We use the variables x9 yf and z
to keep track of quantities as follows:

x the number of points in the graph ,

y the number of origins , and

z the number of cycles .

The variable x is exponential since the elements of X are labeled.
For example, the coefficient of x20y5zy2Q\ is a number associated with
mappings on twenty points having five origins and four cycles.

The methods in this paragraph are fairly standard but few
descriptions exist. Bender and Goldman [3] discuss a more general
situation. There are (c — 1)! possible c-cycles on [1, c\. By the
exponential formula [3, Thm. 2], the generating function for map-
pings is given by

(7.1) M = exp (Σ z(c - 1)! Rΰ/cl) = (1 - R)~z ,

where R is the generating function for objects making up the cycles.
These objects are rooted directed trees where all paths lead to the
root, the in-degrees of all nonroot vertices belong to £&, and one
plus the degree of the root belongs to 3fm We have

(7.2) Λ = a> Σ'£—7(m - 1)! ,

where B counts trees like those R counts, without the exception for
the degree of the root. Thus

(7.3) B — xy + xΎ! Bmlml

The derivations of (7.2) and (7.3) are similar. In the latter case, a
tree consists of either an origin or a root where exactly m roots
are joined. The origin contributes the term xy. The union of m
trees contributes Bm/ml, the ml arising because the order of the
trees is irrelevant, and the new root contributes x.

The simplest approach is to solve (7.3) for B and combine this
with (7.2) and (7.1); however, this can be done for very few £&.
Since we intend to study various derivatives of (7.1) and of related
generating functions, we can avoid this problem by using implicit
differentiation and the following asymptotic estimate.

LEMMA 2. Suppose gcd(^) = 1 and let an(k) denote the coefficient
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of xn in (1 - R)-\ Then

an(k) ~ nfc/2-V((2λ)fe/2^Γ(A:/2)) ,

where β is the positive root of Σ ' ( m ~~ l)/5m/m! = y,

P = V ( Σ ' βm~Ί{m - 1)1) , and λ = pΣS βm~ιl(m - 2)! .

Proof. Throughout the proof, At(x) denotes a function which is
analytic near the point p defined below. Let F(x, B) — xy +
a?Σ' Bm/ml - 5. By the proof of Theorem 5 of [1, p. 505] and (7.3),

(7.5) B = B(x) = Aλ(x) + A2(x)(l - <Φ)1/2 ,

where A2(/θ) Φ 0, and |0 > 0 and β > 0 are the solution of the pair
of equations F(p, β) = 0, JF /̂o, /3) = 0. Manipulating these we obtain

(7.6a) Σ ' (m - ΐ)βm/ml = 2/

(7.6b) /t>Σ'/3""V(w-l)! = 1 .

We can find β from (7.6 a) and then p from (7.6 b). (Note that
gcd(^) = 1 implies (7.6a) has a unique root of minimum modulus.)
Rewriting (7.6b) we obtain R(p) = 1. By (7.2) and (7.5),

R(x) = Alx) + Alx){l - xIpT* ,

where Alp) Φ 0. Since R(p) = 1,

1 - R(x) = Aβ(a?)(l - &//0) -

Using this and A4(<o) Φ 0, we have

(1 - R(x)Γ = (1 - x/iO)~1/2(-A4(x)

= A6(x)(l - x/ρ)~1/2 + A7(x) .

By the parenthetic note after (7.6) and Theorem 4 of [1, p. 498],
the coefficients of (1 — R(x))~k are asymptotic to bι

where b = A6(p). We find λ = 6"2/2 as follows:

b'2 = lim (1 - R(x)Y/(l - x/ρ) = -pd^x} "
«-*P dx

Differentiating (7.2) directly and (7.3) implicitly we have

(7.7a) R\x) = Σ ' B ^ K m - 1)! + xB'Σ'5m~V(m - 2)!

(7.7b) B\x) = 1^-T' n~'
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which we substitute in the above to obtain

X = δ-*/2 = ^(Σ'/Sw"2/(m - 2)\){y + Σ ' /

= Pβ Σ ' βm-2Km - 2)! by (7.6) . •

The (weighted) total number of mappings is simply the coefficient
of xn/n\ in M when z = 1. We have Λf = (1 — R)"1. By Lemma 2

(7.8) (number of mappings) - nl/(pn\/2nXΓ(l/2)) .

Since 2/ keeps track of the number of origins, y dM/dy provides infor-
mation about the average number of origins. Differentiating (7.1)
and (7.2) directly and differentiating (7.3) implicitly, we obtain

V dM/dy = x2y(Σ'Bm-2K™ - 2)!)(1 - R)~*.

Applying Lemma 2 and dividing by (7.8) we obtain the (weighted)
average number of origins:

(7.9) nlφ) ~ ί>%(Σ' /T-7(m - 2)!)wΓ(l/2)/(λΓ(8/2)) - nyp/β .

We must set this equal to some value and solve for y, p, and β.
Substituting from Lemma 2 and rearranging we have the rule:

If nQ(φ)/n = f is given, let β be the positive
root of Σ ' ( m - m / - ϊ)βm/m\ = 0 and define
P = 1/(Σ' /3w~7(m - 1)!) and 2/ = //3/<o .

Since no(φ) is normally distributed with variance proportional to n,
most of the contribution to our various weighted averages come
from mappings with no(φ) near fn.

We now study the average number of cycles. Using the operator
zd/dz and setting z = 1, we have —(1 — JB^lnί l — R). Since
In (1 — R) differs from In i/l — ίc/p by a function which is analytic
near p, we need only consider — (1 — R)~x In ]/l — x/p. Using (7.8),
Lemma 2, and either the Taylor series expansion for In or Theorems
1 and A of [7],

1 n—1 1 / ΛΛ \l/2 1

(7.10) Φ J - J Σ J H T ~-M2 *=i k\n

We now study the density function for #(JBΓ(aj)), the size of the
component containing x. Rubin and Sitgreaves derive explicit sums
when £& contains all nonnegative integers and when 3f — {0, k) in
their equations (6.2) and (13.20) respectively. We begin by deter-
mining the number of mappings with connected graphs. The gener-
ating function is Σ RCIG = —In (1 — R). As in the previous paragraph,
this differs from — In i/l — x/p by a function which is analytic near
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p, and so

(7.11) (number of one component mappings) ~ nl/2npn .

Letting Ch ( ) denote the number of ways to choose , we have

Fr{$(K(x)) = j} = Gh(j — 1 vertices) Ch (size j component)

x Ch (size n — j graph)/Ch (size n graph)

In- 1\
. .Ul/2JPX(n - j)l/\/2πX(n - j

3 — 1/

x (\/2πXnρn/nl)

= l/2\/n(n - j) ,

where we have used (7.8) and (7.11) to obtain the asymptotic formula
and so require that j -» oo and (n — j) —> oo.

Using the result for #(JBΓ(a?)), we easily obtain the result for kt(x):

Pr

We used the standard formula j xr'\l - ^)s"1cίx - Γ(r)Γ(s)/Γ(r + s).

When i = ί, the value of the probability is (2fί!)2/(2ί + 1)!. To

compute the expected value, we introduce a factor of ί into the

original sum and proceed as before.
We now average over points. To do this we distinguish a special

element x0 e X, let G be the generating function for the "part" con-
taining χQ, and let H be the generating function for the remainder.
If F is the total generating function, then Fx = GXH. The partial
derivative selects the distinguished point x0. On the right hand side
it is applied only to G rather than to GH because x0 lies in the part
associated with G. The following observation is useful. Near x — p,
the dominant part of Rτ is

α;(Σ'£w-2/(m - 2)\){y + Σ'B»/ml)/a - B) .

Near x — p we can replace x by p and B by β in the above for
asymptotic purposes. Thus

(7.12) as x > p Rf ~ (X/p)(l - R)~ι .
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Although we have already determined the asymptotic probability
density function for #(!£(&)), we determine its mean because it pro-
vides a simple illustration of the method. Since we wish to count
the number of vertices in the component containing xOf we replace
xk by kxk in the generating function of a component. Thus

G = x JL Σ RΊo = xR'HX - R) -

dx cέi

By (7.12), G ~ λ(l - R)~\ Thus

G. - λ2Λ'(l - R)~s ~ (2λ2/io)(l - R)-* .

Since a general graph without the component containing xQ is still
a general graph, H = M = (1 — i?)"1 and

Fm ~ (2X2/p)(l - i2)-5 .

By Lemma 2, and the fact that nm is asymptotic to (n — 1)3/2, the
coefficient of xn~ιj{n — 1)! is asymptotic to

(n - 1)1 (2λ2/1o)^3/2/(io
n-1(2λ)5/T(5/2)) = 2nl v/~n/(3pnv/2λ,Γ(l/2)) .

Combining this with (7.8) we obtain #(iί(#)) — 2^/3.
For #(C(»)), the size of the cycle that a? leads into,

G = Σ eCBVe) = Λ/(l - Λ)

and, again, H — M. Using (7.12) we obtain

Fm

By Lemma 2, and the fact that n2 is asymptotic to (n — I)2, the
coefficient of xn~γ\(n — 1)! is asymptotic to

(n - 1)1 (Xlp)nn/((2X)2pn~1Γ(2)) =

Combining this with (7.8) we obtain

For #(Γ(a?)) we set G = a?S'. The rest of the cycle for the com-
ponent containing x0 has generating function Σ ^ c - 1 = (1 — R)~\ and
the generating function for the remainder of the graph is M. Thus
JΓ = (1 - #)- 2. By (7.12) G. - (λ2//θ)(l - -B)"3 and since Λ(|θ) - 1,

Since this is half the function studied for JBL(O?),
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The conjectured distribution for #(Γ(a?)) is based on an interesting
new result of Meir and Moon [8]. Consider the set of k vertex
rooted trees where each vertex has indegree in Sf and each tree is
weighted by yn° as usual. Meir and Moon show that the probability
that a point is at a distance j from the root is

(λi/λs)exp( —λj72ft) when j\V k is bounded .

Replacing j by j + 1 and pretending that T{x) is obtained from (7.3)
rather than (7.2), we have

Pr {t{x) = j I #(Γ(aO) = *} ~ (λj/A) exp (-λ J72Λ) .

We will ignore the restriction on j . It follows that

Pr {t(x) = i} ~ Σ Pr {#(Γ(α)) = Λ}(λj/ft) exp (-Xf/2k) .

The left hand side of this relationship appears in Table II. Define

k — un j = v]/n/X p(u) = Km n Pr

Passing to the limit in the asymptotic relation we obtain the integral
equation

u

It is easily verified that p(u) = \\2Vu is the solution. This gives
the result in Table II. We suspect that this proof can be made
rigorous.

Although nr{φ)> the number of points with indegree r, is studied
in detail in § 9, we would like to point out the ease with which the
mean of nr(φ) can be found. Since we have studied nQ(φ) in (7.9),
we assume that r > 0. Introduce a variable w to keep track of the
points counted by nr(φ):

- 1)! + x(w - l)Br~ιl{r - 1)! and

B = xy + x Σ ' Bmjm\ + x(w - l)Br/rl .

Differentiating as usual and evaluating at w = 1 we obtain

Rw - pBw Σ ' (m - l)/3-7(m - 1)! = XBJβ

Bw

By Lemma 2, the coefficient of xn/nl is asymptotic to

n! pβr-Vn/2X/(rl pnΓ'(1/2)) .
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By (7.8), the expected value of nt is {pβr~1lr\)n. Since

M<P) = Σ ' w(m - l)nm(φ)/n ,

the expected value of X(φ) is p^ m(m — l)βm~ιjm\ = λ.
We can study the total number of predecessors of noncyclic points

by introducing another variable u as follows

B(xf u) = uxy + ux Σ ' B(uxf u)m/ml

R(x, v) = a? Σ ' #0*, tt)—V(w - 1)! ,

and we can consider all predecessors by also replacing Λf with

Λf(α?, u) = exp ( Σ R(ucx, u)/c) .

If we wish to study only the predecessors of cyclic points, we can
use (7,2) and (7.3) to define R and B and define M as above with
R(ucx9 u) replaced by R(ucx). We do not pursue this here. See § 8.

Suppose gcd(£&) = d > 1, then the powers of x in £/& and R
are multiples of d. If we replace xd by a new variable, the above
methods continue to apply. In this case, all estimates of power
series coefficients end up being multiplied by d. Since averages and
distributions involve quotients, they are unchanged.

8* The total number of predecessors* The mean total number
of predecessors of a point is easily obtained. Since x is a predeces-
sor of #((?(&)) cyclic points, the total number of predecessors of cyclic
points is precisely the sum of #(C(a?)). Since there are c(φ) cyclic
points, it is easy to see that the average number of total predeces-
sors of a cyclic point is asymptotically n/2. Since x is a predecessor
precisely of those points counted in s(x), the mean number of total
predecessors of a point is the mean of s(x) which is asymptotically
i/πn/2x. Also, the total number of predecessors of noncyclic points
is the sum of t(x), and so the mean number of total predecessors of
noncyclic points is asymptotically the same as t(xj ~ "i/τm/8λ. See
the next to the last paragraph of § 7 for a generating function
approach.

It is possible to obtain fairly simple expressions for the expected
value of Nr(φ) in certain cases. Rubin and Sitgreaves show that it
equals

nlrr~\n - r)n~r

(n — r)l r ! nn~ι

when £2f consists of all nonnegative integers and obtain some rather
messy expressions when ^ = { 0 , k}. The references are their formulae
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(8.2), (13.26), and (13.27). It appears that simple sums are impossible
to obtain in the general case. We treat it asymptotically by using
a standard branching theory technique that was also employed by
Rubin and Sitgreaves.

Note that except for cyclic points, the number of predecessors
of a point must be one more than a multiple of d. Since the number
of cyclic points grows like / ^ , we can ignore them provided r<n.

Let Ψr be the expected value of the probability Nr(φ)/n, and let
pr == pr(φ)/n, the expected value of the probability that a point has
exactly r immediate predecessors. Then

(8.1) F r = Σ ' p . Σ y β l •••*".. for r > l ,

where the inner sum extends over all m-tuples sl9 , sm such that
the sum of the st equals r — 1 and we have assume that the prob-
abilities involved are independent. To see this, let x be a random
point and note that the factor ΨH is associated with the ith im-
mediate predecessor of x and that this point has a total of β< pre-
decessors. Define A{z) — Σ Ψrz

r, the sum ranging over r ^ 1, and
rewrite (8.1) as

(8.2) A(z) = zpo + zΣ/P.A(zr.

Since (8.1) was based on the assumption of independence, the
coefficients of A{z) are a good approximation provided r < n. We
do not know pm exactly, but we do have the asymptotic information
of Table II for nm(φ) = npm. Thus pm ~ ρβm~ιlm\ for mΦQ and
Po ~ VP/β- Insert this in (8.2) and multiply by β to obtain

(8.3) βA(z) ~ (pz)y + (pz) Σ ' (βA(z))m/ml .

We can treat this as an equality and analyze it. Rubin and Sitgreaves
use Lagrange inversion. This generally yields unwieldy results;
however, it can be used to supplement the following method when
r is small.

Since (8.3) has the same form as (7.3), it can be analyzed in the
same way: If d = 1, Theorem 5 [1, p. 502] can be used with

F(z, w) = pyz + pz Σ ' (βw)mlml — βw .

After a bit of calculation we obtain Ψr ~ l/i/2ττλr3, asymptotically
in r. As noted at the end of § 7, this must be multiplied by d if
d> 1.

9* Number of immediate predecessors* In this section we
show that every finite set of the nr(φ)'s is asymptotically jointly
normally distributed and obtain the variances and covariances. From
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this it follows that λ is normally distributed with a computable
variance.

Let g7 and ^ be disjoint finite subsets of 3ί where %{jΞf —
^~) ;Ξ> 3 and g7 Φ 0 . We show that the probability that a map
has nr(<p) = fr(n) for r e &~ and nr(φ) = vr for r 6 g7 is asymptotically
normal in the vr with parameters depending on ^ , g7, ^ 7 and /r(w).
It is assumed that the fr(n) are such that a large number of choices
exist for nr, re g*. When ^ is finite it suffices to consider the
case g* = £2? — ̂ ~. The modifications for infinite «£̂  are discussed
after the finite case. The entry in Table II corresponds to g7 = {i}
and either J^ — 0 or ^ " = {0}, but any set g7 containing i can be
used to find the variance of i. We will use g3 = {i, j} so that we
can compute covariances, too.

Some new notation is needed. Let β be the positive root of

(9.1) (l - ^ Σ ΛWWΛΣ F-Ίr\)

= (i - Σ rfMMKΣ* p-Ίir - l)!).

(It is to be understood throughout that a sum over r ί _̂~~ is limited
to ^ . ) Define

(9.2a) p = (1 - Σ rfr(n)/n)/( Σ ^VCr - 1)!) ,

(9.2b) ^ r = npβr-1/r\ and r r = wr - μr .

Manipulating (9.1) and (9.2) we obtain

(9.3 a) Σ μr = n - Σ /,(»)

(9.3b) Σ rjwr = % - Σ r/ r(»).

Note that the constraints ̂ Σ/ nr = n and Σ ' ^^r = w with the sums
over all r lead to the constraints

(9.4) Σ^τ r = 0 and Σ rτr - 0 .

By a simple counting argument, the number of maps such that
the nr's have some preassigned values is

(9.5) N =
re&r fθr. I .

By Taylor's theorem

In (1 + z) = s - 2;2/2 + O(zz)

and Stirling's formula
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n! ~ ~]/2πn(n/e)n ,

it follows that when τr = o(n2/3)

(9 6)
(nplβY'βT' exp

Multiply (9.5) by the product over r ί # " of μrl rlμr and use (9.6)
and (9.4) to obtain

(9.7) N ~ G(n, f) exp ( - Σ τ*/2μr) ,
re .

for τr = o(w2/3), where G is some function independent of the τ/s
which we are not particularly interested in. If any of the τ/s are
large compared to \/"nf then the value of N is small compared to
the value of N when the τ/s are zero. By this and (9.7), the τ/s
are asymptotically jointly normally distributed with means zero. It
follows that the nr's are asymptotically jointly normally distributed
with means μr. They are not independent because of the constraints
on the τ/s. We can obtain a nonsingular distribution by selecting
two distinct indices i, j g ^ 7 solving for τt and τs in (9.4), and sub-
stituting the result into (9.7). The result is a quadratic form τ'Ax
inside the exponential function. The inverse of the matrix A is the
covariance matrix for r. Rubin and Sitgreaves use this to derive
the covariance when ^~ = 0 and £& = [0, k] in their (14.22). Un-
fortunately, (9.7) does not apply to infinite 3f.

We now turn our attention to (possibly) infinite £2f. Let & be
those elements of £& which are not in either g7 or ^ T We assume
that # ( ^ ) ^ 2, so the distribution on S* is nonsingular.

Let 6* and e* be given and b and c be arbitrary subject to
b - 6* = o(&*2/3) and c - c* = o(c*2/3). We next show that

(9.8) Σ Π W r!" ')- 1 - M ^ " ' 2 exp (-(e - 6c*/6*)2/26%2) ,

where the sum ranges over all nr's such that

and the positive numbers C, B, and σ are determined by

(9.9a) (6*/c*) Σ rCVr! - Σ Cr/r! = B

(9.9b) <τ2 = ( Σ r*Cr/rl)/B - (c*/δ*)2.

If the left side of (9.8) is multiplied by xbyc and summed over 6 and
c, we obtain exp(a?Σ2/7^!)> the sum ranging over ^?. The coeffi-
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cient of xb is clearly (Σl/7f!)Y&l Set y = Cz where C is defined as
above. An application of the central limit theorem for independent
identically distributed random variables as in [2, § 4] gives the
desired result. In this case there are 6 independent, identically
distributed random variables f< with Pr {£* = k) = Ck/k\ B. As in the
derivation of (9.6), we have

6! ~ (6*!/(6*ΓX&*)δexp((& - δ*)2/2δ*) ,

which we need in the next paragraph.
We now return to our problem: We wish to sum (9.5) over all

choices for nr such that nr = fr(n) for r e ^ nr = μr + τr for r e g 7 ,
and Σ ' n r = Σ ' r n r = w (In other words, wr is given for r e ^ U ^
and nr is allowed to vary for r e ^ subject to the constraints
Σ ' ^ r = Y!rnr = w.) The notation introduced in (9.1) and (9.2) still
applies. We now set

(9.10) J * = Σ j " f and c* = Σ rjκr .

It follows that C = β and 5 = b*β/nρ. Set

δ = δ* — Σ τi a n ( i c = c* - Σ iτ^

in (9.8). By (9.4) the range of the sum in (9.8) is the range over
which we wish to sum (9.5). Combining this with (9.6) for r e ^
we can rewrite (9.5) as

(9.11) N - H(nf f) exp ( - ( $ + S2 + S8)/2) ,

where H is some function independent of the r/s,

(9.12a) St = Σ rVμ, ,
iekr

(9.12 b) Si, = ( Σ Tif/b* , and

(9.12c) Sz = ( Σ ir, - (c*/b*) Σ
ieίf

We now turn our attention to the covariance matrix for the
nr(φ)9&. Covariance does not depend on which (marginal) distribution
is used as long as it contains the two variables whose covariance we
want. We use (6.11) with 8* = {if j} to obtain cov (τif τ$) and var (τ<).
No new ideas are involved in doing this; however, we must unravel
the notation in (9.1), (9.2), (9.3), (9.9b), (9.10), and (9.12) and then
carry out involved algebraic manipulations without making errors.
There should be an easier way to arrive at the desired result, but
we have not found it. It will be convenient to introduce the nota-
tion Rk = ^rkμr, the sum ranging over r e ^ and Tk = Σίfcft> the
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sum ranging over t e & U if.
We unravel. The values of β and p given by (9.1) and (9.2a)

are the same as those given in §2. Equations (9.8) and (9.9b) are

&* = RQ c* = R, (6*)V = R0R2 - R\

equation (9.12c) is

S3 - ((ir, + jτd)R0 - (τ, + τ ^

This completes the unravelling of the notation.
The 2 by 2 matrix associated with the quadratic form S± + S2 + SB

turns out to be

[
μ^R.R, - Rϊ) Iμ.μβ

where
A{ί) =

The inverse of this gives the variance and covariance. They can be
written in a single formula:

(9.13) cov (τ,, τ,) = a w A +

To obtain the entry in Table II, consider the two cases ^~ — 0 and
&~ = {0}.

Since the elements of every finite set of nr(φYs have a joint
normal distribution and since those with large r contribute very
little to the variance and covariance, we can conclude that since X(φ)
is a linear combination of them it is normally distributed. The mean
of x(φ) was computed in § 7. Its variance is Σ ij(i ~ 1)0" — 1) x
cov(τi, τό)jn2. This can be computed asymptotically using (9.13), but
it is quite messy.

10* Concluding remarks* Table II states that the density
function for Nr(φ) is unknown. We have no ideas concerning its
value or how it might be found. It also states that the density
function for #(Γ(cc)) is uncertain. We presented a heuristic deriva-
tion of it in § 7 and data that casts doubt on its validity in Table
III. We think the distribution is probably correct and simply does
not fit the data so well when the number of origins is small; how-
ever, it is a source of some unease.

One can imagine other ways in which the set of mappings could
be restricted. For example the variable x(φ) could be constrained.
We have not explored this area much; however, one other situation



RANDOM MAPPINGS WITH CONSTRAINTS ON COALESCENCE 293

merits some comment. Suppose that nr(φ) is given for r e ^ and
the rest are free. (We considered the case in which no(φ) is given.)
We can compute X(φ) using (9.1) and (9.2):

M<P) ~ Σ r(r - l)μr + Σ Φ - l)fr(n) .

If this value is used for λ, it will give the correct distribution for
s(x), as you can easily see from (6.6). By § 5, it follows that the
entries in Table II are also correct for c(φ), #(C(x), t(x)t and m{φ).
Equation (9.13) gives the covariances for the joint normal distribution
of the nr(φ)98. The method of § 8 can still be used to study Nr(φ).
We conjecture that the remaining entries in Table II (%(K(x)), kt(x),
and #(Γ(θ5))) remain unchanged.

It would be very interesting to restrict the number of mappings
to mimic shift register data more accurately. We are unable to
allow for the fact that shift registers do indeed shift bits. This
omission seems unimportant for the cases we studied. It would be
interesting to restrict the function g in (1.1) in some other fashion
than simply by counting the number of zeros it has. We have no
suggestions on how to attack such problems.

Note added in proof. The conjecture for %(T(x)) in Table II has
been verified using an argument like that following (7.11) combined
with Lemma 2 and (7.8) as follows.

= i} Ch(size n mapping) — Ch(i —1 vertices) Ch(i vertex tree)

— 1 trees with n — j vertices) Ch (perm, of [1, p]) .

The sum is the coefficient of Xn~j in

which is obtained from Lemma 2 with k — 2. To obtain Ch(i vertex
tree), apply Lemma 2 with k = — 1.
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