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RANK, P-GROUPS, P>3, AND CHERN CLASSES

KAHTAN ALZUBAIDY

In this paper, the integral cohomology ring of a
Blackburn’s type III rank, p-group (p>3) (the rank of a p-
group is the rank of a maximal elementary abelian subgroup)
is computed and the even dimensional generators are ex-
pressed in terms of Chern classes of certain group repre-
sentations. Then this group satisfies Atiyah’s conjecture
on the coincidence of topological and algebraic filtrations
defined on the complex representation ring of the group.

Let G be any finite group and R(G) the complex representation
ring of G. There is a convergent spectral sequence {E 7 :2<7r< oo}
such that

Epvr = HY(G, Z), E°* =0, and E}7 = R (GQ)/R5(G)
where
R(G) = R¥™(G) 2 R**(@) = - - - R¥%,(G) = Ry*(G) 2 RiE, =

is a topologically defined even filtration on R(G). R(G) can be given
an algebraic filtration by using the Grothendick operations 7% thus
RIL(G) is the subgroup generated by monomials v™(&) - -- 7™ (&),
Ny + - >k and &, ---, & elements of the augmentation ideal
of R(G). The deﬁmtlon is completed by R}(G)=R(G) and R}, _,(G)=
2,,(G) R(G@) is a filtered ring with respect to both filtrations,
R (@) S R*(G) for all k, and the equality holds for k£ = 0,1, and
2 [2]. Atiyah conjectured that RE*(G) = R}, (G), k = 0 and showed
that a group G satisfies this conjecture if the even dimensional
subring H®**(G, Z) of the integral cohomology ring H*(G, Z) is
generated by Chern classes of representations of the group G.
Though the alternating group on four elements A, is a counter
example [13], a long standing conjecture is that the two filtrations
coincide when G is a finite p-group.

Rank, p-groups, p > 3, are classified by N. Blackburn [8, staz
14.4] as follows;

I. Metacyclic p-groups.

II: G=<(A,B,C:A4” =B?” =(C*" =[A, C]=][C, B]=1, [B, Al=
Cp'n—3>.

III: G=<A,B,C: 4> =B*=C*""=[B,Cl=1, [4,C']=B, [B,
A] = C**"® where n=4 and s =1 or some quadratic nonresidue
mod p.
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In [11] and [12], C.B. Thomas shows that H***"(G, Z) of some
split metacyclic p-groups and Blackburn type II groups are gener-
ated by Chern classes, and hence they satisfy Atiyah’s conjecture.
He conjectured that a similar result holds for the remaining rank,
p-groups, p > 3. This would be the best possible result, since
there is a 4-dimensional generator of H*(3Z, Z) which can not
come from representations [9, Proposition 4.2]. For a metacyclic
p-group in general the conjecture is proved by the author [1]. In
this paper the conjecture is proved for Blackburn type III p-groups.
The method used is mainly computational and the main result is
given as follows:

THEOREM 9.

H*G, Z) = Z[a; 57, <+, Vooi; iy oy ooy &, &'] Wwhere dega =
2, degpu =38, degv, =2i, degX, =2t + 2,degé = deg &’ = 2p with
the relations: pa = ppt = sp" v, =X, =p " ¢=p%¢ =0, a*=0, av,=
aX, =0, 2 =0, v, = pX, = 0,7,7; =0, and X X; = 0 for all 7, 5.

The method of computation used depends mainly on constructing
a free action of the group G on a product of two spheres to deter-
mine the order of certain cohomology groups of G together with
the method used by G. Lewis to compute the integral cohomology
ring of a non-abelian group of order p° and exponent p. Lewis’
method is based on the calculation of the E, terms of spectral
sequences of two group extensions and the calculation of E. terms
by certain exact sequences of the restriction and corestriction maps.
The reader is referred to [9] for the details of the method.
He (G, Z) is expressed in terms of Chern classes by using a special
Riemann-Roch formula [12].

Preliminaries. The group G can be given by either of the
following two extensions:

(1) 11— H—G— Z,(Ay —1,

Where H = Z,{(B) + Z,»~.{C) is a normal abelian subgroup of index
p in G, and

(2) 1 G* G Z, Ay + Zp1(C) —>1

where G' = Z,(B) + Z,(C*"*y is the commutator subgroup of G.
The group G is isomorphic to the group G' =<(X, 7Y, Z: X*" " =
Y?=[Y,Zl=1, Z*=X*, [X,Z]=Y, [X,Y]=X"" where
n=4 and s =1 or some quadratic non-residue mod p [3, p. 145].
The isomorphism from G’ onto G is given by: X — AC, Y~ B™,
and Z— C.
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X? =~ ApCpB1+2+-u+(p-l)Cp”"3+2p”"3+"-+(p-1)p""‘3 =C? = Z»
XZ = ACC = CABC = CACB' = ZXY and XY = ACB™
= AB™'C* = BACC™ ™ = YX'*"™*,

If s is a quadratic nonresidue mod p, the isomorphism can similarly
be defined by: X — AC, Y — B, and Z — C>°.

PRrOPOSITION 1.
G’ and hence G acts freely om the product of two spheres
St o St

Proof. Let M Yi—e¥? =q,Z—1 and \V: Y—1, Z =" '=p
be two 1-dimensional representations of the normal abelian subgroup
K<Y, Z) of index p in G'. The direct sum of the induced repre-
sentations 7,» and ¢\’ defines an action of the group G’ on the
product of two spheres S¥'x S¥' 1®1, X®1, -, X"'®1
forms a basis for the induced modules associated with 4 and 4\
By [5, p. 75] the induced representations are explicitely given as
follows:

T00---017 fa 1 §
10---00 - O .
inMX) =1 . . ]y YY) = . y tMZ) = . © ’

Lo Do O - O -
00---10 | | @ P
and
0 0---0 577 1 bt b ]
10.--00 .
N (X)) =| . . ey AN (YY) = . O , IN(Z) =
1 00---10 | B Pt b |

Let ge G’ be any element. Then g = Z'Y X" where 0 < ¢ < p"®
and 0 < 4,k < p. The action of G’ on the first and second sphere
is given by:
g(xly MY xp) = (ajxp-—k-t-u a/j_ixp—-k+2y Sty aj—(p—l)ixp—k)
and
g(xu Tty wp) = (bkp_ixp—~k+1, a'_jb(k_l)p_iwp—kﬂy ) a7 jb_ixp-k)
respectively for every point (z, ---, xz,)€S*™". Any element geG’

which acts freely on S*~' x S*~* must equal to the identity. Thus
G’ and hence G acts freely on S¥7! x S, ]

The group G acts on the sphere S*»~! = S'x...xS* (p-fold join)
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by the induced representation of Ci—e*¥/?"’, B—~1. By [9. §6.2]
we have the following complex C'(S* ) ={Cy < C; < - -+ «—Cp_ <=+
C;,_;} where C; is a G-free module except for +=10,1,p — 1, and
2p — 1. C, = Z(G/{B)). C! =ZG/|{(BY®DF, C,_, = ZG/|{AY)D F, and
Cy,_. = ZG/{A) D F for some free G-module F. Consider 0« Z «
Cy« v+ «Cy_«—Z<0 and let K, L, M, N, and R be the image-
kernels at C;, C/, C,_,, C,_, and C,,_, respectively. Applying the Tate
Cohomology to the resulting exact sequences we get the following
exact sequences for 4 odd:

0 — HYG, M) — H*G, N) —> H™((AD, Z) —> H™*G, M)
— H*¥G, N)— 0

0 — HYG, R) — H" (G, Z) —> H*({(AD, Z) — H*G, M)
—— H*G, N) — 0

0 — H"*Y(G, Z) — H"*G, K) — H*((BY, Z) — H*(G, Z)

—— H*G, N) — 0

0 —> HY(G, K) — H*\(G, L) — H*"'((B), Z) — H"(G, K)

—— H"G, L) — 0
and H¥G, L) = H"* G, M), H(G, N) = H*(G, R) for all i by

dimensional shifting. Similarly, there are exact sequences for 4
even. Then

|H™™G, Z)| = |[H™(G, B)| = |[H"™"™G, N)| = p| H"™™(G, K)|
= p|H™G, Z2)| = p*| H™"(G, Z)|.

Thus the following lemma holds

LeMmA 2.
|Hi* (G, Z)| = p*|HY (G, Z)| for all j. O

Integral cohomolog rimgs: Consider the spectral sequence of
extension (1).

Ej = H(Z,XA), H'(H, Z)) .

H*(H, Z) = P[B, 7] ® E[¢] where deg 3 = degv =2, deg ¢z = 3, and
PR =sp~ ™ =pp =0 [1]. B and 7 are maximal generators corres-
ponding to :B+—1/p, C—0 and :Cw> 1/sp?, B0 respectively.
The action of the group Z,{(A) on H*(H, Z) induced by A is
given by:

Br— B+ sp" ", Y——7 + B, and pr—— pt.
Er° = H*(Z,,(Z}, Z) = Plca]
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where dega =2 and pa =0. «a is a maximal generator corres-
ponding to A 1/p. E>* = H*(H, Z)*® the invariant elements:

Vo= DY P, e, PV e = DY DY e, PR e
Vp = PV, PV, e, DU B B e BN P = YRTT p

PROPOSITION 3. The low dimensional cohomology groups are

HG, Z) = Zy-s X Z,, H'G, Z) = Z,, and HG, Z)
= pn—3 X Zp X Zp .

Proof. H*G, Z) = Hom (G/G', Q/Z) = Z,~-s X Z, where @ is the
field of rationals [4]. By spectral sequence of extension (1)
H*G, Z) is generated by «a and 7,. Let Res: H*(G, Z) — H*(H, Z)
and Cor: H*(H, Z) — H*(G, Z) be the restriction and corestriction
homomorphisms. Cor (Res (a)-7) = a Cor (v) =0 since Res, (@) = 0.
Res(Cor)=Q+A+ ---+A =27+ A +2+ --- +p—1)B+
(sp™® + --- + sp"* — 1)Y = p7. Therefore v, = Cor (v) and av, = 0.
Similarly, v, = Cor (v¥) and a*v, =0 for 1<i<p. By Res — Cor
sequences [9, p. 504 (5)]

0 — H¥H, Z), —> T°* —> HYH, Z)*— 0

is exact. |HXH, Z),| = p"° and |H*(H, Z)| = p. Then |T?*|=p"*x
p. 0— H¥G, Z)— T 5 HG, Z) L)lfH*(G, Z) is exact [9, p. 504 (4)]
|I,z| = |Ker Ua| = p™° since av, =0. |H¥G, Z)| =|T®|/|Im7|=
Therefore H*G, Z) = Z, and generated by g since

Res,: HYG, Z) — H*(H, Z)

is an epimorphism. The following diagrams is commutative and the
top row is exact [9, p. 504 (4)].

HY(H, 7) "% HYG, Z) — HYG, K) —— H'H, Z) " HYG, Z)

gl lg

Hom (H, Q/Z) — Hom ({4, T, @/Z)

where K = Ker {Z,{A) — Z}. Cor: HH, Z) — H¥G, Z) is zero since
Cor . = CorRes ¢ = pt = 0. |Im Cor,| = p* since Corv =7, and
Cor 8 = 0 because Cor (Res (a)-8) = aCor 8 = 0. Then |H¥G, K)| =
[Imé@|-|H¥ G, Z)|/|Im Cor,| = » X p. The following sequence is
exact

H¥G, Z)—Rfs-»Hf'(H Z)— H¥G, K) — HYQG, Z) H*(H Z).

Res, is an epimorphism and |Im Res,| = p™® since Resa = 0. Then
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|HNG, Z)| = p~* X p X p. Therefore HYG, Z) = Z {7,y + Z,{a®) +
Z,(Xy where X is an additional generator. |

Consider now the spectral sequence of extension (2).
Epi = H(Z LAY + Z»{Cy, HY(G", Z)) .

E" = H¥Z, X Z,u-s, Z) = Pla, Y] Q E[6] where dega = degv =2,
deg 6=3, and pa=sp"*v=pi=0. E>*=H*(G", Z)*"®=P[&, &, - +;
pn—sf),].

The odd generators in the exterior part vanished since they
are trivial under the action of (A4,C). By comparing the two
spectral sequences 7P — v, for 1 <7 < p.

Erti = H¥(Z, X Zy-s, Zy X Z,) = H*(Zyres, Zp X Z,)
® H*(Z,, Z, x Z,)

by Kiinneth formula. This induces a horizontal multiplication

o: Bp¥ x Rk N E25+k,2j’ i>0
and
B: Ebi —— Bii+

is monomorphism for j =2 and isomorphism for j >0 [4]. Let
Y, ve E* be two independent generators. Then X = pove EP?* by
horizontal multiplication. Since the odd rows are zero, then K, = E,.
From the cohomology groups at the low dimensions d,(a) = d.,(¥) =
dys() = d;(X) = 0. Others are easilly deduced from the FE,-diagram.
Since 7 «— v, then av, = 67, = pv, = vv, = X7, = 0. Then the additive
structure of E, can be given are follows:

fibre

e E,

#,v
prv e °

* R

base

o &
o

o, 7* ad, 7?

(=7X ]

a, Y
LEMMA 4.

E5 = Z,(ay + Zopes(rD, B = 2,0y + B0y
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Ezi‘&,z — Zp<Xai—1>, EZZ,Z — p<X>; E2215+1,0 — Zp<5ai—-l> ,
By = Z(a'ty + Z a), and EF = 0(5 > 0) .

The other terms are given by periodicity E* = E*° = ..., D

LEMMA 5. 7* and B are wuniversal cycles and hence B°: Efi —
B}t — 4s an isomorphism for j > 0.

Proof. By double cosets formula for the generalization of
corestriction .4~ [6, Theorem 3]

p—1

Res, 4(v) = I1 (7 —ig - -;—z'(i — 1)sp”‘37>

i=0

=o-ig+ (06— in4i - vap)

Il
A

p—

iIzlo r—1B8) =7 — vpr?

where ~ means a deleted term. Resy 4#7(8) = [154 (B8 — 1sp" V) =
B?. Therefore v and 37 are universal cycles [9, Corallary II]. []

The additive structure of E, can now be given as follows:

LeEMMA 6.
B = Z,(a) + Z,0'y; Bpt = Z,Q087, 5> 0; B =0,
J#END), >0, i=1; B}Y =0, j£1p), j > L E™ =0,
G OP) #1, i>0; B = Zla' ;
and
Eptiae-n — Zp<§ai—18p—l> .

The other terms are given by periodicity HX7 = HFi+? = ..., ]
Then E, = FE. in dimensions < 2p.

LEMMA 7.
| H™*(G, Z)| = p"™ .

Proof. G acts freely on the product of the two spheres S¥~!x
S*~* by Proposition 1. Then by [10, Corollary 2.7] the following
sequence is exact:

0— H* G, Z)— H*G, Z)— Zn X Z»— H*(G, Z)

— H?*YG, Z)— 0.

Since H*YG, Z) = Z,{a**1t) by the previous spectral sequence,
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then |H*(G, Z)| = p"". 0

By Res-Cor sequence
0— Z,u.— H¥(H, Z)— H*(G, K) — H**NG, Z)— Z,— 0

is exact where K=Ker{Z{A)—Z}. |H*(H, Z)|=p"""*and |[H*"(G,Z)|=
p. Therefore |H*(G, K)| = p*. If Cor, =0, then 0 > H* G, Z)—
H*(G, K)— H*(H, Z) — 0 is exact. Therefore |H*(G, K)| = p**"™*
which is a contradiction. Then Cor (8%) # 0 for 2 < ¢ < p. Similarly,
we can prove the following:

LeMmA 8. Cor (B) # 0 for 2 <1 < p and Cor (v*) # 0. O

Let 6= _7(v) and & = _4(B8) Resyz 4 (7) =7 —vp*" and
Resy 4+7(B) = 7. Cor Res 47(7) = p.4#"(7) = Cor (v*) += 0 and Cor
Res 47(B) = p.4(B) = Cor (8?) = 0. Therefore _+°(v) and _+(B)
have orders p"* and p* respectively and are elements in H*(G, Z).
Since |H*(G, Z)| = p"** by Lemma 7, then a®» =0 in H*(G, Z).

Let X, = Cor (B*Y), 1<+ < p—1. X, is not a polynomial in «
and 7 since a Cor (5°)=0 and Res Cos (8*)=0. Therefore H*"¥(G, Z)=
Z, Ay + ZLafty 4+ Zpn—a{7),

By using Cor (Resa.b) = a. Corb, we have aX, = pX, = XL,X; =0
and 7,X; = 0 since ResX, = 0. If 7,7; = e a*"/, then av,7;,=ea’**'=
0. Then e =0 and hence 7,7; =0. Thus we have:

THEOREM 9. The integral cohomology ring H*(G, Z) = Z|a; t;
Vi 0ty Vpor Xy =00y Xposy &, &'] where deg o = 2, deg £ = 3, degv,=21,
deg X, = 21 + 2, degé = degé&’ = 2p with the relations pa = pp =
PP =k =" =% =0, a* =0, av,=ak, =0, £ =0, 7, =
pr, =0, v7; =0, and XX; =0 for all © and j. O

H"*(G, Z) is generated by a, vy, -+, Vour, Xy, ¢+, oo, &, &
o = ¢,(&) is the first Chern class of the 1-dimensional representation
given by @&(A4) =1/p. v, = Cor (%) for 1 £ ¢ < p and X, = Cor ('),
1<7=<9p—2. Then by using a special Reimann-Rock formula [12,
Theorem 2] we get: Cor (V) = S;(t,7), 2=1=<p — 2; Cor ("*™) =
8,-.(i9) + (@ — Dar~* and Cor (8°)=S(i.B) 2 < i < p—2; Cor (87~ =
S,,_l('il,@) + (p — 1)a*~* where a is the inflation of the generator of
H*((AY, Z) and B, & are two representations given by 5: B—1/p,
C—0and 9,B—0: C—1/sp~% The two generators & = +(v) =
e,V and &' = (B = c,,(,/é) are given in terms of pth Chern classes
[7, Theorem 4]. By [2-Appendix] we have:

THEOREM 10. H*NG, Z) is generated by Chern classes and
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hence G satisfies Atiyah’s Conjecture. O
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