INTERSECTIONS OF M-IDEALS AND G-SPACES

Å. Lima, G. H. Olsen and U. Uttersrud

Abstract

A closed subspace N of a Banach space V is called an L-summand if there is a closed subspace N^{\prime} of V such that V is the 1_{1}-direct sum of N and N^{\prime}. A closed subspace N of V is called an M-ideal if its annihilator N^{\perp} in V^{*} is an L-summand. Among the predual L_{1}-spaces the G-spaces are characterized by the property that every point in the w^{*}-closure of the extreme points of the dual unit ball is a multiple of an extreme point. In this note we prove that if V is a separable predual L_{1}-space such that the intersection of any family of M-ideals is an M-ideal, then V is a G-space.

The notions of L-summands and M-ideals were introduced by Alfsen and Effros [1] who showed that they play a similar role for Banach spaces as ideals do for rings. The intersection of a finite family of M-ideals in a Banach space is an M-ideal, but as shown by Bunce [2] and Perdrizet [5] the intersection of an arbitrary family of M-ideals in a Banach space need not be an M-ideal. However, Gleit [3] has shown that if V is a separable simplex space, then V is a G-space if and only if the intersection of an arbitrary family of M-ideals is an M-ideal. Later on, Uttersrud [7] proved that in G-spaces intersections of arbitrary families of M-ideals are M-ideals. Then N. Roy [6] gave a partial converse when she proved that if in a separable predual V of L_{1} the intersection of an arbitrary family of M-ideals is an M-ideal then V is a G-space. Here we present a short proof of this result.

Theorem. Let V be a separable predual L_{1}-space. Then V is a G-space if and only if the intersection of any family of M-ideals in V is an M-ideal.

Proof. As already mentioned the only if part is proved in [7]. For the if part we will show that

$$
\overline{\partial_{e} V_{1}^{*}} \subseteq[0,1] \partial_{e} V_{1}^{*}
$$

where $\partial_{e} V_{1}^{*}$ denotes the set of extreme points in the unit ball V_{1}^{*} of V^{*}. It then follows from [4] that V is a G-space. To this end let $\left\{x_{n}^{*}\right\}_{n=1}^{\infty}$ be a convergent sequence of mutually disjoint extreme points in V_{1}^{*}, say $x_{0}^{*}=w^{*}-\lim x_{n}^{*}$. For each n, let

$$
N_{n}=\text { norm-closure } \operatorname{lin}\left\{x_{0}^{*}, x_{n}^{*}, x_{n+1}^{*}, \ldots\right\} .
$$

Let c denote the space of convergent sequences and define a linear operator $T: V \rightarrow c$ by

$$
T x=\left(x_{n}^{*}(x)\right)_{n=1}^{\infty}
$$

We identify c with the space of continuous functions on the one point compactification $\mathbf{N} \cup\{\infty\}$ of the natural numbers \mathbf{N} and we let e_{n}^{*} be the point mass in n, e_{0}^{*} the point mass in ∞. Then

$$
T^{*} e_{n}^{*}=x_{n}^{*}, \quad n=1,2, \ldots
$$

And consequently

$$
T^{*} e_{0}^{*}=x_{0}^{*} .
$$

Since $\left(x_{n}^{*}\right)_{n=1}^{\infty}$ is equivalent with the usual basis of 1_{1} we observe that for each n

$$
T^{*}\left(\text { norm-closure } \operatorname{lin}\left\{e_{0}^{*}, e_{n}^{*}, e_{n+1}^{*}, \cdots\right\}\right)=N_{n} .
$$

Since, by a well-known category argument, the range of a dual map is norm closed if and only if it is w^{*}-closed, it follows that N_{n} is w^{*}-closed for each n. Now the dual statement of our assumption gives that the w^{*}-closure of arbitrary sums of w^{*}-closed L-sumands is an L-summand, so since an extreme point in the unit ball of an L_{1}-space spans an L-summand we get that N_{n} is a w^{*}-closed L-summand. Therefore

$$
\bigcap_{n=1}^{\infty} N_{n}=\operatorname{lin}\left\{x_{0}^{*}\right\}
$$

is an L-summand. Hence $x_{0}^{*}=0$ or $x_{0}^{*} /\left\|x_{0}^{*}\right\|$ is an extreme point, and the proof is complete.

References

1. E. M. Alfsen and E. G. Effros, Structure in Banach spaces I \& II, Ann. of Math., 96 (1972), 98-173.
2. J. Bunce, The intersections of closed ideals in a simplex space need not to be an ideal, J. London Math. Soc., 2 (1969), 67-68.
3. A. Gleit, A characterization of M-spaces in the class of separable simplex spaces, Trans. Amer. Math. Soc., 169 (1972), 25-33.
4. H. E. Lacey, The isometric theory of classical Banach spaces, Springer Verlag 1974.
5. F. Perdrizet, Espaces de Banach ordonnés et ideaux, J. Math. Pures et Appl., 49 (1970), 61-98.
6. N. M. Roy, An M-ideal characterization of G-spaces, Pacific J. Math., 92 (1981), 151-160.
7. U. Uttersrud, On M-ideals and the Alfsen-Effros structure topology, Math. Scand., 43 (1978), 369-381.

Received February 10, 1981.

Agricultural University of Norway
1432 AAS-NLH, Norway
AND
Telemark DH-Skole
3800 BØ I Telemark, Norway

