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EXTENSIONS OF THEOREMS OF
CUNNINGHAM-AIGNER AND HASSE-EVANS

RicHARD H. HUDSON AND KENNETH S. WILLIAMS

If k is a positive integer and p is a prime with p = 1 (mod 2%), then
2(r=1/2" s a 2%th root of unity modulo p. We consider the problem
of determining 2¢»~"/2“ modulo p. This has been done for k = 1, 2, 3
and the present paper treats kK =4 and 5, extending the work of
Cunningham, Aigner, Hasse, and Evans.

1. Introduction. When k = 1, we have the familiar result

(1.1) 2(p=1/2 = +1(mod p), ifp=1,7 (mod 8),
' ~1(mod p), ifp=3,5 (mod8).

When k = 2 and p = 1 (mod 4), there are integers a = 1 (mod 4) and
b =0 (mod 2) such that p = a® + b?, with a and | b| unique. If 5 =0
(mod 4) (so that p = 1 (mod 8)), Gauss [8: p. 89] (see also [4], [16]) has
shown that

+1 (mod p), if b =0 (mod 8),

1.2 200=0/4 =
(1.2) {——l(modp), if b =4 (mod 8).

If b =2 (mod 4) (so that p = S (mod 8)), we can choose b = -2 (mod 8),
by changing the sign of b, if necessary, and Gauss [8: p. 89] (see also [4],
[11: p. 66], [16]) has shown that

(1.3) 2(r=D/4 = _p /a (mod p).

We note that (—b/a)*> = -1 (mod p).

When k£ = 3 and p = 1 (mod 8), there are integers a = 1 (mod 4) and
b=0 (mod 4) such that p = a®> + b* with a and |b| unique. Now
(2(P~D/848 = 2(r=1D/2 =1 (mod p), as p = 1 (mod 8), so 2@~ /8 is a 4th
root of unity modulo p. If b = 0 (mod 8), Reuschle [14] conjectured and
Western [15] (see also [16]) proved that

(=1 (mod p), if b=0 (mod 16),

(1.4) 207 V8=
(=) (mod p), if b =8 (mod 16).

If b = 4 (mod 8), we can choose b = 4—1)?*7/8 (mod 16), by changing
the sign of b, if necessary, and Lehmer [11: p. 70] has shown that

(1.5) 2= 1/8 = ‘% (mod p).
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It is the purpose of this paper to treat the cases kK = 4 and 5. For
k=4 and p=1 (mod 16), there are integers a =1 (mod 4), b =0
(mod 4), c=1 (mod 4), d =0 (mod 2), such that p = a®+ b* =2
+2d?, with a, |b|, ¢, |d| unique. Now (2(7~D/16)8 = 2(r=D/2 =]
(mod p), so 27~ D/1€ is an 8th root of unity modulo p. Since

— + b 2
(1.6) {_’(_a__ﬁ} = -b/a(modp),
ac
the 8th roots of unity (mod p) are given by {—(a + b)d/ac}", n =
0,1,...,7. Making use of a congruence due to Hasse [9: p. 232] (see also

[5: Theorem 3], [17: p. 411]), we prove in §2 the following extension of the
criterion for 2 to be a 16th power (mod p), which was conjectured by
Cunningham [3: p. 88] and first proved by Aigner [1] (see also [16:
p. 373)).

THEOREM 1. Let p = 1 (mod 16) be a prime. Let a =1 (mod 4), b =0
(mod 4), ¢ =1 (mod 4), d =0 (mod 2) be integers such that p = a* + b*
= ¢? + 2d?. It is well known that b = 0 (mod 8) < d = 0 (mod 4) (see for
example [2: p. 68]). Then the values of 2~ VY/'® (mod p) are given in
Table 1.

The case b =0 (mod 16) constitutes the criterion of Cunningham-
Aigner.
For k=5 and p =1 (mod 32), there are integers a =1 (mod 4),
=0 (mod 4),c=1(mod 4), d =0 (mod 2), x = -1 (mod 8), u =v =
w = 0 (mod 2), such that p = a* + b*> = ¢* + 2d? and

(1.7) 2

{p:x2+2u2+2v2+2w2,
2x0 = u? — 2uw — w2,

with a, |b|, ¢, |d|, x unique. If (x, u, v, w) is a solution of (1.7), then all
solutions are given by =(x, u, v, w), =(x, —u, v, —w), £(x, w, —v, —u),
+(x, —w, —v, u) (see for example [12: p. 366]). Now {2(r~ /32316 —
2007D/2= 41 (mod p), so 2?7 D/32 is a 16th root of unity modulo p.
Since

(1.8) {(dx + co)(a(u + w) — b(u — w)) }2 _—(atb)d
2bd(u? + w?) ac

(mod p),

the 16th roots of unity (mod p) are given by

{(dx+cv)(a(u+w)—b(u_w))}n L .
2bd(u2+ w2) > S SRR
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Making use of another congruence due to Hasse [9: p. 233] (see also [7:
eqn. (2)]), we prove in §3 the following extension of the criterion for 2 to
be a 32nd power (mod p) due to Hasse [9: p. 232-238] and Evans [6:
Theorem 7].

THEOREM 2. Let p = 1 (mod 32) be a prime. Leta =1 (mod 4), b =0
(mod 4),c=1(mod 4),d=0(mod 2), x=-1(mod 8, u=v=w=0
(mod 2), be integers such that p = a’> + b> = c*+ 2d* and p = x* +
2u? + 20% + 2w?, 2xv = u?> — 2uw — w?. Then the values 2(»~D/32
(mod p) are given in Table 2.

Justification of the choices in the left-hand column of Table 2 is made
in the proof of Theorem 2, which appears in §3. The cases 2(7~V/32 =+ 1
(mod p) constitute the criterion of Hasse-Evans.

2. Evaluation of 2?7/ (mod p). Let p be a prime satisfying

(2.1) =1 (mod 16).

Set

(2.2) p=8f+1,

so that

(2.3) f=0(mod 2).

Let

(2.4) w=exp(2mi/8) = (1+1i)/y2.

We note that the ring of integers of Q(w) = Q(i, V2 ) is a unique factori-
zation domain (see for example [13]). In this ring p factors as a product of
four primes. Denoting one of these by 7, these four primes are 7; = 6,(7),
J =1,3,5,7, where o, denotes the automorphism which maps w to w’.

Let g be a primitive root (mod p). Then g»~"/2 = _1 (mod p), and
sO

(gf— “’)(gf - “’3)(8f - ws)(gf - ‘*’7) =0 (mod 77'1'7"3"75"77)~
Hence
g/ — &/ =0 (mod =),

for some j, j =1, 3, 5, 7, and by relabelling the 7’s we may assume
without loss of generality that

(2.5) g/ = w (mod 7).

Given g, 7 (apart from units) is uniquely determined by (2.5). Next we
define a character x (mod p) (depending upon g) of order 8§ by setting

(2.6) x(g) = w.
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Forr,s =0, 1, 2,...,7 the Jacobi sum J(r, s) is defined by
(2.7) J(r,s)= 2 x'(n)x’(1—n).

n (mod p)

It is known that (see for example [7: §1])

(2.8) J(2,2) = —a + bi,
where

(2.9 p=a’*+b* a=1(mod4),
and that

(2.10) J(1,3) = —c + dif2,
where

(2.11) p=c*+2d* c=1(mod4).

It is easy to check that replacing the primitive root g by the primitive root
g%, where t =1, 3,5,7 and (8s + ¢, f) = 1, has the effect in (2.8) of
replacing b by (—1/¢)b and in (2.10) of replacing d by (—2/t)d.

Our proof depends upon the following important congruence due to
Hasse [9: p. 232]

(2.12) b =4d+ 2m (mod 32),
where m is the least positive integer such that
(2.13) g" =2 (mod p),

and b and d are given by (2.8) and (2.10) respectively. From (2.12) and
(2.13) we obtain

(2.14) 2Ap—1/16 — 2 f/2 = ng/2 = gf(b/4-d) (modp).
It follows from (2.5) and (2.6) that
(2.15) x(n) =n/ (mod 7),

for any integer n not divisible by p. Hence, for non-negative integers r and
s satisfying 0 < r + s < 8, we have

J(r.s) Ep%nrfa — 1) (mod )

Egnrféfo (ij )(— 1)’n/ (mod )

Eéo () =17"S s moam),

n=0
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that is
(2.16) J(r,s) =0 (modx),
as
p—1
(2.17) > n¥=0(modp), fork =0,1,...,p — 2.
n=0
Taking (r, s) = (2,2) and (1, 3) in (2.16), we have, by (2.8) and (2.10),
(2.18) i=a/b(modn),if2 =c/d(mod 7),
so that
(2.19) V2 = —ac/bd (mod 7).

Hence we have, appealing to (2.5), (2.18) and (2.19),

o == 1+ E_(a+b)d (mod 7).

‘/5 ac

and, since g/ and —(a + b)d/ac are integers (mod p), we have

(2.20) g/ =

—L‘i;:;ﬂé (mod p).

Appealing to (2.14) we get

(2.21) 2(p—1/16 = {—(a—-l-b)g }(b/4)—d

P (mod p).

We consider three cases:
(i) 2#77/* = —1 (mod p),
(ii) 2P~ V/4 = 41,2(,7D/8 = _1 (mod p),
(iii) 27~/ = +1 (mod p).

Case (i). From (1.2) we have b = 4 (mod 8). Then, from p = a2 + b?,
we obtain a =1 (mod 8) and p =2a + 15 (mod 32). The cyclotomic
number (0, 7), is given by (see for example [10: p. 116])

64(0,7)s =p — 7+ 2a + 4c,

so ¢ =5 (mod 8). Then, from p = ¢* + 2d?, we get d =2 (mod 4).
Replacing g by an appropriate primitive root

g&t(t=1,3,57;8s+¢t,f)=1)
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we may take b = —4 = 12 (mod 16) and d = 2 (mod 8). Then, from (2.21),
we obtain

+
— % (mod p), ifb= 12 (mod 32),

20p—D/16 =

M (mod p), if b= 28 (mod 32).

Case (ii). From (1.2) and (1.4) we have » = 8 (mod 16). Then, from
p =a’+ b* we obtain a =1 (mod 8) and p =2a — 1 (mod 32). The
cyclotomic number (1, 2), is given by (see for example [10: p. 116])

64 (1,2)s=p + 1 + 2a — 4c,

so ¢ =1 (mod 8). Then, from p = c¢* + 2d?, we get d =0 (mod 4).
Replacing g by an appropriate primitive root

g4t (t=1,3;,8s+1¢,f)=1)
we may take b = 8 (mod 32). Then as

~—(a+b)d -
[t b ),
we have from (2.21)

2(p=D/16 = —b/a(modp), ifd=0 (mod38),
+b/a(mod p), ifd=4(mod 8).

Case (iii). From (1.4) we have » = 0 (mod 16). Exactly as in Case (ii)
we have d =0 (mod 4). Considering four cases according as b =
0, 16 (mod 32) and d = 0, 4 (mod 8) we obtain from (2.21)

+1(mod p), ifb=0(mod32), d=0 (mod3)
or
b =16 (mod 32), d =4 (mod 8),

-1 (modp), ifb=0(mod32), d=4(mod?8)
or
b =16 (mod 32), d =0 (mod 8).

2p=1/16 =

This completes the proof of Theorem 1.

3. Evaluation of 2~ Y732 (mod p). Let p be a prime satisfying
(3.1) p =1 (mod 32).
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Set

(3.2) p=16f+1,
so that

(3.3) f=0(mod 2).
Let

(3.4) 0 = exp(27i/16) = %{‘/2 +2 +if2—- 2 }

Again, the ring of integers of Q(#) is a unique factorization domain (see
for example [13]). In this ring p factors as a product of eight primes.
Denoting one of these by =, these eight primes are given by «; = o,(7),
i=1,3,5 1709, 11, 13, 15, where o; denotes the automorphism which
maps 6 to '

Let g be a primitive root (mod p). Then

(gf—0)(g/— 0% --- (g/ —0") =0(mod myms - - - m5),

and, as before, we can choose 7; = « (unique apart from units) so that

(3.5) g/ =6 (mod 7).
We define a character ¥ (mod p) of order 16 by setting
(3.6) ¥(g) =9,
and forr,s =0, 1, 2,..., 15 we define the Jacobi sum J(r, s) by
(3.7) Jr,s)= 2 ¥(n)y*(1 —n).
n (mod p)

It is known that (see for example [7: §1])
(3.8) J(4,4) = —a + bi, where p = a®> + b*>, a =1 (mod 4),
(39) J(2,6) = —+di2, wherep =c*+2d?, c=1 (mod4),

and

(3.10)  J(1,7) = x+ wiy2 =2 + 02 + wi2+ 2
=x+u(0+07)+ v(0? — 0% + w(6°> + 6°),
where (see for example [5; eqn. (8)])

p=x2+2u*+ 20>+ 2w?, x=-1(mod38),

2x0 = u? — 2uw — w?.

(3.11) {
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It is easy to check that », v and w are all even. Applying the mapping
6 - 63 to (3.10), we obtain

(3.12)  J(3,5) =x — wiy2 — 2 — o2 + ui2 + 2

=x—w(0+6)—0(0%—6° + u(8® + 6°).
Further, it is known (see [12: p. 366] and [6: eqn. (48)]) that a, b, ¢, d, x, u,
v, w are related by
(3.13) bd(x?* — 20*) = ac(u® + 2uw — w?) (mod p).

The effect on (3.8), (3.9), (3.10) of replacing the primitive root g by
the primitive root g'%**’, where t = 1,3, 5,..., 15and (165 + ¢, f) = 1, is
summarized below:

g a b c d X u v w
g%t a —-b ¢ d X w -0  —u
g% a b c —d x w -0 —u
g%t a —b ¢ —d x wu v w
314 gt a4 b c d X —u v —w
g™ a —-b ¢ d X —w -0 u
gt a b ¢c —d x —w —v u
g%t a —-b ¢ —-d x -u v —w

The following important congruence relating b, d, u and w has been
proved by Hasse [9: p. 233]

(3.15) b+ 4d — 8(u + w) =2m (mod 64),
where m satisfies (2.13). From (2.13) and (3.15), we obtain
(3'16) 2(P_l)/32 — 2f/2 = gmf/2 = gf((b/4)+d—2(u+w)) (mod p).

As in §2, if r and s are non-negative integers satisfying 0 < r + s < 16, we
have

(3.17) J(r,s) =0 (mod ).

Thus, in particular, taking (r, s) = (4,4), (2,6), (1,7), and (3, 5), in (3.17),
we obtain

(3.18) —a+bi =0 (mod ),
(3.19) — ¢+ dif2 =0 (mod 7),

(320)  x+uif2—2 + 02 +wijf2+ 2 =0 (mod 7),
(3.21) x = wi)2 = 2 — o2 + uiy2 + /2 =0 (mod 7).
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From (3.18) and (3.19) we get
(3.22) i=a/b (modw), i2=c/d (modm),
— 4
2= ~5d (mod 7).

Solving (3.20) and (3.21) simultaneously for y2 + y2 and y2 — /2
(mod 7), and making use of (3.22), we obtain

(323) 2+ 2 = x(u = ng’jffi’;; W)BE (mod 7).

Then, from (3.4), (3.5), (3.22) and (3.23), we have

(dx + cv)(a(u +w) — b(u—w))
2bd(u* + w?)

(324) g/=6= (mod 7).

Since both sides of (3.24) are integers (mod p), we deduce that

g = (dx + co)(a(u +w) — b(u —

w))
2bd(u® + w?) (mod p).

(3.25)

Appealing to (3.16) we get

(dx + co)(a(u + w) — b(u — w)) | »/PHI20w
26d(u* + w?)

(3.26) 2P~/ s{

(mod p).

We consider four cases:
(i) 27~ /4 = _1 (mod p),
(i) 27V = +1,2077D/8 = _1 (mod p),
(iii) 2P~ V/8 = 41,207 V/18 = _1 (mod p),
(iv) 27D/ = +1 (mod p).

Case (i). From Case (i) of §2 we have b =4 (mod 8) and d =2
(mod 4). Next, from (2.12) and (3.15), we obtain
u+w=d=2(mod 4),
so that
(u,w) =(0,2) or (2,0) (mod4).

Replacing g by an appropriate primitive root g'®*! (wheret = 1, 3, 5,.. .,
15 and (165 + ¢, f) = 1), we can suppose that

(327) b=-4(mod16), u=0(mod4), w =2 (mod8).
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Exactly one 5-tuple (b, d, u, v, w) satisfies (3.13) and (3.27). Then, from

2xv = u® — 2uw — w?, we obtain (recalling x = —1 (mod 8))
(3.28) v=2 (mod8).

From the work of Evans and Hill [7: Table 2a], we have
(3.29) 256{(2,4),6 — (4,10),6} = 32(v — d),

so that, by (3.28),

(3.30) d=v=2 (modS8).

The choice (3.27) makes the exponent (b/4) +d — 2(u + w) in (3.26)
congruent to 1 (mod 4). We now consider cases according as b = 12, 28,
44, 60 (mod 64); d =2, 10 (mod 16); u =0, 4 (mod 8). For example, if
b =12 (mod 64), d =2 (mod 16), u =0 (mod 8), then (b/4) +d —
2(u + w) =1 (mod 16), so that (3.26) gives

_ (dx + cv)(a(u +w) — b(u —
N 2bd(u* + w?)

(3.31) 2~ H/®2 w)) (mod p),

in this case. The other cases can be treated similarly, see Table 2 (VII).

Case (i1). From Case (i1) of §2, we have h = 8 (mod 16) and d =0
(mod 4). Appealing to the work of Evans [5: Theorem 4 and its proof], we
have

(3.32) u=2(mod4), v=4(mod8), w=2(mod4),
if d =0 (mod 8),

and

(3.33) u=0(mod4), v=0(mod38), w=0(mod4),
if d =4 (mod 8).
If d =0 (mod 8), replacing g by g'®** (where t =1, 7, 9, 15 and
(16s + ¢, f) = 1), as necessary, we can suppose that
(3.34) b=8(mod32), w=2(modS8).

There are exactly two 5-tuples (b, d, u, v, w), which satisfy (3.13) and
(3.34). These are

(b,d,u,v,w) and (b, —d, —w, —v,u), ifu=2(mod8),
and
(b,d,u,v,w) and (b, —d,w, —v, —u), ifu=6 (mod 8).
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We note that the 16th root of unity modulo p,

{(dx + co)(a(u +w) — b(u — w)) }b/4+d—2(u+w)
2bd(u? + w?)

b

is independent of which 5-tuple is used, since

{((‘d)x + C(—v))(a(Iw + u) — b(-T—w - u)) }(b/‘t)——d—z(::w:u)
2b(—d)((Fw)’ + (=u)’)

_ {(dx + cv)(a(u + w) — b(u — w)) }A
2bd(u* + w?) ’

where
b )
13(Z—d—2u+2w), if u =2 (mod 8),
A=
5(§—d+2u—2w), if u =6 (mod 8);
moreover,
b b
13(Z—~d——2u+2w)—(Z+d—2u—2w)
=3b—14d — 24u + 28w =0 (mod 16),
b b
S(Z——d+2u—2w)—-(z+d—2u—2w)
=b—6d+ 12u— 8w =0 (mod 16),
so that
s§+d—z(u+w)(mod16).

The choice (3.34) makes the exponent (b/4) + d — 2(u + w) in (3.26)
congruent to 2 (mod 8). We now consider cases according as b =
8, 40 (mod 64); d =0, 8 (mod 16); u = 2, 6 (mod 8). For example if b =
8 (mod 64), d=0 (mod 16), u =6 (mod B), then (b/4)+d —
2(u + w) =2 (mod 16), so (3.26) gives

p—1)/32 — (dx + co)(a(u+w) — b(u — w)) 2 -
(3.35) 2~ V/ _{ 2bd(a® + w2 } (mod p)
==let0)d (mod p),

ac
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see Table 2(VI). We remark that in applying Theorem 2 in this case, d
must be chosen to satisfy the congruence (3.13). We can do this as
x* — 20* = 0 (mod p), since

—p=—x?—2u? =20 —2wl<x?-—20°=x*<p.

If d =4 (mod 8), replacing g by g'®*’ (where t = 1, 3, 5 or 7 and
(16s + ¢, f) = 1), as necessary, we can suppose that

(3.36) b= -8=24(mod32), d=4(mod 1l6).

There are precisely two S-tuples (b, d, u, v, w), which satisfy (3.13)
and (3.36). These are

(b,d,u,v,w) and (b,d, —u,v, —w).
We note that the 16th root of unity modulo p,

{(dx + co)(a(u+w) — b(u—w)) }(17/4)+d—2(u+w)
2bd(u® + w?)

is independent of which 5-tuple is chosen, since

{(dx + co)(a(—u—w) — b(—u+ w)) }(b/4)+d2(qu)
2bd((—u)* +(—w)?)

_ {(dx + co)(a(u +w) — b(u — w)) }B
2bd(u? + w?) '

where

B= 9(§+ d+ 2u+ 2w) z§+ d— 2(u+ w) (mod 16).
The choice (3.36) makes the component (b/4) + d — 2(u + w) in (3.26)
congruent to 2 (mod 8). We now consider cases according as b = 24, 56
(mod 64); u+w=0, 4 (mod 8). For example, if b =56 (mod 64),
u +w =4 (mod 8), then (b/4) +d — 2(u + w) = 10 (mod 16), so (3.26)
gives

(dv + co)lalu +w) —b(u — w)) }10 (mod p)

337) -/ =
(3.37) { 2bd(u? + w?)

E[:_(_“;Jcr_ﬁ)_‘f}s(modp)
_+ (a+b)d (mod p).

ac



EXTENSIONS OF THEOREMS OF CUNNINGHAM-AIGNER 123

see Table 2(V). However, when applying Theorem 2 in this case, it is not
necessary to use the congruence bd(x* — 2v?) = ac(u® + 2uw — w?)
(mod p) to distinguish the solutions (x, =u, v, =w) from the solutions
(x, xw, —v, Fu). since TwFu==+(u+w) (mod 8), as u=w=0
(mod 4).

Case (ii1) From Case (iii) of §2 we have

(3.38) b=0(mod32), d=4(modS8),
or
(3.39) b=16(mod32), d=0(modS8).

If =0 (mod 32), d =4 (mod 8), from the work of Evans [5:
Theorem 4 and its proof], we have

(3.40) u=2(mod4), v=4(mod8),w=2(mod4).

Replacing g by g'**, where t =1, 7, 9 or 15 and (165 + ¢, f) = 1, as
necessary, we can suppose that

(3.41) d =4 (mod 16), w = 2 (mod 8).

There are exactly two 5-tuples (b, d, u, v, w) which satisfy (3.13) and
(3.41). These are

(b,d,u,o,w) and (—b,d, —w, —v,u), ifu=2(mod38),
and
(b,d,u,v,w) and (—b,d,w, —v, —u), ifu=6 (modS8).

We note that the 16th root of unity modulo p,

(dx + cv)(a(u + w) — b(u —w)) }(b/4)+d—2(u+w)
{ 2bd(u? + w?)

is independent of which 5-tuple is used, since

{(dx + c(—0))(a(Fw = u) + b(Fw T u)) }“”/md“ﬂzwt“)
2(—b)d((Fw)* + (Fu)?))

_ {(dx +co)(a(u+w) — b(u—w)) }C
2bd(u* + w?) ’
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where

11(—§+d— 2u + 2w), if u = 2 (mod 8),

C= .
3(——+d+ 2u—2w), if u =6 (mod 8),

4

and it is easily checked that

C=7+d—2u+w) (modl6).

Clearly, from (3.38) and (3.40), we have (b/4) +d — 2(u + w) =4
(mod 8), and we determine (b/4) + d — 2(u + w) (mod 16) by consider-
ing the cases b =0, 32 (mod 64) and u =2, 6 (mod 8). For example, if
b =0 (mod 64) and u = 6 (mod 8), we have (b/4) +d — 2(u +w) =4
(mod 16), so by (3.26), (1.6) and (1.8),

p—1yy32 — | (dx + co)(a(u +w) — b(u—w)))*
(3.42) 2 —-{ 2bd(u* + w?) }

_ b
= —a (mOdp)’

see Table 2 (III). In applying Theorem 2 in this case we must use the
congruence bd(x* — 2v*) = ac(u® + 2uw — w?) (mod p) to distinguish
the solutions (x, *u, v, =w) from the solutions (x, =w, —ov, *u).

If b=16 (mod 32), d =0 (mod 8), from the work of Evans [5:
Theorem 4 and its proof], we have

(3.43) u=0(mod4), v=0(mod8), w=0(mod4).

Replacing g by g'*’, where 1 =1 or 7 and (165 + ¢, f) = 1, as neces-
sary, we may suppose that

(3.44) b = 16 (mod 64).

There are exactly four 5-tuples (b, d, u, v, w), which satisfy (3.13) and
(3.44). These are

(b,d, *u,v, £w), (b, —d, =w, —v, Fu).
We note as before that the 16th root of unity modulo p,

{(dx + cv)(a(u+ w) — b(u — w)) }(b/4)+d——2(u+w)
2bd(u? + w?)

is independent of which 5-tuple is used.
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Clearly, from (3.39) and (3.43), we have (b/4) +d — 2(u+w) =4
(mod 8), and we determine (b/4) + d — 2(u + w) (mod 16) by consider-
ing the cases d = 0, 8 (mod 16) and u + w = 0, 4 (mod 8). For example, if
d =0(mod 16) and u + w = 4 (mod 8), then (b/4) +d — 2(u + w) =12
(mod 16), so by (3.26), (1.6) and (1.8),

(dx + cv)(a(u+ w) — b(u —w)) }12
2bd(u? + w?)

(3.45)  20-0/% s{

=+ b (mod p),
a
see Table 2(IV). When applying Theorem 2 in this case, we can use any
one of the four solutions (x, *u, v, *w), (x, £w, —v, Fu), as

=w Fu==(u+ w) (mod 8).

Case (iv). As 277D/16 = | (mod p), from Table 1, we have

(3.46) b=0(mod32), d=0(modS3),
or
(3.47) b=16 (mod 32), d=4 (mod 8).

If b = 0 (mod 32), d = 0 (mod 8), appealing to the work of Evans [5:
Theorem 4 and its proof], we have

(3.48) u=0(mod4), v=0(mod8), w=0(mod4).
There are exactly eight 5-tuples which satisfy (3.13) and (3.48), namely,
(b,d, *u,v, xw), (b, —d, =w, —v, Fu),
(=b,d, =w, —v, Fu), (=b, —d, *u,v, =w).
It is straightforward to check that

{(dx + cv)(a(u + w) — b(u — w)) }(b/4)+d—-2(u+w)
2bd(u® + w?)

is the same for all of these. The exponent (b/4) +d — 2(u + w) is
congruent to 0 (mod 8). It is easily determined modulo 16 by considering
the cases b =0, 32 (mod 64), d=0, 8 (mod 16), and u +w =0, 4
(mod 8). For example, if » =0 (mod 64), d =0 (mod 16), u + w =4
(mod 8), we have b/4 +d — 2(u + w) =8 (mod 16) so that, by (1.6),
(1.8) and (3.26),

(dx + co)(a(u + w) — b(u — w))
26d(u® + w?)

8
2(p—1)/32 E{ } = -1 (mod p),
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see Table 2 (I). As noted by Evans [6: Comments following Theorem 7], it
is unnecessary to use the congruence bd(x> — 2v*) = ac(u® + 2uw — w?)
(mod p) when applying Theorem 2 in this case.

Finally if » = 16 (mod 32), d = 4 (mod 8), appealing to the work of
Evans [S: Theorem 4 and its proof], we have

u=2(mod4), v=4(mod8), w=2(mod4).

Replacing g by g'®", where t =1, 3, 5 or 7 and (16s +1¢, f) =1, as
appropriate, we can choose

(3.49) b =16 (mod 64), d =4 (mod 16).

There are two 5-tuples (b, d, u, v, w) satisfying (3.13) and (3.49), namely,
(b,d, *u,v, =w),

and again it is easy to check that

{(dx + cv)(a(u +w) — b(u—w)) }(b/4)+d~2(u+w)
2bd(u? + w?)

_ {(dx + co)(a(—u—w) — b(—u+ w)) }(b/4)+d—2(-u—w)
2bd((—u)’ + (—w)?) '

Now

Z—+d—2(u+w)58—2(u+w)(modl6)

s0, by (3.26), we have

+1, ifu+ w=4(mod8),

2(p=1/32 =
-1, ifu+ w=0(mod38),

see Table 2 (II). In applying Theorem 2 in this case, as noted by Evans [6:
Comments following Theorem 7], it is necessary to use the congruence
bd(x? — 2v*) = ac(u* + 2uw — w?) (mod p). This completes the proof
of Theorem 2.
4. Numerical examples. (a) p = 2113 (see Table 2 (I)). We have
(a, b) = (33, =32); a =1 (mod 4);
(c,d) = (—31, x24); c=1(mod 4);
(x,u,v,w) = (—17, £28, =8, £8) or (—17, =8, +8, ¥28);
x=-1 (mod8).
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For each choice we have
b =32 (mod 64), d=8(mod16), u+ w =4 (mod 8),
so by Theorem 2(I), we have
20p=D/32 = 266 = _1  (mod 2113).
(b) p = 257 (see Table 2 (II)). We have
(a,b) =(1,16); a=1(mod4), b= 16 (mod 64);
(c,d) =(—15,4); c=1(mod4), d=4(mod 16);
(x,u,v,w)=(—9, =6, —4, F6) or (—9, =6, +4, =6);
x = -1 (mod 8).

The congruence bd(x? — 20?) = ac(u® + 2uw — w?) (mod p) is satisfied
by (x, u,v,w) = (—9, =6, —4, 6). Asu + w = 0 (mod 8), by Theorem
2(I1), we have

2(=0/3 = 28 = _| (mod 257).
(c) p = 1249 (see Table 2(11I)). We have
(a,b) =(—15,32) or (—15, —32);
a=1(mod4), b=0(mod32);
(c,d) = (=31, —12); ¢=1(mod4), d=4(mod 16);
(x,u,v,w)=1(7,10,4, —22) or (7,22, —4,10);
x = -1 (mod 8), w =2 (mod 8).

The congruence bd(x? — 20v?) = ac(u® + 2uw — w?) (mod p) is satisfied
by (a, b) =(—15, 32) and (x, u, v, w)=(7, 22, —4, 10) or by
(a, b) =(—15, —32) and (x, u, v, w) = (7, 10, 4, —22). Hence, by
Theorem 2, taking b = 32, u = 22 = 6 (mod 8), we have

20070/32 = 23 = +p/a =32/—15 = 664 (mod 1249);
taking b = -32, » = 10 = 2 (mod 8), we have
20070/32 =23 = —p /g =32/~ 15 = 664 (mod 1249).
(d) p = 1217 (see Table 2 (IV)). We have
(a,b) =(—31,16); a=1(mod4), b=16(mod64);
(c,d)=(33,+8) or (33,—8); c=1(mod4);

(x,u,0,w) = (=17, 12, =8, T16), (—17, =16, +8, =12),
x = -1 (mod 8).
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As d = 8 (mod 16) and u + w = 4 (mod 8) (for each possibility), we have,
by Theorem 2,

20070/32 = 2% = _p /g =16 /31 = 1139 (mod 1217).
(e) p = 577 (see Table 2 (V)). We have
(a,b) =(1,24); a=1(mod4), b=24(mod 32);
(c,d)=(17, —12); c¢=1(mod4), d=4(mod16);
(x,u,v,w) =(—1, x4, —16, ¥4) or (—1, =4, +16, =4).
As b = 24 (mod 64), u + w = 0 (mod 8), by Theorem 2(V), we have

2/ — s = 4 (@ Zcb )d _ ‘13700 = 186 (mod 577).

(f) p = 353 (see Table 2 (VI)). We have
(a,b) =(17,8); a=1(mod4), b=8(mod32);
(c,d)=(—15,8) or (—15, —8); c=1(mod 4);

(x,u,v,w)=(7, —10, —4, —6) or (7, —6, 4, 10);
x = -1(mod8), w=2(mod8).

The congruence bd(x* — 2v?) = ac(u® + 2uw — w?) (mod p) is satisfied
by (¢, d) = (—15,8) and (x, u, v,w) = (7, — 10, —4, —6), or by (¢, d) =
(—15, —8) and (x, u, v, w) = (7, —6, 4, 10). Hence, by Theorem 2, taking
the first possibility, we have b = 8 (mod 64), d = 8 (mod 16), u = -10 =6
(mod 8), so

_ (a+b)d __ 40
ac —51
(g) p = 97 (see Table 2 (VIII)). We have
(a,b) =(9,—4); a=1(mod4), b=12(mod 16);
(c,d)=(5—-6); c=1(mod4), d=2(modS8);
(x,u,0,w) =(7,—4,2,2); x=-1(mod8), w=2(modS8).

As b = 60 (mod 64), d = 10 (mod 16), u = 4 (mod 8), by Theorem 2(VII),
we have

2(p—l)/32 — 2]1

= 283 (mod 353).

, _(=32)(—46) _23

(r—1/32 — =
2 2= w0 15

= 8 (mod 97).
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6TEL1 ‘18vy = d sojdurexg
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€11T LETIS ‘€681 “1T15T = d sajdurexyg
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€GLOG ‘6¥91€ “LS901 ‘€1LLYy = d sapdurexy ®o=r@o=9q I
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(dpown) o /¢, _ayT
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(m+  n)pqz
((m —n)p + (m 4 n)q)(a> + xp)

L6 ‘6T1¥ ‘68p11 ‘LE6ST = d sajdurexy

¥ 01°09) “(0‘C09) “(0‘01‘80) ‘v T80 = (n ‘P ‘q)

(¢m+ ;n)pqz

626 ‘17pS ‘€61 ‘€5LT = d sapdurexg
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w
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