A GRAPH AND ITS COMPLEMENT WITH SPECIFIED PROPERTIES VI: CHROMATIC AND ACHROMATIC NUMBERS

Dedicated to Ruth Bari

Jin Akiyama, Frank Harary and Phillip Ostrand

Abstract

We characterize the graphs G such that both G and its complement \bar{G} are n-colorable, and we specify explicitly all 171 graphs for the case $n=3$. We then determine the 41 graphs for which both G and \bar{G} have achromatic number 3 .

1. Introduction. We follow the terminology and notation of [1] but we include some basic definitions for completeness. A coloring of a graph G is an assignment of colors to its points so that whenever two points are adjacent they are colored differently. An n-coloring of G is a coloring of G which uses n colors. A complete n-coloring of G is an n-coloring of G such that, for every pair of distinct colors there exists a pair of adjacent points in G which receive the given pair of colors. The chromatic number $\chi=\chi(G)$ of a graph G is the least integer n such that G has an n-coloring. We say that G is n-colorable if $\chi(G) \leq n$. Alternatively, $\chi(G)$ can be characterized as the least integer n such that $V(G)$ has a partition into n subsets each of which induces a totally disconnected subgraph. Obviously if $n=\chi(G)$ then every n-coloring of G is complete. The achromatic number $\psi=\psi(G)$ of a graph G is the greatest integer m such that G has a complete m-coloring. Clearly every graph G of order p has a p-coloring, but this coloring is only complete if G is K_{p}.

A homomorphism of a graph G onto a graph G^{\prime} is a function ϕ from $V(G)$ onto $V\left(G^{\prime}\right)$ such that, whenever u and v are adjacent points of G, their images $\phi(u)$ and $\phi(v)$ are adjacent in G^{\prime}. Since no point of a graph is adjacent with itself, two adjacent points of G cannot have the same image under any homomorphism of G. If G^{\prime} is the image of G under a homomorphism ϕ, we write $G^{\prime}=\phi(G)$. The order of ϕ is $|V(\phi(G))|$. A homomorphism ϕ of G is complete of order n if $\phi(G)=K_{n}$. Thus every graph G has a complete homomorphism of order $\chi(G)$ and also a complete homomorphism of order $\psi(G)$, and $\chi(G)$ and $\psi(G)$ are the smallest and largest orders of the complete homomorphisms of G. It was shown by Harary, Hedetniemi and Prins [2] that G also has a complete homomorphism of order n for all intermediate n.

It is convenient to write $G>H$ when H is an induced subgraph of G. If X is a set of points in a graph G then we use $\langle X\rangle$ to denote the
subgraph G induced by X. If necessary to avoid ambiguity we can write $\langle X\rangle_{G}$ and $\langle X\rangle_{H}$ if X is a set of points in two different graphs G and H. We write $\bar{\chi}(G)$ for $\chi(\bar{G})$ and $\bar{\psi}(G)$ for $\psi(\bar{G})$.
2. The chromatic number. We are concerned in this section with those graphs G for which both G and \bar{G} are n-colorable.

Theorem 1. Let $G_{1}, G_{2}, \ldots, G_{k}$ be the components of a graph G. Then $\bar{\chi}(G)=\Sigma \bar{\chi}\left(G_{l}\right)$.

Proof. We first prove the inequality $\chi(G) \leq \Sigma \chi\left(G_{t}\right)$ holds if $G_{1}, G_{2}, \ldots, G_{k}$ are induced subgraphs of G such that $V(G)=\cup V\left(G_{i}\right)$. For each $1 \leq i \leq k$ there exists a family \mathbf{S}_{\imath} of subsets $V\left(G_{i}\right)$, whose union is $V\left(G_{i}\right)$, with $\left|\mathbf{S}_{i}\right|=\chi\left(G_{i}\right)$, and such that each $S \in \mathbf{S}_{i}$ induces in G_{i} a totally disconnected subgraph. Let $\mathbf{S}=\cup \mathbf{S}_{i}$. Then \mathbf{S} is a family of subsets of $V(G)$, whose union is $V(G)$, such that each $S \in \mathbf{S}$ induces in G a totally disconnected subgraph. Thus $\chi(G) \leq|\mathbf{S}| \leq \Sigma\left|S_{i}\right|=\Sigma \chi\left(G_{i}\right)$.

Next we show that $\bar{\chi}(G) \geq \Sigma \bar{\chi}\left(G_{i}\right)$ if $G_{1}, G_{2}, \ldots, G_{k}$ are the components of G. There exists a family S of subsets of $V(G)$, whose union is $V(G)$, with $|\mathbf{S}|=\bar{\chi}(G)$, such that each $S \in \mathbf{S}$ induces in \bar{G} a totally disconnected subgraph. For each $1 \leq i \leq k$, let $\mathbf{S}_{i}=\left\{S \in \mathbf{S} \mid S \cap V\left(G_{i}\right)\right.$ $\neq \varnothing\}$. Points from different components of G are adjacent in \bar{G}, so the subfamilies $\mathbf{S}_{i}, 1 \leq i \leq k$, constitute a partition of \mathbf{S}. Each \mathbf{S}_{i} is such that every $S \in \mathbf{S}_{i}$ induces in \bar{G}_{i} a totally disconnected subgraph, so $\left|\mathbf{S}_{i}\right| \geq \bar{\chi}\left(G_{i}\right)$. Thus $\bar{\chi}(G)=|\mathbf{S}| \equiv \Sigma\left|\mathbf{S}_{i}\right| \geq \Sigma \bar{\chi}\left(G_{i}\right)$.

Since each \bar{G}_{i} is an induced subgraph of \bar{G}, the theorem is an immediate consequence of the discussion above.

The corollaries which follow include a characterization of graphs G such that G and \bar{G} are both n-colorable.

Corollary 1a. Let $G_{1}, G_{2}, \ldots, G_{k}$ be the components of G. Then G and \bar{G} are both n-colorable if and only if
(i) $\chi\left(G_{i}\right) \leq n$ for every $1 \leq i \leq k$, and
(ii) $\sum \bar{\chi}\left(G_{i}\right) \leq n$.

Proof. This follows directly from Theorem 1 and the fact that $\chi(G)=$ $\max \chi\left(G_{i}\right)$.

Corollary 1b. If G has k components, then $\bar{\chi}(G) \geq k$. If $k=\bar{\chi}(G)$, then each component of G is complete.

Proof. As G has k components G_{i}, \bar{G} must contain K_{k}. If $k=\bar{\chi}(G)$, then $\Sigma \bar{\chi}\left(G_{i}\right)=k$, so for each $i, \bar{\chi}\left(G_{i}\right)=1$, whence \bar{G}_{i} is totally disconnected and therefore G_{i} is complete.

For the special case of disconnected graphs G such that G and \bar{G} are both 3-colorable, Theorem 1 leads to a particularly simple characterization.

Corollary 1c. If a graph G is disconnected then G and \bar{G} are both 3-colorable if and only if one of the following conditions is satisfied.
(i) G has exactly 3 components each of which is a complete graph of order no greater than 3.
(ii) G has exactly 2 components, G_{1} and G_{2}, and G_{1} is a complete graph of order no greater than 3, and G_{2} is 3-colorable and \bar{G}_{2} is 2-colorable.

Proof. Let $G_{1}, G_{2}, \ldots, G_{k}$ be the components of a disconnected graph G.

Suppose first that G and \bar{G} are both 3-colorable. By Corollary lb we need consider only two possible values of k.

Case 1. $k=3$.
In this case $k=\bar{\chi}(G)$ so Corollary 1 b applies and each G_{i} is complete. Then $\chi(G) \leq 3$ implies that each G_{i} is of order no greater than 3. In this case G satisfies condition (i).

Case 2. $k=2$.
From Theorem 1 we get $\bar{\chi}\left(G_{1}\right)+\bar{\chi}\left(G_{2}\right)=\bar{\chi}(G) \leq 3$. Without loss of generality we may conclude that $\bar{\chi}\left(G_{1}\right)=1$ and $\bar{\chi}\left(G_{2}\right) \leq 2$. As in Case 1 it follows that G_{1} is complete of order no greater than 3. Thus G_{2}, being a subgraph of G, is 3-colorable, and \bar{G}_{2} is 2-colorable because $\bar{\chi}\left(G_{2}\right) \leq 2$. In this case G satisfies condition (ii).

Suppose conversely that G satisfies either (i) or (ii).

Case $1^{\prime} . G$ satisfies (i).
Let G_{1}, G_{2} and G_{3} be the components of G. Then each G_{i} is complete so $V\left(G_{i}\right)$ induces in \bar{G} a totally disconnected subgraph, thus $\bar{\chi}(G) \leq 3$. Because each G_{i} is of order no greater than 3 we can partition $V(G)$ into three subsets $V_{1}^{\prime}, V_{2}^{\prime}$ and V_{3}^{\prime} such that $\left|V_{i}^{\prime} \cap V\left(G_{j}\right)\right| \leq 1$ for $1 \leq j, j \leq 3$. Then each V_{l}^{\prime} induces in G a totally disconnected subgraph, so $\chi(G) \leq 3$. In this case G and \bar{G} are both 3-colorable.

Case 2'. G satisfies (ii).
In this case Corollary la clearly implies that G and \bar{G} are both 3-colorable.

Theorem 2. If a graph G is n-colorable, then $\bar{\chi}(G)$ is the least integer t such that $V(G)$ can be partitioned into t subsets $V_{1}, V_{2}, \ldots, V_{t}$ and for each $1 \leq i \leq t,\left|V_{i}\right| \leq n$ and V_{l} induces a complete subgraph.

Proof. By definition $\bar{\chi}(G)$ is the least integer t such that $V(\underline{G})$ can be partitioned into t subsets $V_{1}, V_{2}, \ldots, V_{t}$ each of which induces in \bar{G} a totally disconnected subgraph. Also for any subset S of $V(G), S$ induces in \bar{G} a totally disconnected subgraph if and only if S induces in G a complete subgraph, in which case $|S| \leq \chi(G) \leq n$.

The corollaries which follow include another characterization of graphs G such that G and \bar{G} are both n-colorable which can usefully be applied to connected graphs.

Corollary 2a. A graph G and its complement are both n-colorable if and only if there exist positive integers $s, t \leq n$ such that

For each $1 \leq i \leq s$ there is a positive integer $a_{t} \leq t$ such that $\cup K_{a_{t}}$ is a spanning subgraph of \bar{G}.
(ii) For each $1 \leq i \leq t$ there is a positive integer $b_{i} \leq s$ such that $\cup K_{b_{t}}$ is a spanning subgraph of G.

Moreover the minimum values of s and t which satisfy these conditions are $\chi(G)$ and $\bar{\chi}(G)$ respectively.

Proof. Suppose first that G and \bar{G} are both n-colorable. Let $s=\chi(G)$ and $t=\bar{\chi}(G)$, so $s, t \leq n$. As G is s-colorable, by Theorem 2 there is a partition of $V(G)$ into $t=\bar{\chi}(G)$ subsets V_{1}, \ldots, V_{t} such that for each $1 \leq i \leq t,\left|V_{i}\right| \leq s$ and V_{i} induces a complete subgraph in G. Writing $b_{i}=\left|V_{i}\right|$, we have $\cup K_{b_{i}}=\cup\left\langle V_{i}\right\rangle$ as a spanning subgraph of G.

Similarly, since \bar{G} is t-colorable and $\bar{\chi}(G)=s$, the same argument applied to \bar{G} yields $\cup K_{a_{t}}$ as a spanning subgraph of \bar{G} for some sequence of positive integers $a_{i} \leq t$.

Now suppose conversely that G is a graph which satisfies conditions (i) and (ii). By condition (i), there is a partition of $V(G)$ into s subsets V_{1}, \ldots, V_{s} such that for each $1 \leq i \leq s, V_{l}$ induces a complete subgraph in \bar{G}. Then each V_{i} induces in G a totally disconnected subgraph. Thus $\chi(G) \leq s \leq n$, so G is n-colorable. Also note that the least value of s which can satisfy (i) is $\chi(G)$ since $\chi(G) \leq s$. Similarly by (ii) we deduce $\bar{\chi}(G) \leq t \leq n$, so \bar{G} is n-colorable and $\bar{\chi}(G)$ is the minimum possible value for t.

Corollary 2b. If a graph G and its complement are both n-colorable then the order of G is at most n^{2}.

Although this corollary is clearly a consequence of the partition described in Theorem 2, we should also point out that it is also a special case of the well known result of Nordhaus and Gaddum [3] that the order p of a graph satisfies the inequality, $p \leq \chi \bar{\chi}$. It is convenient to include here another useful consequence of the Nordhaus-Gaddum theorem.

Corollary 2c. If a graph G and its complement are both n-colorable and the order of G exceeds $n(n-1)$, then $\chi(G)=\bar{\chi}(G)=n$.

Proof. Since $\chi(G) \leq n$ and $\bar{\chi}(G) \leq n$, if either were actually less than n then $\chi(G) \cdot \bar{\chi}(G)$ would be no greater than $n(n-1)$.

Our final corollary of this theorem deals again with the special case $n=3$.

Corollary 2d. If a graph G of order p and its complement \bar{G} are both 3-colorable, then $p \leq 9$ and
(i) if $p=9$, then G and \bar{G} each contain $3 K_{3}$ as a subgraph,
(ii) if $p=8$, then G and \bar{G} each contain $2 K_{3} \cup K_{2}$ as a subgraph,
(iii) if $p=7$, then G and \bar{G} each contain either $K_{3} \cup 2 K_{2}$ or $2 K_{3} \cup K_{1}$ as a subgraph.

Proof. Suppose that G and \bar{G} are both 3-colorable. Then by Corollary 2 b the order p of G is at most 9 . If $p \geq 7$ then by Lemma $2 \mathrm{c}, \chi(G)=$ $\bar{\chi}(G)=3$. Thus by Corollary 2a, depending on the value of p, G and \bar{G} must contain the subgraphs described above.

We complete this section by cataloguing all graphs G of order 6 or less and all disconnected graphs G of order 7,8 or 9 for which G and \bar{G} are both 3-colorable. Because there are 171 graphs in this category we will not illustrate them. Rather we describe each such graph by specifying an ordered triple (p, q, n) where p denotes the order and q the size of the graph and n denotes its numerical designation in the Graph Diagrams in Appendix I of [1]. Every graph of order 6 or less appears in these diagrams and the triple (p, q, n) completely describes such graphs. The disconnected graphs of order 7,8 , and 9 for which $\chi \leq 3$ and $\bar{\chi} \leq 3$ do not appear in the diagrams, but their components do, and we indicate such graphs by specifying their components. There are pairs (p, q) for which only one graph of order p and size q exists. Such graphs do not have a numerical designation in the Graph Diagrams. We hereby confer the designation 1 on all such graphs. Thus in the lists which follow the triple $(2,1,1)$ represents the unique graph of order 2 and size 1 , namely K_{2}. Our list of disconnected graphs of order 7 through 9 with $\chi=\bar{\chi}=3$ are really complete, by the following argument. By Corollary 1c, all such graphs have 3 components each of order 3 or less or 2 components, G_{1} and G_{2}, with G_{1} complete of order 3 or less and $\chi\left(G_{2}\right) \leq 3, \bar{\chi}\left(G_{2}\right) \leq 2$. By the Nordhaus-Gaddum theorem we conclude that the order of G_{2} is no greater than 6 , so G_{2} is in List C, our list of all graphs of order 6 or less with $\chi=3, \bar{\chi}=2$.

List A. $\chi+\bar{\chi} \leq 4$.
$\chi=\bar{\chi}=1:(1,0,1)$ which is K_{1}.
$\chi=1$ and $\bar{\chi}=2:(2,0,1)$ which is \bar{K}_{2}.
$\chi=2$ and $\bar{\chi}=1:(2,1,1)$ which is K_{2}.
$\chi=1$ and $\bar{\chi}=3:(3,0,1)$ which is \bar{K}_{3}.
$\chi=3$ and $\bar{\chi}=1:(3,3,1)$ which is K_{3}.
$\chi=\bar{\chi}=2$, connected: $(3,2,1),(4,3,2)$, and $(4,4,2)$ which are P_{3}, P_{4} and C_{4}.
$\chi=\bar{\chi}=2$, disconnected: $(3,1,1)$ and $(4,2,2)$ which are $K_{1} \cup K_{2}$ and $2 K_{2}$ 。

List B. $\chi=2$ and $\bar{\chi}=3$.
Connected: $(4,3,3),(5,4,4),(5,4,6),(5,5,3),(5,6,5)$ and $p=6$ with $(q, n)=(5,7),(5,10),(5,14),(6,7),(6,9),(6,11),(7,5),(7,14),(8,23)$, $(9,17)$.
Disconnected: $(4,1,1),(4,2,1),(5,2,2),(5,3,1),(5,3,4),(5,4,1),(6,3,5)$, and $(6,4,8)$.

List C. $\chi=3$ and $\bar{\chi}=2$.
Connected: $(4,4,1),(4,5,1),(5,5,4),(5,6,1),(5,6,4),(5,6,6),(5,7,1)$, $(5,8,2)$, and $p=6$ with $(q, n)=(7,23),(8,5),(8,14),(9,7),(9,9),(9,11)$, $(10,7),(10,10),(10,14),(11,8),(12,5)$.
Disconnected: $(4,3,1),(5,4,5)$ and $(6,6,17)$.
List D. $\chi=\bar{\chi}=3$, order 6 or less.
Connected: $p=5$ with $(q, n)=(5,2),(5,5),(5,6),(6,2),(7,2) ;(6,5,3)$;
$(p, q)=(6,6)$ with $n=8,10,13,14,18,20$;
$(p, q)=(6,7)$ with $n=6,7,8,9,10,11,12,13,16,19,20,21,24$;
$(p, q)=(6,8)$ with $n=1,2,6,7,8,9,10,11,12,13,16,19,20,21,24$;
$(p, q)=(6,9)$ with $n=2,3,5,8,10,13,14,18,19,20 ;(6,10,3)$, $(6,10,12),(6,10,15)$.
Disconnected: $(5,3,2),(5,4,2),(5,5,1)$;
$p=6$ with $(q, n)=(4,6),(5,12),(5,15),(6,2),(6,3),(6,5),(6,19),(7,1)$, $(7,2)$.

List E. $\chi=\bar{\chi}=3$, of order 7, 8, or 9, disconnected $3 K_{3}, 2 K_{3} \cup$ $K_{2}, K_{3} \cup 2 K_{2}, 2 K_{3} \cup K_{1}$, and $K_{3} \cup G$ where G is any connected graph in List C, and $K_{2} \cup G$ where G is any connected graph of order 5 or 6 in List C, and $K_{1} \cup G$ where G is any connected graph of order 6 in List C.

Of the 171 graphs which appear in these lists, 116 have $\chi=\bar{\chi}=3$. In addition to these the complements of the 51 graphs in List E are connected graphs of order 7 through 9 with $\chi=\bar{\chi}=3$. And Corollary 2d implies that there are many other graphs of order 7 through 9 with
$\chi=\bar{\chi}=3$ which are not in our lists, of which one example is $G=C_{7}+e$ where the edge e joins two points whose distance in C_{7} is 2 . In this case clearly both G and \bar{G} contain $K_{3} \cup 2 K_{2}$ as a subgraph so $\chi(G)=\bar{\chi}(G)=$ 3.
3. The achromatic number. We first characterize graphs G with $\psi(G)=2$.

Theorem 3. A graph G has achromatic number 2 if and only if each component of G is complete bipartite.

Proof. Obviously the union of complete bipartite graphs has $\psi=2$. For the converse, assume that $\psi=2$, then $\chi \leq 2$ since $\chi \leq \psi$ for any graph. Thus G must be bipartite. Moreover each component of G cannot contain P_{4} as an induced subgraph since $\psi\left(P_{4}\right)=3$. Thus each component of G must be complete bipartite.

Corollary 3a. The only graphs with $\psi=\bar{\psi}=2$ are $C_{4}, 2 K_{2}, K_{1,2}$ and $K_{2} \cup K_{1}$.

We now develop some results in the form of five lemmas for finding all graphs with $\psi=\bar{\psi}=3$. We write $u A v$ to indicate adjacency and $u \bar{A} v$ for nonadjacency. The first lemma was proved by exhaustion and we omit the detailed verification.

Lemma 4a. Among all graphs of order 6, only the six graphs $2 K_{3}$, $2 K_{2}+\bar{K}_{2}, C_{4}+\bar{K}_{2}$ and their complements $K_{3,3}, C_{4} \cup K_{2}$ and $3 K_{2}$ satisfy the property that either G or \bar{G} contains two point-disjoint triangles and $\psi=\bar{\psi} \leq 3$.

Figure 1. The six graphs of order 6 with $\psi, \bar{\psi} \leq 3$

Figure 2. The six graphs of Lemma 4b

Lemma 4b. Among all graphs of order 7 , only the six graphs $2 K_{3} \cup K_{1}$, $2 K_{2}+\bar{K}_{3}, C_{4}+\bar{K}_{3}$ and their complements satisfy the property that either G or \bar{G} contains two point-disjoint triangles and $\psi, \bar{\psi} \leq 3$.

Proof. Assume that $\psi=\bar{\psi}=3$ and that G contains two point-disjoint triangles $T_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $T_{2}=\left\{v_{4}, v_{5}, v_{6}\right\}$. Then the subgraph H of G induced by these six points in one of the three graphs, $2 K_{3}, K_{2}+\bar{K}_{2}$ or $C_{4}+\bar{K}_{2}$, of Lemma 4 a ; otherwise either G or \bar{G} contains an induced subgraph of order 6 which has achromatic number at least 4 and so ψ or $\bar{\psi}$ would be at least 4 , a contradiction to the hypothesis. By w we denote the seventh point in $V(G)-V(H)$, and divide the proof into three cases according to whether H is $2 K_{3}, 2 K_{2}+\bar{K}_{2}$, or $C_{4}+\bar{K}_{2}$.

Case 1. $H=2 K_{3}$.
If $G=H \cup K_{1}$, it is easily verified that $\psi=\bar{\psi}=3$. Now we may assume that $G \supset H \cup K_{1}$ properly. Then there is a point v_{i} in G which is adjacent to w. Without loss of generality we may assume that $w A v_{i}$. On the other hand, there is at least one point $v_{i}, i=4,5$ or 6 , which is not adjacent to w, say v_{4} as shown in Figure 3, otherwise all three points v_{i}, $i=4,5$, and 6 are adjacent to w and so $\left\{v_{4}, v_{5}, v_{6}, w\right\}$ induces K_{4}, a contradiction.

Figure 3. A step in the proof of Case 1
Then it is easy to see that $\psi(G)=4$ regardless of whether or not $w A v_{i}$ for $i=2,3,5,6$, a contradiction.

Case 2. $\underline{H}=2 K_{2}+\bar{K}_{2}$.
As $\psi=\bar{\psi}=3$, we know that $\chi, \bar{\chi} \leq 3$ so by Lemma $2 \mathrm{c}, \chi=\bar{\chi}=3$. Thus by Corollary 2d, \bar{G} contains a triangle. As $H=2 K_{2}+\bar{K}_{2}=G-w$, it follows that G contains $C_{4} \cup K_{2}$ as an induced subgraph. Hence there are two possibilities: either $\stackrel{4}{G} \supset F_{1}$ or $\bar{G} \supset F_{2}$, where F_{1}, F_{2} are the graphs illustrated in Figure 4, which we now consider as two subcases.

Figure 4. A step in the proof of Case 2
Case 2a. $\bar{G} \supset F_{1}$.
If $\bar{G} \neq F_{1}$, then w is adjacent to at least one more point of G, i.e., to v_{1}, v_{2}, v_{4}, or v_{5}. We may assume that w is adjacent to v_{1} or v_{2} from the symmetry of F_{1}. In either case, $\bar{\psi}=4$, a contradiction. On the other hand, if $\bar{G}=F_{1}$ then $\bar{\psi}=4$, a contradiction.

Case 2b. $\bar{G} \supset F_{2}$.
If $\bar{G}=F_{2}$, then $\psi=\bar{\psi}=3$. If $\bar{G} \neq F_{2}$, then w is adjacent to one of the points $v_{1}, i=1,3,4$ or 6 . From the symmetry of F_{2}, we may assume that $w A v_{1}$. Then it is easy to see that $\psi=4$, a contradiction.

Case 3. $H=C_{4}+\bar{K}_{2}$.
Since $\bar{G} \supset K_{3}$ from Corollary 2d, and $\bar{H}=3 K_{2}$, it follows that $\bar{G} \supset 2 K_{2} \cup K_{3}$. We may assume without loss of generality that $\left\{v_{2}, v_{5}, w\right\}$ induces K_{3} in \bar{G}; see Figure 5. If $\bar{G}=2 K_{2} \cup K_{3}$, then $\psi=\bar{\psi}=3$. If $\bar{G} \neq 2 K_{2} \cup K_{3}$, then w must be adjacent to at least one of $v_{i}, i=1,3,4$ or 6. Assuming now that $w A v_{1}$, we see that $\bar{\psi}=4$, a contradiction.

Figure 5. A step in the proof of Case 3

Lemma 4c. If G is a graph of order 7 such that neither G nor \bar{G} contains two point-disjoint triangles, then ψ or $\bar{\psi}$ is at least 4 .

Proof. Assume that $\psi=\bar{\psi}=3$, then $\chi, \bar{\chi} \leq 3$ since $\chi \leq \psi$. By applying Lemma $2 \mathrm{c}, \chi=\bar{\chi}=3$. Thus $G \supset K_{3} \cup 2 K_{2}$ or $G \supset 2 K_{3} \cup K_{1}$ by Corollary 2 d . But by the hypothesis, G cannot contain two point-disjoint triangles and so, $G, \bar{G} \supset K_{3} \cup 2 K_{2}$. Now we label the points of $K_{3} \cup 2 K_{2}$ as in Figure 6.

G:

Figure 6. A labelling of $K_{3} \cup 2 K_{2}$

By the symmetry of G and \bar{G}, it is sufficient to handle only the case $u_{2} A w_{2}$. By the hypothesis that G cannot contain two point-disjoint triangles, $v_{1} A w_{2}$ and $v_{2} A u_{2}$. Then regardless of the presence or absence of other lines, we can easily verify that $\bar{\psi}=4$, a contradiction.

Lemma 4d. There are no graphs of order at least 8 such that $\psi=\bar{\psi}=3$.

Proof. Assume that G has order 8 and $\psi=\bar{\psi}=3$. Then $\chi=\bar{\chi}=3$ by Lemma 2c. Thus both G and \bar{G} contain $2 K_{3} \cup K_{2}$ as a spanning subgraph by Corollary 2 d . The subgraph of G induced by the set of points of $2 K_{3}$ must be one of the three graphs, $2 K_{3}, 2 K_{2}+\bar{K}_{2}$ or $C_{4}+\bar{K}_{2}$ of Lemma 4a. We now divide the proof into three cases:

Case 1. G contains $2 K_{3}$ as an induced subgraph.
By Corollary 2d, both G and \bar{G} contain $2 K_{3} \cup K_{2}$ hence of course $\bar{G} \supset 2 K_{3}$. It is convenient to label \bar{G} as in Figure 7.

Figure 7. A subgraph of \bar{G}

By symmetry, we may assume that both point sets $\left\{u_{3}, u_{6}, v_{1}\right\}$ and $\left\{u_{2}, u_{5}, v_{2}\right\}$ induce K_{3} in \bar{G}. Then it is easily verified that $\bar{\psi}=4$.

Case 2. G contains $2 K_{2}+\bar{K}_{2}$ as an induced subgraph.
Let F_{1}, F_{2} be the graphs illustrated in Figure 8.
$F_{1}:$

$$
F_{2}:
$$

Figure 8. Subgraphs F_{1} and F_{2} of \bar{G}
Since $\bar{G} \supset 2 K_{3}$ by Corollary 2d, there are two possibilities: either $\bar{G} \supset F_{1}$ or $\bar{G} \supset F_{2}$. However in either case, $\bar{\psi}=4$.

Case 3. G contains $C_{4}+\bar{K}_{2}$ as an induced subgraph.
Since $\bar{G} \supset 2 K_{3}$ by Corollary 2d, we may assume that both $\left\{v_{1}, u_{2}, u_{5}\right\}$ and $\left\{v_{2}, u_{3}, u_{4}\right\}$ induce K_{3} in \bar{G}, see Figure 9, and thus $\bar{\psi}=4$, a contradiction.

Figure 9. A subgraph of \bar{G}

Combining the preceding four lemmas, we obtain the following result.
Lemma 4e. Let G be a graph of order at least 7 , then G has $\psi=\bar{\psi}=3$ if and only if G is one of the six graphs, $2 K_{3} \cup K_{1}, K(3,3,1), C_{4} \cup C_{3}$, $2 K_{2}+\bar{K}_{3}, 2 K_{2} \cup K_{3}$ and $K(3,2,2)$.

We are now ready to specify all the graphs with $\psi=\bar{\psi}=3$.
Theorem 4. There are exactly 41 graphs G such that both G and \bar{G} have achromatic number 3: six have order 7, twenty are of order 6, fourteen of order 5 and just one of order 4.

Proof. By Lemma 4d, we know that there are no such graphs of order $p \geq 8$. Lemma 4 e lists all six graphs with $p=7$ and Figure 2 shows them. To complete the list of all the graphs with $\psi=\bar{\psi}=3$, we had to resort to the method of brute force by an exhaustive inspection of Appendix I of [1] for $p=4,5$, and 6 .

As the determination of all graphs with $\psi=\bar{\psi}=n \geq 4$ appears to be hopelessly complicated, we can realistically ask only for the construction of additional families of graphs with $\psi=\bar{\psi}$.

References

1. F. Harary, Graph Theory, Addison-Wesley, Reading (1969).
2. F. Harary, S. T. Hedetniemi, and G. Prins, An interpolation theorem for graphical homomorphisms, Port. Math., 26 (1967), 453-462.
3. E. A. Nordhaus and J. W. Gaddum, On complimentary graphs, Amer. Math. Monthly, 63 (1956), 175-177.

Received February 18, 1980.

Nippon Ika University
Kawasaki, 211, Japan

University of Michigan
Ann Arbor, MI 48109

AND

