SOME INEQUALITIES FOR PRODUCTS OF POWER SUMS

Bruce Reznick

Abstract

We study the asymptotic behavior of the range of the ratio of products of power sums. For $x=\left(x_{1}, \ldots, x_{n}\right)$, define $M_{p}=M_{p}(x)=$ Σx_{i}^{p}. As two representative and explicit results, we show that the maximum and minimum of the function $M_{1} M_{3} / M_{2}^{2}$ are $\pm 3 \sqrt{3} / 16 n^{1 / 2}$ $+5 / 8+\theta\left(n^{-1 / 2}\right)$ and that $n \geq M_{1} M_{3} / M_{4}>-n / 8$, where " $1 / 8$ " is the best possible constant. We give readily computable, if less explicit, formulas of this kind for $M_{p_{1}}^{a_{1}} \cdots M_{p_{r}}^{a_{r}} / M_{q}^{b}, \sum a_{t} p_{t}=b q$. Applications to integral inequalities are discussed. Our results generalize the classical Hölder and Jensen inequalities. All proofs are elementary.

1. Introduction and background. In this paper I shall discuss some inequalities involving power sums which build upon, and generalize, the Hölder and Jensen inequalities. Since the proofs, although elementary, involve lengthy and cumbersome computation, I shall indicate the main results and spirit of the paper in this introduction.

For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$ and $p>0$ define

$$
\begin{equation*}
M_{p}(x)=\sum_{i=1}^{n} x_{i}^{p} \tag{1.1}
\end{equation*}
$$

we exclude the possibility that some x_{l} is negative in (1.1) when p is not integral and set $M_{0}(x) \equiv n$.

Main Theorem (see (3.5) and (3.17)). Suppose

$$
f(x)=M_{p_{1}}^{a_{1}}(x) \cdots M_{p_{r}}^{a_{r}}(x) / M_{q}^{b}(x)
$$

where $\sum a_{t} p_{i}=b q$ and all parameters are positive. Let M denote the maximum value of $f(M$ depends on n, the number of variables $)$. Then there exist readily computable constants c_{1} so that $M=c_{1} n^{c_{2}}+\theta\left(n^{c_{3}}\right)$. The minimum, \bar{m}, defined when all parameters are integers, in many cases satisfies $\bar{m}=c_{4} n^{c_{2}}+o\left(n^{c_{2}}\right)$, where c_{4} is not always readily computable.

Hölder's inequality (1.2) and Jensen's inequality (1.3) - see [3], p. 28 - state that for all x with $x_{i} \geq 0(x \geq 0)$,

$$
\begin{equation*}
M_{p}^{a}(x) M_{r}^{c}(x) \geq M_{q}^{b}(x) \text { if } a p+c r=b q \text { and } a, b, c, p, q, r \geq 0 \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
M_{p}^{1 / p}(x) \geq M_{q}^{1 / q}(x) \text { if } p>q>0 . \tag{1.3}
\end{equation*}
$$

The inequality in (1.2) is strict unless x is some permutation of ($t, \ldots, t, 0, \ldots, 0$); the inequality in (1.3) is strict unless x is some permutation of $(t, 0, \ldots, 0)$. In $\S 2$, after making some basic definitions and conventions, we combine (1.2) and (1.3) to prove that the maximum of $M_{p}^{a} / M_{q}^{b}, a p=b q$, is equal to $n^{\max (0, a(1-p / q))}$. The constant c_{2} from the Main Theorem turns out to be the best exponent derivable from repeated application of this result.

The Main Theorem is proved in §3. Section 4 is devoted to some partial results when M_{q}^{b} is replaced by $M_{q_{1}}^{b_{1}} \cdots M_{q_{s}}^{b_{s}}$. In $\S 5$, we present a "notebook" of certain special cases in which a more detailed analysis is possible. To be specific, the maximum and minimum of $M_{1} M_{3} / M_{2}^{2}$ are $\pm 3 \sqrt{3} / 16 n^{1 / 2}+5 / 8+\theta\left(n^{-1 / 2}\right)$, (indeed, they are given by a Laurent series in $n^{-1 / 2}$). For $M_{1}^{3} M_{3} / M_{2}^{3}$, the maximum and minimum are computed exactly and are $\pm(\sqrt{n-1} \pm 1)^{4} / 8 \sqrt{n-1}$. The maximum value for $M_{1} M_{3} / M_{4}$ is n by the Hölder and Jensen inequalities. We show that $M_{1} M_{3} / n M_{4}>-1 / 8$, where $-1 / 8$ is best possible, first directly and then through an analysis of the classical moment problem. Finally we discuss the role of integral inequalities and compute the asymptotics for $M_{1}^{r} M_{3}^{s} / M_{4}^{(r+3 s) / 4}$.

The methods of proof are elementary and rest on these observations. If f has an extreme value at y then $\partial f / \partial x_{i}(y)=0$ for $i=1, \ldots, n$. When f is symmetric, this can drastically reduce the set of y on which f needs to be considered and provide an upper bound on the extreme value of f. A judicious choice of x 's, on the other hand, can provide a lower bound on the extreme value of f. When we are lucky, the difference between these bounds is the error term. We can also use (1.2) and (1.3) to make a priori estimates which are often achieved.

This paper sits between two problems already analyzed in the literature. Ursell [6] has studied the mapping $T: x \rightarrow\left(M_{p_{1}}(x), \ldots, M_{p_{r}}(x)\right)$ for $x \geq 0$ and determined those y for which $T(y)$ is on the boundary of the range of T. Also, if we restrict our attention to integer exponents, we can embed our situation into the classical moment problem.

The importance of [6] is immediately obvious and an appeal to it would save some space in the proof of the Main Theorem. Those omitted arguments would have to be repeated in detail in $\S 5$. In any case, the presentation of [6] is rather opaque and the major result is nowhere isolated as a theorem. I hope to discuss Ursell's work, without his restriction $x \geq 0$, in a future publication [5].

Let μ be a measure with n unit point masses at which g attains the values x_{1}, \ldots, x_{n}. Then $\Sigma x_{i}^{p}=\int g^{p} d \mu$. Thus, any inequality on the ratio
of products of moments automatically applies to power sums. In fact, we show in §5 that

$$
1 \geq \frac{\int g d \mu \int g^{3} d \mu}{\int d \mu \int g^{4} d \mu} \geq-\frac{1}{8}
$$

As $\int d \mu=n$, this implies the aforementioned inequalities for $M_{1} M_{3} / M_{4}$. However, the expression

$$
\frac{\left(\int g d \mu\right)\left(\int g^{3} d \mu\right)}{\left(\int d \mu\right)^{1 / 2}\left(\int g^{2} d \mu\right)^{2}}
$$

is unbounded over (g, μ) with non-negative μ, let alone bounded by $\pm 3 \sqrt{3} / 16$.

All the empirical evidence suggests that the extreme values of $M_{p_{1}}^{a_{1}} \cdots M_{p_{r}}^{a_{r}} / M_{q_{1}}^{b_{1}} \cdots M_{q_{s}}^{b_{s}}$ grow asymptotically like $c_{1} n^{c_{2}}$ and I am willing to make this a conjecture.
2. Notations and preliminaries. The following definitions and restrictions apply for the next several sections and will be referred to collectively as "the usual conditions."

$$
\begin{gather*}
0<p_{1}<\cdots<p_{r}, \quad 0<q_{1}<\cdots<q_{s}, \quad p_{i} \neq q_{j} \tag{2.1}\\
a_{i}>0, \quad 1 \leq i \leq r ; \quad b_{j}>0, \quad 1 \leq j \leq s \tag{2.2}\\
f=f(p, q ; a, b)(x)=\prod_{i=1}^{r} M_{p_{i}}^{a_{i}}(x) / \prod_{j=1}^{s} M_{q_{j}}^{b_{j}}(x) \tag{2.3}\\
M=M(p, q ; a, b)=\sup _{x_{i} \geq 0} f(p, q ; a, b)(x) \tag{2.4}\\
m=m(p, q ; a, b)=\inf _{x_{i} \geq 0} f(p, q ; a, b)(x) \tag{2.5}\\
w=a \cdot p=\sum_{i=1}^{r} a_{i} p_{i}=\sum_{j=1}^{s} b_{j} q_{j}=b \cdot q \tag{2.6}
\end{gather*}
$$

From (2.6), $f(\lambda x)=f(x)$ for any $\lambda>0$ so that, in (2.4) and (2.5), we may assume $\sum_{i=1}^{n} x_{i}^{2}=c$. This restricts our attention to a compact set, so that M and m are realized as values of f. (Without (2.6), $f(\lambda x)=\lambda^{t} f(x)$ so that $M=\infty$ and $m=0$.) Occasionally we are interested in allowing
negative x_{l}. This entails some additional restrictions:

$$
\begin{equation*}
a_{i}, b_{J}, p_{i} \in \mathbf{Z}, \quad q_{J} \in 2 \mathbf{Z} \tag{2.7}
\end{equation*}
$$

(If q is odd then $M_{q}(1,-1,0, \ldots, 0)=0$ and this is bad for the denominator of f.) If the usual conditions and (2.7) hold, we make two more definitions:

$$
\begin{align*}
\bar{M} & =\bar{M}(p, q ; a, b)=\sup _{x} f(p, q ; a, b)(x) \tag{2.8}\\
\bar{m} & =\bar{m}(p, q ; a, b)=\inf _{x} f(p, q ; a, b)(x) \tag{2.9}
\end{align*}
$$

As before, \bar{M} and \bar{m} are realized as the values of f.
The first lemma collects a number of fairly obvious, but useful, observations.

Lemma 2.10. Suppose that the usual conditions hold, as do (2.7), (2.8) and (2.9) when appropriate. Then
(i) $M \geq 1 \geq m>0$
(ii) $m(p, q ; a, b)=(M(q, p ; b, a))^{-1}$
(iii) $\bar{M}=M$
(iv) $\bar{m}>-M$
(v) $M(\lambda p, \lambda q ; a, b)=M(p, q ; a, b)$ for $\lambda>0$
(vi) $M(p, q ; \lambda a, \lambda b)=(M(p, q ; a, b))^{\lambda} \quad$ for $\lambda>0$.
(vii) If $n \geq 3$ and $a_{i} p_{i}$ is odd for some i then $m(p, q ; a, b)<0$.

For fixed a, p, b, q and increasing n, M is non-decreasing in n, and m and \bar{m} are non-increasing.

Proof. (i) The first two inequalities follow from $f(1, \ldots, 1)=1$, the third from f realizing its infimum and $f(x)>0$ for $x \geq 0, x \neq 0$.
(ii) Note that $f(p, q ; a, b)(x) f(q, p ; b, a)(x)=1$. The relation need not hold for \bar{M} and \bar{m} as (2.7) might not be satisfied by both functions.
(iii) Let $|x|=\left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$ and assume (2.7). Then $M_{p}(|x|)=$ $M_{p}(x)$ if p is even and $M_{p}(|x|) \geq\left|M_{p}(x)\right|$ if p is odd with strict inequality iff x has components of opposite sign; thus $f(|x|) \geq|f(x)|$. Since $|x| \geq 0$, $M \geq \bar{M}$.
(iv) If $\bar{m} \geq 0$, this is immediate. If $0>\bar{m}$, then $\bar{m}=f(x)$ for some x with components of opposite sign. By the last proof, $|\bar{m}|<f(|x|) \leq M$.
(v) For fixed $\lambda>0$, if $y_{i}=x_{1}^{\lambda}, 1 \leq i \leq n$ then $M_{p}(y)=M_{\lambda p}(x)$. Hence $f(\lambda p, \lambda q ; a, b)(x)=f(p, q ; a, b)(y)$. Since $x \mapsto y$ is one-to-one and invertible on the set $\{x \geq 0\}$, the suprema are identical.
(vi) Observe that $f(p, q ; \lambda a, \lambda b)=(f(p, q ; a, b))^{\lambda}$.
(vii) If $x_{t}=(1,1, t, 0, \ldots, 0)$ then $M_{p}\left(x_{t}\right)=\left(2+t^{p}\right)$. Thus if $a_{i} p_{i}$ is odd then $M_{p_{t}}^{a_{t}}$ (and f) will change sign at $t=-2^{1 / p_{t}}$. Since q_{j} is even by (2.7) this condition is necessary as well as sufficient for \bar{m} to be negative.
(viii) In an abuse of notation, equate $M_{p}\left(x_{1}, \ldots, x_{n}\right)$ and $M_{p}\left(x_{1}, \ldots, x_{n}, 0\right)$. As n increases, the suprema and infima of f are then taken over ever larger sets.

One final notation is convenient. Suppose $x=\left(x_{1}, \ldots, x_{n}\right)$ has n components, n_{1} of which are c_{1}, n_{2} of which are c_{2}, etc., then $x=$ $\left(c_{1}, c_{2}, \ldots ; n_{1}, n_{2}, \ldots\right)$. Since all functions here are symmetric, the order of the components is immaterial. In this notation, (1.2) is sharp at $(t, 0 ; k, n-k)$ for $1 \leq k \leq n$ and (1.3) is sharp at $(t, 0 ; 1, n-1)$.

In the special case $r=s=1, M=M(p, q ; a, b)$ and $m=$ $m(p, q ; a, b)$ can be deduced from (1.2), (1.3) and (2.10)(iii), but it is more instructive to approach the problem directly first. Assume the usual conditions for $f=M_{p}^{a} / M_{q}^{b}$ - that is, $a p=b q$. If $f(y)=M$ then y is a local maximum for f and $\left(\partial f / \partial x_{i}\right)(y)=0$ for $1 \leq i \leq n$. As $M \geq 1$ we can assume that $M_{p}(y) \neq 0$ and $M_{q}(y) \neq 0$. By taking the logarithmic derivative of f,

$$
\begin{equation*}
\frac{a p}{M_{p}(y)} y_{i}^{p-1}-\frac{b q}{M_{q}(y)} y_{i}^{q-1}=0 \quad \text { for } i=1, \ldots, n \text { and extremal } y \tag{2.11}
\end{equation*}
$$

(For $g=\Pi g_{i}, g^{\prime} / g=\Sigma g_{i}^{\prime} / g_{i}$ and for $h=M_{r}^{c}, \partial h / \partial x_{i}=c r M_{r}^{c-1} x_{i}^{r-1}$ so $h^{\prime} / h=c r x_{i}^{r-1} / M_{r}$.) From (2.11) we see that there can be at most one non-zero value attained by the y_{i} 's; that is, $y=(r, 0 ; k, n-k)$ for some k and r. A direct computation shows that $f(y)=k^{a-b}$ (independent of r since $f(\lambda y)=f(y)$). As $1 \leq k \leq n$ and $b=a p / q$,

$$
\begin{equation*}
M=n^{\max (0, a(1-p / q))} \tag{2.12}
\end{equation*}
$$

On the other hand, $f=\left(M_{p}^{1 / p} / M_{q}^{1 / q}\right)^{w}$, so if $p>q$ then $f(x) \leq 1$ by (1.3) and $M=1$ by (2.10)(i) with equality at $(r, 0 ; 1, n-1)$. If $p<q$ then $M_{0}^{a-b} M_{q}^{b} \geq M_{p}^{a}$ by (1.2) so $n^{a-b} \geq f(x)$ with equality at (r, n). The method of (2.11) is generalized in the next section.
M. D. Choi, T. Y. Lam and the author [2] will study symmetric positive semi-definite quartic forms in n variables and have been interested in finding those (α, β) so that $\alpha \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i}^{3}+\beta\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2} \geq 0$. This is equivalent to finding M and \bar{m} for the function $g=M_{1} M_{3} / M_{2}^{2}$. Suppose $M=g(y)$ and $\bar{m}=g(z)$. Then by methods outlined in $\S 5$,

$$
\begin{gather*}
y=(1, u ; n-1,1), \quad z=(1, v ; n-1,1) \tag{2.13}\\
u=1+2 n^{1 / 2} \cos \left(1 / 3 \arccos n^{-1 / 2}\right) \\
v=1+2 n^{1 / 2} \cos \left(1 / 3 \arccos n^{-1 / 2}+2 \pi / 3\right) \tag{2.14}\\
M=3 \sqrt{3} / 16 n^{1 / 2}+5 / 8+\theta\left(n^{-1 / 2}\right) \\
\bar{m}=-3 \sqrt{3} / 16 n^{1 / 2}+5 / 8+\theta\left(n^{-1 / 2}\right) \tag{2.15}
\end{gather*}
$$

As (2.14) suggests, the trigonometric solution to the cubic equation is critical. What might one have expected? Application of (2.12) gives

$$
\begin{equation*}
|g|=\left|\frac{M_{1} M_{3}}{M_{2}^{2}}\right|=\left|\frac{M_{1}}{M_{2}^{1 / 2}}\right| \cdot\left|\frac{M_{3}}{M_{2}^{3 / 2}}\right| \leq n^{1 / 2} \cdot 1=n^{1 / 2} \tag{2.16}
\end{equation*}
$$

with no sharpness since the ingredient inequalities are sharp at different places. Comparison with (2.15) shows that this crude maximum is only off by a constant factor. Further, the growth of the leading term in \bar{m} is equal and opposite to the growth of the leading term of M. This is counterintuitive: it is hard to find x with $M_{1}(x)$ and $M_{3}(x)$ of opposite sign (so that g is negative). As we shall see in the next several sections, each of the above remarks is valid more generally.
3. The main theorem. In this section we assume the usual conditions and $s=1$, so that

$$
\begin{equation*}
f(x)=M_{p_{1}}^{a_{1}}(x) \cdots M_{p_{r}}^{a_{r}}(x) / M_{q}^{b}(x) . \tag{3.1}
\end{equation*}
$$

As in (2.16) we have a crude estimate for M, combining (3.1) and (2.12):

$$
\begin{equation*}
|f|=\left|\prod_{i=1}^{r} M_{p_{i}}^{a_{i}} M_{q}^{-a_{i} p_{i} / q}\right| \leq \prod_{i=1}^{r} n^{\max \left(0, a_{i}\left(1-p_{i} / q\right)\right)} . \tag{3.2}
\end{equation*}
$$

If $q<p_{1}$ then each estimate in (3.2) is sharp at $x=(r, 0 ; 1, n-1)$ and $M=1$; if $p_{r}<q$ then each estimate is sharp at $(r ; n)$ so that $M=n^{\sum a_{i}-b}$. Otherwise,

$$
\begin{equation*}
p_{1}<\cdots<p_{j}<q<p_{j+1}<\cdots<p_{r} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
M \leq n \sum_{i=1}^{j} a_{i}\left(1-p_{i} / q\right)=n^{E} . \tag{3.4}
\end{equation*}
$$

Theorem 3.5. For f as in (3.1) with the usual conditions, (3.3), (3.4), and with rational a_{i},

$$
\begin{equation*}
M=\alpha^{b} n^{E}+\mathcal{O}\left(n^{E-\delta}\right) \tag{3.6}
\end{equation*}
$$

where

$$
\begin{gather*}
u=\left(\sum_{i=j+1}^{r} a_{i} p_{i}\right) / w, \quad \alpha(u)=u^{u}(1-u)^{1-u} \text { and } \tag{3.7}\\
\delta=\min _{i}\left|1-p_{i} / q\right| .
\end{gather*}
$$

Several disconnected remarks are appropriate. To prove (3.6) we must establish it as an upper bound and realize it as a value of f. As $\delta<1$, it suffices to prove (3.6) with $(n-1)^{E}$, and this is what we do. The two cases discussed before (3.3) correspond to $u=0$ or 1 ; the limiting value of α in these cases is 1 , so with suitable redefinition they could be included in (3.5). As $1 \geq \alpha \geq .5$, the deviation of (3.6) from (3.4) is well-controlled. Finally, for $g=M_{1} M_{3} / M_{2}^{2}$, the parameters are set as follows: $j=1$, $w=4, u=.25, \alpha=3^{3 / 4} / 4$ so that $\alpha^{b}=3 \sqrt{3} / 16$, reconciling (2.15) with (3.6). The condition that a_{i} must be rational is regrettable and appears to be unavoidable for purely technical reasons. I am almost certain that the theorem is true without it. To prove Theorem 3.5, we need the following generalization of Descartes' rule of signs, which Ursell [6] attributes to Laguerre [4].

Lemma 3.8. Suppose $h(t)=c_{1} t^{r_{1}}+\cdots+c_{m} t^{r_{m}}$ is a "generalized polynomial" with real exponents $r_{1}<\cdots<r_{m}$ and $c_{i} \neq 0$. If $h(t)=0$ has k distinct positive roots and the sequence $\left(c_{1}, \ldots, c_{m}\right)$ has l changes of sign $\left(c_{i} c_{i+1}<0\right)$, then $l \geq k$.
$\operatorname{Proof}(\operatorname{after}[6])$. If $l=0$ then clearly $h(t)>0$ or $h(t)<0$ for all $t>0$ so $k=0$. Assume the result for $l-1$ changes of sign and suppose $\left(c_{1}, \ldots, c_{m}\right)$ has l changes of sign with one occurring between c_{j} and c_{j+1}. Choose β so that $r_{J}<\beta<r_{j+1}$. If $h(t)=0$ has k positive roots, then so does $g(t)=t^{-\beta} h(t)$. By Rolle's Theorem, $g^{\prime}(t)$ has $k^{\prime} \geq k-1$ roots, as does $t^{\beta+1} g^{\prime}(t)$. But

$$
t^{\beta+1} g^{\prime}(t)=c_{1}\left(r_{1}-\beta\right) t^{r_{1}}+\cdots+c_{m}\left(r_{m}-\beta\right) t^{r_{m}},
$$

and the sequence $\left(c_{1}\left(r_{1}-\beta\right), \ldots, c_{m}\left(r_{m}-\beta\right)\right)$ has $l-1$ changes of sign $\left(c_{j}\left(r_{j}-\beta\right) c_{j+1}\left(r_{j+1}-\beta\right)>0\right)$. By the induction hypothesis, $l-1 \geq$ $k^{\prime} \geq k-1$ so $l \geq k$.

Proof of Theorem 3.5. We first make a technical remark. Suppose Theorem 3.5 is established for integral a_{i}. Then by (2.10)(vi) and the shape of (3.6), the theorem will hold for rational a_{i}. Assume now that $a_{i} \in \mathbf{Z}$ and suppose $f(y)=M$, write $M_{p}(y)=M_{p}$ for short. Then $\left(\partial f / \partial x_{i}\right)(y)=$ 0 for $1 \leq i \leq n$ and by logarithmic differentiation (cf. (2.11)),

$$
\begin{equation*}
0=\frac{1}{f} \frac{\partial f}{\partial x_{i}}(y)=\frac{a_{1} p_{1}}{M_{p_{1}}} y_{i}^{p_{1}-1}+\cdots+\frac{a_{r} p_{r}}{M_{p_{r}}} y_{i}^{p_{r}-1}-\frac{b q}{M_{q}} y_{i}^{q-1} \tag{3.9}
\end{equation*}
$$

This suggests a generalized polynomial $h(t)$:

$$
\begin{align*}
h(t)= & \frac{a_{1} p_{1}}{M_{p_{1}}} t^{p_{1}-1}+\cdots+\frac{a_{j} p_{j}}{M_{p_{j}}} t^{p_{j}-1}-\frac{b q}{M_{q}} t^{q-1} \tag{3.10}\\
& +\cdots+\frac{a_{r} p_{r}}{M_{p_{r}}} t^{p_{r}-1}
\end{align*}
$$

By (3.3) $h(t)$ has two changes of sign in its coefficients ($M_{p}>0$ since $y \geq 0$) and by Lemma 3.8, $h(t)=0$ has at most two positive roots. Since $f(y)=M$ implies $h\left(y_{i}\right)=0$ for $1 \leq i \leq n$ (compare (3.9) and (3.10)), $y=(a, c, 0 ; l, k, n-(k+l))$, for some positive a, c and integers k and l with $k+l \leq n$. Without loss of generality, suppose $l \geq k$ and, as $f(\lambda y)=$ $f(y)$, set $a=1$. Under the peculiar parametrization $l=k s(s \geq 1)$ and $c=s^{1 / q} t$, we can now say that f achieves its maximum at a point of shape (3.11):

$$
\begin{equation*}
y=\left(1, s^{1 / q} t, 0 ; k s, k, n-k(s+1)\right) \tag{3.11}
\end{equation*}
$$

In (3.11), t ranges over the nonnegative reals, $1 \leq k \leq n / 2$ and s is rational with a finite range. For any p,

$$
M_{p}=k s+k s^{p / q} t
$$

so we may write the factors of f in increasing powers of s

$$
\begin{cases}M_{p_{i}}^{a_{i}}=k^{a_{i}}\left(s+t^{p_{t}} S^{p_{i} / q}\right)^{a_{i}} & i \leq j \tag{3.12}\\ M_{p_{i}}^{a_{i}}=k^{a_{i}}\left(t^{p_{i}} S^{p_{i} / q}+s\right)^{a_{i}} & i \geq j+1 \\ M_{q}^{b}=k^{b}\left(1+t^{q}\right)^{b} s^{b} & \end{cases}
$$

Accordingly,

$$
\begin{equation*}
f(y)=k^{\Sigma_{i}^{r} a_{i}-b} \frac{\Pi_{1}^{j}\left(s+t^{p_{t}} s^{p_{t} / q}\right)^{a_{t}} \Pi_{j+1}^{r}\left(t^{p_{t}} s^{p_{l} q}+s\right)^{a_{i}}}{s^{b}\left(1+t^{q}\right)^{b}} \tag{3.13}
\end{equation*}
$$

By hypothesis, all a_{i} 's are integral, so the numerator in (3.13) is a generalized polynomial in s whose coefficients are polynomials in t with degree at most $\sum_{i=1}^{r} a_{i} p_{i}=b q=w$. Thus $f(y)$ can be written as a generalized polynomial in s whose coefficients are rational functions in t which are uniformly bounded for real t. (This argument uses the integrality of a_{i} in an essential way.) The highest order term in (3.13) is

$$
\begin{equation*}
k^{\Sigma_{1}^{r} a_{i}-b} \frac{t^{\Sigma_{j+1}^{r} a_{i} p_{t}}}{\left(1+t^{q}\right)^{b}} s^{\left(\sum_{1}^{\prime} a_{i}+\sum_{j+1}^{r} a_{i} p_{t} / q-b\right)} . \tag{3.14}
\end{equation*}
$$

As $b=\left(\sum_{1}^{r} a_{i} p_{i}\right) / q$, the exponent of s in (3.14) is $\sum_{1}^{j} a_{i}\left(1-p_{i} / q\right)=E$ (from (3.4)). An easy calculus exercise shows that for $c<b q, \phi(t)=$ $t^{c}\left(1+t^{q}\right)^{-b}$ achieves its maximum at $t_{0}=(c /(b q-c))^{1 / q}$; for $c=$ $\sum_{j+1}^{r} a_{i} p_{i}, \phi\left(t_{0}\right)=\alpha^{b}$ in the notation of (3.7). Now replace the rational functions of t in the lower powers of s in (3.13) by their uniform bounds:

$$
\begin{equation*}
f(y) \leq k^{\Sigma^{f} a_{i}-b}\left(\alpha^{b} s^{E}+\sum_{l} d_{l} s^{w_{l}}\right) \tag{3.15}
\end{equation*}
$$

The summation in (3.15) is over at most $\Pi_{1}^{r}\left(a_{i}+1\right)-1$ terms, s has a bounded range and the largest exponent w_{l} is $E-\delta$. Further,

$$
\begin{aligned}
\sum_{1}^{r} a_{i}-b & =\sum_{1}^{r} a_{i}\left(1-p_{i} / q\right) \\
& \leq \sum_{1}^{j} a_{i}\left(1-p_{i} / q\right)-a_{j+1}\left|1-p_{j+1} / q\right| \leq E-\delta
\end{aligned}
$$

so that (3.15) can be further simplfied to

$$
\begin{equation*}
f(y) \leq \alpha^{b}(k s)^{E}+d(k s)^{E-\delta} \tag{3.16}
\end{equation*}
$$

for some d. Since $k s+k \leq n, k s \leq n-1$; thus $M \leq \alpha^{b}(n-1)^{E}+$ $d(n-1)^{E-\delta}$ and one direction of (3.6) is established.

To get the reverse inequality, put $k=1, s=n-1$ and $t=t_{0}$ into (3.13); that is, evaluate f at the point $y=\left(1, t_{0}(n-1)^{1 / q} ; n-1,1\right)$. The foregoing analysis, applied to (3.13) as an exact formula, shows that $f(y) \geq \alpha^{b}(n-1)^{E}+d^{\prime}(n-1)^{E-\delta}$, and this completes the proof.

For $g=M_{1} M_{3} / M_{2}^{2}$, this suggested maximum occurs at $(1, \sqrt{3(n-1)}$; $n-1,1$), which is close to (2.13) and (2.14). Now an appeal to [U] would have allowed us to say that the maximum of $M_{p_{1}}^{a_{1}} M_{p_{2}}^{a_{2}} / M_{q}^{b}, a_{1} p_{1}+a_{2} p_{2}=$ $b q$, is achieved at $y=(1, r ; n-1,1)$ for some r, but we would still need the parametrization of this proof in order to determine M. In any event, (3.9) is used in §5.

We now look at \bar{m} in some cases.
Theorem 3.17. If f satisfies the hypotheses of Theorem 3.5 and, in addition, $\sum_{i=1}^{j} a_{i} p_{i}$ is odd, then

$$
\begin{equation*}
\bar{m}=-\alpha^{b} n^{E}+\theta\left(n^{E-\delta}\right) \tag{3.18}
\end{equation*}
$$

Proof. Since $\bar{m} \geq-M, \bar{m} \geq-\alpha^{b} n^{E}+\theta\left(n^{E-\delta}\right)$. On the other hand, evaluate f at $y=\left(1,-t_{0}(n-1)^{1 / q} ; n-1,1\right)$. As in the proof of the last theorem, because $\sum_{i=1}^{j} a_{i} p_{i}$ is odd, $f(y) \geq-\alpha^{b}(n-1)^{E}-d^{\prime}(n-1)^{E-\delta}$.

Note here the connection with (2.15). If $\sum_{i=1}^{j} a_{i} p_{i}$ is even, I can find no non-obvious bounds on \bar{m}. As one simple case, let $g=M_{1} M_{3} M_{8} / M_{4}^{3}$. A direct application of Theorem 3.5 shows that $M=(4 / 27) n+\theta\left(n^{3 / 4}\right)$, (for $E=1 \cdot(1-1 / 4)+1 \cdot(1-3 / 4)=1, j=2, u=8 / 12, b=3$, so $\alpha^{b}=(2 / 3)^{2}(1 / 3)=4 / 27$ and $\left.\delta=\min \left|1-p_{i} / 4\right|=1 / 4\right)$. Thus, $\bar{m} \geq-(4 / 27) n+\mathcal{O}\left(n^{3 / 4}\right)$. When you compute $f(y)$ for $y=$ $\left(1, A(n-1)^{1 / 4} ; n-1,1\right)$, it is asymptotically positive, since $\sum_{i=1}^{j} a_{i} p_{i}$ is even in this case. In fact, the best attainable value from a point with shape $\left(1, t(n-1)^{1 / q} ; n-1,1\right)$ comes from setting $q=3$ and $t=-2^{2 / 3}$. From this, we obtain $\bar{m} \leq-3 \cdot 2^{8 / 3} n^{2 / 3}+\theta\left(n^{1 / 3}\right)$. There is, however, no proof that g attains its extreme values at points of this shape, because Lemma 3.8 only applies to positive roots.
4. More general upper bounds. Theorem 3.5 generalizes somewhat, but at a loss in precision. Given f as in (2.3) we can always factor it into "increasing" weight-zero pieces. To be precise

$$
\left\{\begin{array}{l}
f=\prod_{i=1}^{t}\left(M_{r_{t}}^{\alpha_{i}} / M_{s_{t}}^{\beta_{i}}\right), \alpha_{i} r_{i}=\beta_{i} s_{i}=w_{i}, r_{i} \leq r_{i+1}, s_{i} \leq s_{i+1} \tag{4.1}\\
\prod M_{r_{t}}^{\alpha_{i}}=\prod M_{p_{t}}^{a_{i}}, \prod M_{s_{i}}^{\beta_{i}}=\prod M_{q_{i}}^{b_{i}} .
\end{array}\right.
$$

For example,

$$
M_{2} M_{8} M_{14} / M_{4} M_{10}^{2}=\left(M_{2} / M_{4}^{.5}\right)\left(M_{8}^{.25} / M_{4}^{.5}\right)\left(M_{8}^{.75} / M_{10}^{.6}\right)\left(M_{14} / M_{10}^{1.4}\right) .
$$

For f as in (4.1) let h be the number of changes of sign in the sequence $\left(r_{1}-s_{1}, \ldots, r_{t}-s_{t}\right)$. We shall find asymptotic estimates for M if h is 0 or 1. The hypothesis (3.3) and $s=1$ insure that $h=1$ for those f covered by Theorem 3.5.

Theorem 4.2. If $h=0$ then $M=1$ or $M=n^{\Sigma a_{i}-\Sigma b_{t}}$ depending on whether $r_{i}>s_{i}$ or $r_{i}<s_{i}$ for $i=1, \ldots, t$.

Proof. Application of (2.12) to each factor of (4.1) provides the given values as upper bounds for M; evaluation at $(1,0 ; 1, n-1)$ or $(1 ; n)$ shows that they are sharp.

Theorem 4.2 subsumes the remarks made before Theorem 3.5. If $h=1$ there are two fundamentally different cases, depending on whether $r_{i}-s_{i}$ goes from negative to positive (of which (3.3) is a special case) or from positive to negative. There will be a distinction in the first case depending on whether $r_{i}-s_{i}$ "pivots" on one particular value of s_{i} or not. First we dispose of the second case, which has an unsurprising answer, but requires a lemma on a fundamental special case.

Lemma 4.3. Suppose that $f=M_{p_{1}}^{a_{1}} M_{p_{2}}^{a_{2}} /\left(M_{q_{1}}^{b_{1}} M_{q_{2}}^{b_{2}}\right)$ with the usual restrictions and $q_{1}<p_{1}<p_{2}<q_{2}$. Then $M=n^{\max \left(0, a_{1}+a_{2}-\left(b_{1}+b_{2}\right)\right)}$.

Proof. Upon evaluating f at $(1 ; n), m \geq n^{a_{1}+a_{2}-\left(b_{1}+b_{2}\right)}$ and $M \geq 1$ in any case. To obtain the reverse inequality, we apply (1.2) twice. Indeed, $M_{p_{1}}^{q_{2}-q_{1}} \leq M_{q_{1}}^{q_{2}-p_{1}} M_{q_{2}}^{p_{1}-q_{1}}$ and $M_{p_{2}}^{q_{2}-q_{1}} \leq M_{q_{1}}^{q_{2}-p_{2}} M_{q_{2}}^{p_{2}-q_{1}}$. Upon combining with the definition of f (and recalling that $a_{1} p_{1}+a_{2} p_{2}=b_{1} q_{1}+b_{2} q_{2}$), this becomes

$$
\begin{equation*}
f^{q_{2}-q_{1}} \leq M_{q_{1}}^{q_{2}\left(a_{1}+a_{2}-\left(b_{1}+b_{2}\right)\right)} M_{q_{2}}^{-q_{1}\left(a_{1}+a_{2}-\left(b_{1}+b_{2}\right)\right)} \tag{4.4}
\end{equation*}
$$

We can apply (2.12) to the right hand side of (4.4) to find $f^{q_{2}-q_{1}} \leq$ $n^{\max \left(0,\left(q_{2}-q_{1}\right)\left(a_{1}+a_{2}-b_{1}-b_{2}\right)\right)}$, completing the proof.

Theorem 4.5. Suppose f satisfies (4.1) with $h=1$ and $r_{i}-s_{i}$ goes from positive to negative. Then $M=n^{\max \left(0, \sum a_{i}-\Sigma b_{j}\right)}$.

Proof. The basic idea is to decompose f into a product of factors to which the lemma can be applied. Suppose $1 \leq i \leq j$ and $j+1 \leq k \leq t$, $r_{i}>s_{i}$ and $r_{k}<s_{k}$. Let $g_{i}=M_{r_{i}}^{\alpha_{i}} M_{s_{i}}^{-\beta_{i}}, h_{k}=M_{r_{k}}^{\alpha_{k}} M_{s_{k}}^{-\beta_{k}}, v_{i}=\alpha_{i}-\beta_{i}$ and $z_{k}=\alpha_{k}-\beta_{k}$. Then $\alpha_{i} r_{i}=\beta_{i} s_{i}=w_{i}$ and $r_{i}>s_{i}$ implies $v_{i}<0$ and similarly $z_{k}>0$. Finally, let $\gamma_{i}=v_{i} / \Sigma v_{i}$ and $\delta_{k}=z_{k} / \sum z_{k}$ then $0<\gamma_{i}, \delta_{k}$ and $\Sigma_{i}^{j} \gamma_{i}=\Sigma_{j+1}^{t} \delta_{k}=1$. Thus, in view of (4.1),

$$
\begin{equation*}
f=\prod_{i=1}^{j} \prod_{k=j+1}^{t} g_{i}^{\delta_{k}} h_{k}^{\gamma_{i}} \tag{4.6}
\end{equation*}
$$

On the other hand, $g_{i}^{\delta_{k}} h_{k}^{\gamma_{1}}=M_{r_{i}}^{\alpha_{i} \delta_{k}} M_{r_{k}}^{\alpha_{k} \gamma_{i}} /\left(M_{s_{i}}^{\beta_{i} \delta_{k}} M_{s_{k}}^{\beta_{k} \gamma_{i}}\right), s_{i}<r_{i}<r_{k}<s_{k}$ (by the order of i and k), and this factor has weight 0 , so we can apply Lemma 4.3:

$$
\begin{equation*}
\left|g_{i}^{\delta_{k}} h_{k}^{\gamma_{i}}\right| \leq n^{\max \left(0, \delta_{k}\left(\alpha_{i}-\beta_{i}\right)+\gamma_{i}\left(\alpha_{k}-\beta_{k}\right)\right)} . \tag{4.7}
\end{equation*}
$$

The exponent in (4.7) is

$$
w_{i} \cdot z_{k} / \sum z_{k}+z_{k} \cdot w_{i} / \sum w_{i}=w_{i} z_{k}\left(1 / \sum z_{k}+1 / \sum w_{i}\right)
$$

and so has uniform sign as i and k traverse their ranges ($w_{i} z_{k}<0$). Since $\Sigma_{i} \Sigma_{k} w_{i} z_{k}=\left(\sum w_{i}\right)\left(\sum z_{k}\right)$, the exponents in (4.7) can be combined by adding in (4.6) to make

$$
\begin{equation*}
|f| \leq n^{\max \left(0, \sum w_{i}+\Sigma z_{k}\right)} \tag{4.8}
\end{equation*}
$$

But $\sum w_{i}+\sum z_{k}=\Sigma \alpha_{i}-\Sigma \beta_{i}$, so $M \leq n^{\max \left(0, \Sigma a_{i}-\Sigma b_{j}\right)}$. As in the lemma, this bound is achieved for $x=(1,0 ; 1, n-1)$ or $(1 ; n)$.

The remaining case occurs when $r_{i}-s_{i}<0$ for $1 \leq i \leq j$ and $r_{i}-s_{i}$ >0 for $j+1 \leq k \leq t$. This, in turn, splits into two cases: $r_{i}-s_{i}$ pivots if $s_{j}=s_{j+1}$, otherwise, it jumps.

Theorem 4.9. In the remaining case, if $r_{i}-s_{i}$ jumps,

$$
\begin{equation*}
M=n^{\sum_{1}^{j}\left(\alpha_{i}-\beta_{i}\right)}+\theta\left(n^{\sum_{1}^{j}\left(\alpha_{t}-\beta_{i}\right)-\delta}\right), \quad \delta=\frac{s_{j+1}-s_{j}}{s_{j+1}+s_{j}} . \tag{4.10}
\end{equation*}
$$

Proof. Since $M_{r_{i}}^{\alpha_{t}} M_{s_{t}}^{-\beta_{t}} \leq n^{\max \left(0, \alpha_{t}-\beta_{t}\right)}$, repeated application of (4.1) gives $M \leq n^{\sum_{1}^{\prime}\left(\alpha_{i}-\beta_{i}\right)}$; this establishes one direction of (4.10). Taking a cue from Theorem 3.5, we will find y so that $f(y) \geq(n-1)^{\Sigma_{1}^{\prime}\left(\alpha_{t}-\beta_{t}\right)}-$ $d(n-1)^{\Sigma_{1}^{\prime}\left(\alpha_{i}-\beta_{i}\right)-\delta}$. Since $\delta<1$, we can replace $n-1$ by n in the asymptotics.

Let $s=\left(s_{j}+s_{j+1}\right) / 2$ then $r_{i}<s_{i}<s<s_{k}<r_{k}$ for $i \leq j<k$. Further, let $y=\left(1,(n-1)^{1 / s} ; n-1,1\right)$, then $M_{p}(y)=(n-1)+(n-1)^{p / s}$. For i, we have

$$
\begin{align*}
\left(M_{r_{t}}^{\alpha_{i}} M_{s_{t}}^{-\beta_{i}}\right)(y)= & \left((n-1)+(n-1)^{r_{i} / s}\right)^{\alpha_{t}} \tag{4.11}\\
& \times\left((n-1)+(n-1)^{s_{i} / s}\right)^{-\beta_{i}} \\
= & (n-1)^{\alpha_{i}-\beta_{t}}+\mathcal{O}\left((n-1)^{\alpha_{i}-\beta_{i}-\delta}\right)
\end{align*}
$$

since the true power of the error term is $\alpha_{i}-\beta_{i}-\left(1-s_{i} / s\right)<\alpha_{i}$ $-\beta_{i}-\delta$. Similarly,

$$
\begin{align*}
\left(M_{r_{k}}^{\alpha_{k}} M_{s_{k}}^{-\beta_{k}}\right)(y)= & \left((n-1)^{r_{k} / s}+(n-1)\right)^{\alpha_{k}} \tag{4.12}\\
& \times\left((n-1)^{s_{k} / s}+(n-1)\right)^{-\beta_{k}} \\
= & 1+\theta(n-1)^{-\delta}
\end{align*}
$$

since the true power of the error term is $1-r_{k} / s$ and $\delta \leq\left|1-r_{k} / s\right|$. These estimates are now combined into (4.10) and the other direction of this inequality is established.

Note that the careful analysis of Theorem 3.5 in establishing the upper bound is unnecessary here because of the a priori (2.12) estimates. As an illustration, for $f=\left(M_{1}^{2} M_{8}\right) /\left(M_{2} M_{4}^{2}\right)=\left(M_{1}^{2} / M_{2}\right) \cdot\left(M_{8} / M_{4}^{2}\right), n$ $\geq M \geq n-\theta\left(n^{2 / 3}\right)$. The final case, where $r_{i}-s_{i}$ pivots, includes Theorem 3.5 - without the condition of rational a_{i} - but with weaker conclusions. The trouble seems to be that Lemma 3.8 is not very helpful and the equivalent of (3.13) cannot be reduced to a generalized polynomial because of its denominator.

Theorem 4.13. If $r_{i}-s_{i}$ pivots and $s_{j}=s_{j+1}=s$, then

$$
\begin{equation*}
n^{\Sigma_{1}^{\prime}\left(\alpha_{i}-\beta_{i}\right)} \geq M \geq \alpha^{d} n^{\Sigma_{i}^{j}\left(\alpha_{i}-\beta_{i}\right)}+\mathcal{O}\left(n^{\Sigma_{1}^{j}\left(\alpha_{i}-\beta_{i}\right)-\delta}\right) \tag{4.14}
\end{equation*}
$$

where $d=\Sigma_{s_{i}=s} \beta_{i}, u=\left(\sum_{s_{i}=s}^{\prime} w_{i}\right) /\left(\sum_{s_{i}=s} w_{i}\right), \Sigma^{\prime}$ being the summation over $i \geq j+1, \alpha \stackrel{ }{=} u^{u}(1-u)^{1-u}$ and $\delta=\min _{s_{i}=s}\left(\left|1-r_{i} / s\right|,\left|1-s_{i} / s\right|\right)$.

Proof. The upper bound in (4.14) is found, as in the last theorem, by repeated application of (2.12). To get the lower bound, we use the natural substitution $y=\left(1, t(n-1)^{1 / s} ; n-1,1\right)$, so $M_{p}(y)=(n-1)+$ $t^{p}(n-1)^{p / s}(t$ will be chosen later and fixed now). Asymptotically, there are four cases of $\left(M_{r_{i}}^{\alpha_{i}} M_{s_{t}}^{-\beta_{i}}\right)(y)$ depending on whether $i \leq j, j+1 \leq i$ and whether $s_{i}=s$ or $s_{i} \neq s$. We omit the intermediate arguments, which should be familiar by now, so that

$$
\begin{equation*}
f(y)=\left(t^{c} /\left(1+t^{s}\right)^{d}\right)(n-1)^{\sum_{i}^{j}\left(\alpha_{t}-\beta_{t}\right)}+\text { lower terms in }(n-1) \tag{4.15}
\end{equation*}
$$

where $c=\sum \alpha_{i} r_{i}=\sum w_{i}$, the summation over $s_{i}=s ; i \geq j+1$ and $d=$ $\Sigma_{s_{i}=s} \beta_{i}$. As in the proof of (3.5), the maximum value of $t^{c}\left(1+t^{s}\right)^{-d}$ can be computed, and for this value of t, we may replace the "lower terms in $(n-1) "$ by the \mathcal{O}-term in (4.14).

It seems likely that the lower bound in (4.14) is sharp, but I can't prove it.

Just like Theorem 3.5, Theorems 4.5, 4.9 and 4.13 can be generalized with results contingent on a certain sum being odd, but we omit the details. Theorem 4.2, however, does generalize fully with a weaker (and non-effective) constant.

Theorem 4.16. If f satisfies the hypotheses of Theorem 4.2 and $a_{i} p_{i}$ is odd for some i, then there exists c so that

$$
\begin{equation*}
\bar{m}=-c n^{\max \left(0, \Sigma a_{i}-\Sigma b_{j}\right)}+o\left(n^{\max \left(0, \Sigma a_{i}-\Sigma b_{j}\right)}\right) \tag{4.17}
\end{equation*}
$$

Proof. If $\sum a_{i}-\sum b_{j} \leq 0$ then $M=1$ by Theorem 4.2, so $\bar{m} \geq-1$. As n increases, $\bar{m}=\bar{m}(n)$ is non-increasing ((2.10)(viii)) and bounded below and so must approach a limit, establishing (4.16) in this case. Otherwise, let $w=\sum a_{i}-\sum b_{j}>0$, let $g(n)=-\bar{m}(n)$ and $h(n)=n^{-w} g(n)$. In this notation, (4.16) is equivalent to: $\lim h(n)=c$. Since $g(n+i) \geq g(n)$ for integral i and $n, h(n+i) \geq(n /(n+i))^{w} h(n)$, and from Theorem 4.2, $h(n) \leq 1$. Any $x=\left(x_{1}, \ldots, x_{n}\right)$ can be "stuttered" k times into $x^{k}=$ $\left(x_{1}, \ldots, x_{n} ; k, \ldots, k\right) ; M_{p}\left(x^{k}\right)=k M_{p}(x)$ so that $f\left(x^{k}\right)=k^{w} f(x)$. Choose
x_{n} so that $f\left(x_{n}\right)=-g(n)$. Then $f\left(x_{n}^{k}\right)=-k^{w} g(n) \geq-g(k n)$; that is, $h(k n)$ $\geq h(n)$. Let $\beta=\varlimsup h(n)$ and $\gamma=\lim h(n)$. Pick n so that $h(n) \geq \beta-\varepsilon$, any m can be written as $k n+i$ with $\overline{0} \leq i<n$. Combining the above,

$$
\begin{equation*}
h(m)=h(k n+i) \geq\left(\frac{k n}{k n+i}\right)^{w} h(k n) \geq\left(\frac{k}{k+1}\right)^{w} h(n) \tag{4.18}
\end{equation*}
$$

Upon taking lim of both sides of (4.18), $\gamma \geq \beta-\varepsilon$ so $\gamma=\beta$ and $\lim h(n)$ exists.
5. Illustrations and integral inequalities. We start this section with the study of M and \bar{m} in three simple situations in which rather more explicit information is possible: $M_{1} M_{3} / M_{2}^{2}, M_{1}^{3} M_{3} / M_{2}^{3}$ and $M_{1} M_{3} / M_{4}$. These will serve, I hope, to illuminate the theorems of the last several sections.

First, let $g=M_{1} M_{3} / M_{2}^{2}$ and suppose $g(y)=M$ or \bar{m}, then, as before, $\left(\partial g / \partial x_{t}\right)(y)=0$ for $i=1, \ldots, n$. As in (3.9),

$$
\begin{equation*}
\frac{1}{M_{1}}-\frac{4}{M_{2}} y_{i}+\frac{3}{M_{3}} y_{i}^{2}=0 \quad \text { for } i=1, \ldots, n \tag{5.1}
\end{equation*}
$$

If y has only one distinct component then $y=(r, n), g(y)=1$. As $0>\bar{m}$ and $g(1,2,0,0, \ldots)=1.08$, this case can be ignored. Otherwise $y=$ ($r, s ; k, l$) and r and s are both roots of the quadratic in (5.1) ${ }^{1}$. This leads to two equations:

$$
\begin{equation*}
r+s=\frac{4\left(k r^{3}+l s^{3}\right)}{3\left(k r^{2}+l s^{2}\right)}, \quad r s=\frac{k r^{3}+l s^{3}}{3(k r+l s)} \tag{5.2}
\end{equation*}
$$

Both equations in (5.2) lead to the same cubic in r and $s: k r^{3}-3 k r^{2} s-$ $3 l r s^{2}+l s^{3}=0$. Scale so that $l \geq k$ and $s=1$; this cubic becomes

$$
\begin{equation*}
r^{3}-3 r^{2}-3 r w+w=0, \quad w=l / k \geq 1 \tag{5.3}
\end{equation*}
$$

Equation (5.3) is readily solved by the trigonometric method:

$$
\begin{equation*}
r=1+2(w+1)^{1 / 2} \cos \theta, \quad \cos 3 \theta=(w+1)^{-1 / 2} \tag{5.4}
\end{equation*}
$$

For $y=(r, 1 ; k, w k), g(y)=(r+w)\left(r^{3}+w\right) /\left(r^{2}+w\right)^{2}$ and one can substitute (5.4) into this to determine the dependence on w (keeping in mind that r is triple-valued). It is easier computationally to view w as a function of r (remembering that w has a finite range and this, in turn, gives r a finite range). Indeed, $r=1 / 3$ is never a root of (5.3) and,

[^0]otherwise, $w=\left(r^{3}-3 r^{2}\right) /(3 r-1)$. After some reduction, we find that
\[

$$
\begin{equation*}
g(y)=\frac{3(r+1)^{2}}{16 r}=\frac{3}{16}\left(r+\frac{1}{r}\right)+\frac{3}{8} \tag{5.5}
\end{equation*}
$$

\]

Thus the extreme values of g, M and \bar{m}, are achieved when $r+1 / r$ is maximized and minimized in the finite range of r.

Elementary curve-sketching techniques applied to (5.3) show that one value of r is less than -1 , another is between 0 and $1 / 3$ and the third is greater than 3. Further, on any branch of $r=r(w), d r / d w=(d w / d r)^{-1}$ and $d w / d r=6 r(r-1)^{2} /(3 r-1)^{2} \geq 0$ so r increases for increasing w. Thus \bar{m} is achieved by the minimum of $r+1 / r$ with $0>r>-1$; this is the largest such r, which comes from the largest $w, n-1$. Similarly M is achieved by the maximum of $r+1 / r$-if $0<r<1 / 3$, this is the smallest r and if $r>3$, this is the largest. In the former case $w=1$ and (5.3) becomes $(r-1)\left(r^{2}-4 r+1\right)=0$, so $r=2-\sqrt{3}$. In the latter case, again $w=n-1$ and the largest r from (5.4) with $w=n-1$ is larger than that from (5.4) with $w=1$, namely, $2+\sqrt{3}=(2-\sqrt{3})^{-1}$. Thus M is achieved when $w=n-1$ in (5.4), defining ($r, s ; k, l$) as in (2.13) and (2.14). The asymptotics in (2.15) are most easily found by using Taylor series and (5.5). As (2.15) suggests, M and \bar{m} can be written as series in $n^{1 / 2}$ whose coefficients agree on the full powers of n and are opposite on the half-powers.

For the second example, we change g somewhat into $h=M_{1}^{3} M_{3} / M_{2}^{3}$. As before, if $h(y)$ is extreme then $\left(\partial h / \partial x_{i}\right)(y)=0$ so

$$
\begin{equation*}
\frac{3}{M_{1}}-\frac{6}{M_{2}} y_{i}+\frac{3}{M_{3}} y_{i}^{2}=0 \quad \text { for } i=1, \ldots, n \tag{5.6}
\end{equation*}
$$

If $y=(r ; n$) then $h(y)=n$. Otherwise, from (5.6), we have $y=$ ($r, s ; k, n-k$), $r \neq s, k \leq n-k$, and, as in (5.2),

$$
\begin{equation*}
r+s=2 \frac{k r^{3}+(n-k) s^{3}}{k r^{2}+(n-k) s^{2}}, \quad r s=\frac{k r^{3}+(n-k) s^{3}}{k r+(n-k) s} \tag{5.7}
\end{equation*}
$$

The alterations in coefficients from (5.2) to (5.7) are crucial, for now the derived cubic is degenerate:

$$
\begin{align*}
k r^{3}-k r^{2} s & -(n-k) r s^{2}+(n-k) s^{3} \tag{5.8}\\
= & (r-s)\left(k r^{2}-(n-k) s^{2}\right)=0
\end{align*}
$$

The case $r=s$ was discussed above; accordingly scale $r=(n-k)^{1 / 2}$, $s= \pm k^{1 / 2}$. A slight computation shows that

$$
\begin{equation*}
h(y)= \pm \frac{\left(k^{1 / 2} \pm(n-k)^{1 / 2}\right)}{8 k^{1 / 2}(n-k)^{1 / 2}} \tag{5.9}
\end{equation*}
$$

Another slight computation shows that the numerator in (5.9) is maximized, and the denominator minimized, by choosing $k=1$. This leads to the exact formulas

$$
\begin{equation*}
M=\frac{(\sqrt{n-1}+1)^{4}}{8 \sqrt{n-1}}, \quad \bar{m}=-\frac{(\sqrt{n-1}-1)^{4}}{8 \sqrt{n-1}} \tag{5.10}
\end{equation*}
$$

A small check is needed to show that the given value for M is greater than n; it is for $n \geq 2$, (let $u=\sqrt{n-1}, n=u^{2}+1$). The same degeneracy as (5.8) occurs for functions $M_{2 m-a}^{m(2 m+a)} M_{2 m+a}^{m(2 m-a)} / M_{2 m}^{(2 m-a)(2 m+a)}$; the amusing details are left to the reader.

The final example, $f=M_{1} M_{3} / M_{4}$, involves greater difficulties. The maximum M equals n as a straightforward application of Theorem 4.2. (Indeed, $n M_{4}-M_{1} M_{3}=\Sigma\left(x_{i}-x_{j}\right)^{2}\left(x_{i}^{2}+x_{i} x_{j}+x_{j}^{2}\right) \geq 0$.) We concentrate on the minimum, \bar{m}. By Theorem 4.16, $\lim \bar{m} / n$ exists, and we shall show that it is $-1 / 8$. In fact, we shall show that $\bar{m}>-n / 8$, without equality, because $7+4 \sqrt{3}$ is irrational!

Suppose $f(y)=\bar{m}$, then $\left(\partial f / \partial x_{i}\right)(y)=0$ so that

$$
\begin{equation*}
\frac{1}{M_{1}}+\frac{3}{M_{3}} y_{i}^{2}-\frac{4}{M_{4}} y_{i}^{3}=0, \quad i=1, \ldots, n \tag{5.11}
\end{equation*}
$$

The cubic in (5.11) might have three real roots and probably some contradiction can be wrought from the assumption $y=(r, s, t ; k, l, m)$, $r<s<t$ and

$$
\begin{align*}
r+s+t & =\frac{3\left(k r^{4}+l s^{4}+m t^{4}\right)}{4\left(k r^{3}+l s^{3}+m t^{3}\right)}, \quad r s+r t+s t=0 \tag{5.12}\\
r s t & =\frac{k r^{4}+l s^{4}+m t^{4}}{4(k r+l s+m t)}
\end{align*}
$$

Rather, I shall take the coward's way out and appeal to a forthcoming theorem [2]: if $p(x)$ is a positive semi-definite (psd) symmetric quartic form, not a quadratic in M_{1}^{2} and M_{2}, and $p(y)=0$ then y has at most two distinct components. This theorem is applicable to $p(x)=\bar{m} M_{4}+M_{1} M_{3}$ which is psd and for which $p(y)=0$ if $f(y)=\bar{m}$. With this in mind, suppose $y=(1, s ; w k, k), w \geq 1$. Then $M_{p}(y)=k\left(w+s^{p}\right)$ as before and $n=k(w+1)$, so

$$
\begin{equation*}
\frac{1}{n} f(y)=\frac{(s+w)\left(s^{3}+w\right)}{(1+w)\left(s^{4}+w\right)}=F(s, w) \tag{5.13}
\end{equation*}
$$

In the notation of (5.13), $\bar{m}=n \cdot \inf F(s, w)$, where s is real and w has the usual finite range $(w=(n-k) / k, k \leq n / 2)$. We see immediately that
$F(s, w)>0$ unless $-w \leq s \leq-w^{1 / 3}$ thus the infimum is actually a minimum and achieved at some (s, w) for which $(\partial F / \partial s)(s, w)=0$. After some work, we compute that this derivative vanishes if $s=1(F(s, w)=$ $n=M$) or

$$
\begin{equation*}
w=\frac{s^{5}+s^{4}+4 s^{3}}{4 s^{2}+s+1}=\phi(s) \tag{5.14}
\end{equation*}
$$

As with $M_{1} M_{3} / M_{2}^{2}$, it will be more profitable to view w as a function of s, rather than s as a function of w. Indeed, $\lim \phi(s)=\mp \infty$ as $s \rightarrow \pm \infty$ so the range of ϕ is \mathbf{R} and

$$
\phi^{\prime}(s)=-12 s^{2}\left(s^{2}+1\right)\left(s^{2}+s+1\right) /\left(4 s^{2}+s+1\right)^{2} \leq 0
$$

so that ϕ is one-to-one and $H=\phi^{-1}$ is well defined. Thus, assuming (5.14), and substituting into (5.13),

$$
\begin{align*}
F(s, \phi(s)) & =F(H(w), w)=\frac{(s+w)\left(s^{3}+w\right)}{(1+w)\left(s^{4}+w\right)} \tag{5.15}\\
& =\frac{3}{4} \frac{s(1+s)^{2}}{1+2 s+6 s^{2}+2 s^{3}+s^{4}}
\end{align*}
$$

Finally, let $u=s+1 / s$ then (5.15) takes the form

$$
\begin{equation*}
F(H(w), w)=\frac{3}{4} \frac{u+2}{u^{2}+2 u+4}=k(u) \tag{5.16}
\end{equation*}
$$

To recapitulate, $\bar{m}=n \cdot \min k(u)$, where $u=s+1 / s$ and $\phi(s)$ has the form $(n-k) / k, k \leq n / 2$. A quick analysis shows that $k(u) \geq-1 / 8$ with equality only when $u=s+1 / s=-4$. But $s^{2}+4 s+1=0$ implies $s=$ $-2 \pm \sqrt{3}$ and, from (5.14), w=7 $\mp 4 \sqrt{3}$. As w is rational, this never occurs so $k(u)>-1 / 8$ and $\bar{m}>-n / 8$ for all n. On the other hand, as $n \rightarrow \infty$ one can easily find acceptable $w_{n} \rightarrow 7+4 \sqrt{3}$ so that $s_{n} \rightarrow-4$ and $k\left(u_{n}\right) \rightarrow$ $-1 / 8$; that is, $\bar{m}_{n} / n \rightarrow-1 / 8$. This determines the constant from Theorem 4.16. Since both w and $F(s, \phi(s))=F$ are rational functions of s, they are algebraically related. In principle this relation would determine F in terms of w so that for any given n, the best w could be found and \bar{m}_{n} explicitly determined. Unfortunately, as the reader may verify, this relation is

$$
\begin{align*}
& 64 F^{3}\left((4 F-4)\left(w^{2}+1\right)-8 F w\right)^{2} \tag{5.17}\\
& \quad+(8 F-3)^{2}(16 F+3) w\left((4 F-4)\left(w^{2}+1\right)-8 F w\right) \\
& \\
& +(16 F-6)^{3} w^{2}=0
\end{align*}
$$

As a form of Monday-morning calculating, it should be noted that $F(s, w) \geq-1 / 8$ can be directly checked, as

$$
\begin{align*}
& 8 F(s, w)+1 \tag{5.18}\\
& \quad=\left(9 w^{2}+\left(s^{4}+8 s^{3}+8 s+1\right) w+9 s^{4}\right) /(w+1)\left(s^{4}+w\right)
\end{align*}
$$

The numerator in (5.18) would be non-negative for $w \geq 0$ provided $s^{4}+8 s^{3}+8 s+1 \geq-18 s^{2}$; that is, $\left(s^{2}+4 s+1\right)^{2} \geq 0$. This is a shortcut to $\bar{m} \geq-n / 8$ but does not as readily lead to $\lim \bar{m} / n=-1 / 8$ and leaves " $-1 / 8$ " as a mysterious constant. A third approach is discussed below.

We now consider these examples in terms of the classical moment problem (see [1] for proofs of the assertions in this paragraph). Given $\left\{a_{i}\right\}, 0 \leq i \leq 2 m$, there exist a real function f and a non-negative measure μ on \mathbf{R} such at $a_{i}=\int f^{i} d \mu, 0 \leq i \leq 2 m-1, a_{2 m} \geq \int f^{2 m} d \mu$, if and only if the matrix $A_{m+1}=\left[a_{i+j}\right], 0 \leq i, j \leq m$, is positive semi-definite. As indicated in the introduction, we can embed our previous discussion into the classical moment problem by restricting μ to be a measure with n atoms of unit mass so $\sum x_{i}^{p}=\int g^{i} d \mu=a_{i}, n=a_{0}$. Then any inequality on moments necessarily induces an inequality on power sums. The converse is false, because power sums represent moments for a limited class of measures. The examples of this section only involve M_{p} for $0 \leq p \leq 4$ so we need consider the 3×3 matrix $A_{3}=\left[a_{i+j}\right], 0 \leq i, j \leq 2$. A necessary condition for A_{3} to be positive semi-definite is that the following inequalities hold:
(i) $a_{o} \geq 0, \quad a_{2} \geq 0, \quad a_{4} \geq 0$
(ii) $\quad a_{0} a_{2} \geq a_{1}^{2}, \quad a_{0} a_{4} \geq a_{2}^{2}, \quad a_{2} a_{4} \geq a_{3}^{2}$
(iii) $a_{0} a_{2} a_{4}+2 a_{1} a_{2} a_{3} \geq a_{2}^{3}+a_{1}^{2} a_{4}+a_{0} a_{3}^{2}$.

These inequalities are also sufficient provided equality in one implies equality in all inequalities containing it. If A_{3} is a positive semi-definite matrix, and the a_{i} 's are a moment sequence, then there exists (f, μ) with $a_{i}=\int f^{i} d \mu$ where μ has at most three atoms. If (5.19)(iii) is an equality, then μ has at most two atoms and $a_{i}=\lambda r^{i}+\mu s^{i}$ for some $\lambda, \mu \geq 0$. The analogy with our earlier discussion of where M can occur is clear, and deceptive. For A_{m+1}, even when one inequality is "slack", the best one can hope for is a measure with m atoms. The same condition is to be found, in effect, in [6]. Theorem 3.5 is much sharper in directing our attention to points with at most two different components.

First, we wish to find the extreme values of $a_{1} a_{3} / a_{0} a_{4}$ for moments $\left\{a_{i}\right\}$. It is clear that $a_{0}=0$ or $a_{4}=0$ imply $a_{1}=a_{2}=a_{3}=0$, so we may assume $a_{0} a_{4}>0$. Under the change $(f, \mu) \rightarrow(\lambda f, c \mu), a_{i} \rightarrow c \lambda^{i} a_{i}$, so that
(5.19)(i), (ii), (iii) and the ratio $a_{1} a_{3} / a_{0} a_{4}$ are unaltered. We may therefore assume, without loss of generality, that $a_{0}=a_{4}=1$; from (5.19)(ii), $\left|a_{1} a_{3}\right| \leq a_{0}^{1 / 2} a_{2} a_{4}^{1 / 2} \leq a_{0} a_{4}=1$, and $a_{i} \equiv 1$ satisfy the inequalities. Thus $1 \geq a_{1} a_{3} / a_{0} a_{4}$ so that $n \geq M_{1} M_{3} / M_{4}$. Of course, the Hölder and Jensen inequalities apply to $\int|f|^{p} d \mu$ so this result could be foreseen. For the other direction, combine $a_{0}=a_{4}=1, a_{1}^{2}+a_{3}^{2} \geq-2 a_{1} a_{3}$ and (5.19)(iii) to get $a_{2}-a_{2}^{3} \geq-\left(1+a_{2}\right) a_{1} a_{3}$. Since $1+a_{2} \geq 0,-a_{1} a_{3} \leq a_{2}\left(1-a_{2}\right) / 2 \leq$ $1 / 8$, or $a_{1} a_{3} \geq-1 / 8$. Further, the choice

$$
\begin{equation*}
a_{0}=a_{4}=1, a_{1}=-a_{3}= \pm 1 / \sqrt{8}, \quad a_{2}=\frac{1}{2} \tag{5.20}
\end{equation*}
$$

satisfies (5.19) and has $a_{1} a_{3} / a_{0} a_{4}=-1 / 8$ so that this is the true minimum. A return to the theory of moment sequences shows that the pairs (f, μ) with moments (5.20) consist of a measure with two atoms whose mass ratio is $7+4 \sqrt{3}$; the values of f on these atoms have ratio $-2+\sqrt{3}$. This checks our earlier analysis of $M_{1} M_{3} / M_{4}$. We generalize this result below as Theorem 5.27.

The other two examples do not generalize in this way to integral inequalities, and show the limitations of the technique. The natural analogue to $M_{1} M_{3} / M_{2}^{2}$ is $a_{1} a_{3} / a_{2}^{2}$, but this ratio is unbounded among moment sequences, and even $a_{1} a_{3} / a_{0}^{t} a_{2}^{2}$ is unbounded for any t. Indeed, let $a_{0}=a_{4}=s, a_{1}=\lambda a s, a_{3}= \pm \lambda a s, a_{2}=a^{2} s$, subject to the conditions $s>0$ and $2 \lambda^{2}+a^{2}<1$. Then (5.19) is strictly satisfied, but $a_{1} a_{3} / a_{0}^{t} a_{2}^{2}=$ $\pm \lambda^{2} / a^{2} s^{t}$ which is unbounded for fixed λ and s as $a \rightarrow 0$. With the same choice of a_{i} 's, $a_{1}^{3} a_{3} / a_{0}^{t} a_{2}^{3}= \pm \lambda^{4} / a^{2} s^{1-t}$, which is similarly unbounded. The fundamental reason for this failure is that the measures described require atoms with arbitrarily large mass-ratios; this cannot happen in a power sum with fixed $n=a_{0}$.

We conclude by analyzing a family of functions which generalizes $M_{1} M_{3} / M_{4}$. If r, s and $(r+3 s) / 4$ are integers, let $f=M_{1}^{r} M_{3}^{s} / M_{4}^{(r+3 s) / 4}$; by Theorem 4.2, we have $M=n^{(3 r+s) / 4}$. If r and s are even then clearly $\bar{m}=0$; assume henceforth that r and s are odd. By Theorem 4.16, $\bar{m} \simeq-c n^{(3 r+s) / 4}$ in this case, where c is an unspecified constant. We now consider the ratio $a_{1}^{r} a_{3}^{s} / a_{0}^{(3 r+s) / 4} a_{4}^{(r+3 s) / 4}$ and wish to find its minimum subject to (5.19). As before, we may assume that $a_{0}=a_{4}=1$, so (5.19) determines a compact set in $\left(a_{1}, a_{2}, a_{3}\right)$-space. Since $a_{1}^{r} a_{3}^{s}$ is continuous, the minimum occurs at some point on the boundary of the set; that is, where some inequality is an equality. A quick check, of which we omit the details, shows that if any inequality in (5.19)(ii) is an equality then a_{1} and a_{3} have the same sign so $a_{1}^{r} a_{3}^{s} \geq 0$. Thus, we can recast our problem as finding the minimum of $a_{1}^{r} a_{3}^{s}$ subject to $a_{2}-a_{2}^{3}-a_{1}^{2}+2 a_{1} a_{2} a_{3}-a_{3}^{2}=0$. (Of course, we need to check later that the other inequalities hold.) Let (a, b, c) be a point at which $a_{1}^{r} a_{3}^{s}$ has an extreme value. After applying

Lagrange multipliers and recalling the constraint, we derive the following four equations:

$$
\begin{align*}
& \text { (i) } \lambda r a^{r-1} c^{s}=-2 a+2 b c \\
& \text { (ii) } 0=1-3 b^{2}+2 a c \tag{5.21}\\
& \text { (iii) } \lambda s a^{r} c^{s-1}=-2 c+2 a b \\
& \text { (iv) } b-b^{3}-a^{2}+2 a b c-c^{2}=0
\end{align*}
$$

Equations (i) and (iii) are equivalent to

$$
s\left(a b c-a^{2}\right)=r\left(a b c-c^{2}\right)
$$

and in view of (iv),

$$
a b c-a^{2}=\frac{r}{r+s}\left(b^{3}-b\right) \quad \text { and } \quad a b c-c^{2}=\frac{s}{r+s}\left(b^{3}-b\right)
$$

Finally, by applying (ii) we get a and c in terms of b :

$$
\begin{align*}
& \text { (i) } a^{2}=\left(\frac{3}{2}-\frac{r}{r+s}\right) b^{3}+\left(\frac{r}{r+s}-\frac{1}{2}\right) b \\
& \text { (ii) } c^{2}=\left(\frac{3}{2}-\frac{s}{r+s}\right) b^{3}+\left(\frac{s}{r+s}-\frac{1}{2}\right) b \tag{5.22}
\end{align*}
$$

But now we have two expressions for $a^{2} c^{2}$, from combining (5.22)(i) and (ii) and from $a c=\left(3 b^{2}-1\right) / 2$. After eliminating the extraneous double root at $b^{2}=1$, we find that

$$
\begin{equation*}
b^{2}=\frac{(r+s)^{2}}{3 r^{2}+10 r s+3 s^{2}}=\frac{(r+s)^{2}}{(3 r+s)(r+3 s)} \tag{5.23}
\end{equation*}
$$

We can now substitute (5.23) into (5.22). As $a^{r} c^{s}<0, a c<0$ and by arbitrarily choosing $a>0$ and $c<0$,

$$
\left\{\begin{array}{l}
a=2^{1 / 2} r(3 r+s)^{-3 / 4}(r+3 s)^{-1 / 4} \tag{5.24}\\
b=(r+s)(3 r+s)^{-1 / 2}(r+3 s)^{-1 / 2} \\
c=-2^{1 / 2} s(3 r+s)^{-1 / 4}(r+3 s)^{-3 / 4}
\end{array}\right.
$$

Compare (5.24) with (5.20), when $r=s=1$. The suspicious reader should check that (5.19) is satisfied. Using (5.24) we compute $a^{r} c^{s}$ and obtain the inequality:

$$
\begin{align*}
1 & \geq \frac{a_{1}^{r} a_{3}^{s}}{a_{0}^{(3 r+s) / 4} a_{4}^{(r+3 s) / 4}} \tag{5.25}\\
& \geq-2^{(r+s) / 2} r^{r} s^{s}(3 r+s)^{-(3 r+s) / 4}(r+3 s)^{-(r+3 s) / 4}
\end{align*}
$$

Let $w=r /(r+s)$ and $x=(r+3 s) /(3 r+s)$.The constant on the righthand side of (5.25) can be rewritten $-\left(2^{-3 / 2} \alpha(w) / \alpha(x)\right)^{r+s}$ where $\alpha(u)=$ $u^{u}(1-u)^{1-u}$ as in $\S 3$, and one can show that $1 \leq \alpha(w) / \alpha(x) \leq 4 \cdot 3^{-3 / 4}$ $\simeq 1.755$. Further, (5.24) with $a_{0}=a_{4}=1$ is the moment sequence of (f, μ) where μ is a measure with two atoms. Indeed, $a_{i}=\lambda u^{i}+(1-\lambda) v^{i}$ for $0 \leq i \leq 4$, where

$$
\begin{gather*}
\lambda=\frac{1}{2}-\frac{1}{2 \sqrt{3}} \frac{5 r+s}{3 r+s}, \quad u=-\frac{1+\sqrt{3}}{\sqrt{2}}\left(\frac{3 r+s}{r+3 s}\right)^{1 / 4}, \tag{5.26}\\
v=\frac{\sqrt{3}-1}{\sqrt{2}}\left(\frac{3 r+s}{r+3 s}\right)^{1 / 4}
\end{gather*}
$$

Observe that the ratio of the values of f at the two atoms is always $-(2-\sqrt{3})$ and that the ratio of masses, $\lambda /(1-\lambda)$ is never rational. However, by approximating $\lambda /(1-\lambda)$ by rationals a_{i} / b_{i} and taking $x_{i}=\left(u, v ; a_{i}, b_{i}\right)$, we obtain a sequence of points at which $M_{1}^{r} M_{3}^{s} / n^{(3 r+s) / 4} M_{4}^{(r+3 s) / 4}$ approaches the constant in (5.25). We summarize this discussion in the following theorem:

Theorem 5.27. If r and s are odd and $(3 r+s) / 4$ is an integer then

$$
\begin{aligned}
n^{(3 r+s) / 4} & \geq M_{1}^{r} M_{3}^{s} / M_{4}^{(r+3 s) / 4} \\
& \geq-2^{(r+s) / 2} r^{r} s^{s}(3 r+s)^{-(3 r+s) / 4}(r+3 s)^{-(r+3 s) / 4} n^{(3 r+s) / 4}
\end{aligned}
$$

where the constant on the right-hand side is best possible.

References

1. N. Akhiezer, The Classical Moment Problem, Oliver and Boyd, Edinburgh, 1965.
2. M. D. Choi, T. Y. Lam and B. Reznick, Positive semidefinite quartic forms, in preparation.
3. G. H. Hardy, J. Littlewood and G. Polya, Inequalities, Cambridge University Press, 1967.
4. E. Laguerre, Sur la régle des signes de Descartes, Nouv. Ann. de Math., (2) 18 (1879), 5-13.
5. B. Reznick, Ursell's Theorem and Katznelson's problem, in preparation.
6. H. Ursell, Inequalities between sums of powers, Proc. London Math. Soc., (3) 9 (1959), 432-450.

Received March 10, 1981. Author supported in part by The National Science Foundation.

[^0]: ${ }^{1}$ It should be remembered that the previous analysis was purely asymptotic and we cannot assume a priori that $k=1$ or $l=1$, etc.

