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DOUBLE TANGENT BALL EMBEDDINGS
OF CURVES IN E3

L. D . LOVELAND

An arc or curve J in E3 has congruent double tangent balls if there
exists a positive number δ such that for each p G /, there are two
three-dimensional balls B and B\ each with radius δ, such that {/?} =
B Π Bf = (B U B') ΠJ. Such an arc or simple closed curve is shown to
be tamely embedded in E3. An example is given to show that the
" uniform" radii are required for this conclusion and to show the necess-
ity of having two tangent balls at each point rather than just one. The
proof applies as well to show that any subset of £ 3 having these
congruent double tangent balls must locally lie on a tame 2-sphere.

1. Introduction. Questions about tameness of a 2-sphere in E3 when
the sphere has double tangent balls apparently originated with R. H. Bing
[1], Bothe [2] and I [7] independently showed that such a 2-sphere is
tamely embedded in E3, and, more recently Daverman, Wright and I [4],
[8] showed the existence of wild {n — l)-spheres in En having double
tangent balls for each n > 3.

Let / be a subset of E3, and let p E /. Then / is said to have 8 double
tangent balls at p provided there exist a positive number δ and two
3-dimensional balls B and Br each of radius δ such that B Π B' = {p} =
(B U B1) Π J. If there exists a positive δ such that / has these δ double
tangent balls at each of its points, then / is said to have congruent double
tangent balls. When / is a 2-sphere one may also require that the interiors
of the double tangent balls lie in different components of E3 — 7, as was
done in the previous studies [2], [3], [4], [6], [7], [8]. However this paper
concentrates on curves in E3 where no such restriction can be imposed
because the curves are not assumed to be subsets of spheres. It should also
be noted that the global uniformity (congruence) of the tangent balls over
/ was not part of Bing's question, although Griffith [6] did answer the
question for 2-spheres in E3 with this extra hypothesis. In fact, an
(n — l)-sphere in En is tame when it has congruent double tangent balls
on opposite sides of the sphere at each of its points [4].

It is natural to wonder whether an arc / in E3 is tame with the weaker
hypothesis that it have double (but not necessarily congruent) tangent
balls or that it have congruent (but not necessarily double) balls tangent
to / at each of its points. After all, either of these two weaker conditions
implies the tameness of a 2-sphere in E3 ([2], [7], [5]), provided the balls
are in the appropriate complementary domains of the sphere. Wild arcs in
E3 having double tangent balls at each of their points are easy to
construct from known examples. Such an arc F can be constructed to also
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satisfy the condition that a δ > 0 exists such that, for each p E F, there is
a ball Bp of radius δ intersecting F precisely at p. It follows that neither
hypothesis can be removed from the tameness theorem. The example F is
easy to construct provided one knows how to adjust the Fox-Artin arc A
(see Figure 4 of [3]) so that it lies in a three page book B (the product of
triod and an interval). Persinger [9, p. 171] describes this adjustment and
attributes it to Posey [10]. First one obtains a regular projection of A into
the cy-plane with all the double points lying on the x-axis, and then each
of the overcrossings is lifted into the xz-coordinate plane. From A, F is
obtained as h(A) where h is a space homeomorphism taking B onto a
3-page book with cylindrical pages (Figure 1 shows h(B)).

FIGURE 1

2. Tameness of curves in E3 with congruent double tangent balls.
The focus of this paper is a proof that a simple closed curve / embedded
in E3 so that it has congruent double tangent balls is tamely embedded.
Let δ be a positive number smaller than the hypothesized common radius
of the congruent double tangent balls to /. For each p E /, define ® to
be the set such that a ball B belongs to %p if and only if B has radius δ
and there exists a ball Bf distinct from B such that B' also has radius
S,p <ΞB ΠB\ and (Int B U Int B') Π / = 0 . Define % = {\ \p G /},
and notice that both U %p and U (U ζβ) are nonempty closed point sets.
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For each/? E /, let Dp be the 2-sphere of radius 8 centered at/?, and let Cp

be the set of centers of all balls in %p. Then Cp is a closed proper subset of
Dp\ the next lemma describes more precisely the location of Cp in Dp.

LEMMA 2.1. If J is a simple closed curve in E3, p E /, and J has
congruent double tangent balls at /?, then Cp lies in an equator of the sphere

Proof. Let {/?,} be a sequence of points of / converging to /?, and, for
each i, choose η as the point of Dp on the ray from/? through/?,. Let r be a
point to which some subsequence of {r } converges, and define Hp as the
closed hemisphere of Dp farthest from r. If there were a point n of
Cp — Hp, the ball B centered at n and tangent to / at /? would contain
some point /?, in its interior, which would contradict the condition that
/ Π Int B = 0 . Thus Cp C Hp, and, from the fact that Cp contains its
reflection in /?, it is clear that Cp lies in the great circle Bd Hp.

The points of / are divided into two classes according to whether Cp

actually is an equator of Dp or merely a proper subset of whatever
equators contain it. Let

E — {/? G /1 there exists an equator Ep of Dp containing

Cp such that Ep¥*Cp) and

F — {/? E /1 Cp is an equator of Dp).

From Lemma 2Λ, J = E U F.

LEMMA 2.2. If J is a simple closed curve embedded in E3 so as to have
congruent double tangent balls andp belongs to the set E defined above, then
some neighborhood of p in J lies on the boundary of a tame 3-cell. Thus J is
locally tame at each point of E.

Proof. Since Cp is closed it follows from the definition of E that there
is an equator Ep of Dp containing Cp and an arc A in Ep such that A
contains no pair of antipodal points of Dp and, for each tangent ball pair
in % , one of the two centers lies in A. These properties of A insure that
the intersection of all balls from ® , whose centers lie in A, is a convex
3-cell X. Let x be a point in the interior of X, and let J3* be the union of
all balls from U Φ that contain x. Since U ( U %) is closed it follows that
Bd B* contains an open subset U of J with p E U. Furthermore, the
radial map at x from Bd B* to a round 2-sphere centered at x is a
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homeomorphism, so near/? / lies on the boundary of the 3-cell 2?*. Since
this radial homeomorphism extends to a neighborhood of Bd B*, Bd B* is
tamely embedded.

THEOREM 2.3. /// is a simple closed curve embedded in E3 so as to have
congruent double tangent balls, then J is tamely embedded in E3.

Proof. It is convenient to scale the measurements so that the uniform
radius 8 of the tangent balls is 2. From Lemma 2.2, J is locally tame
except possibly at points in the closed set F. Let p E F, and impose a
coordinate system on E3 so that p is the origin and Ep9 the equator of
centers of tangent balls at /?, is the horizontal circle x2 + y2 = 4, z — 0.
For each t in the vertical interval [-2,2], the horizontal plane Pt, defined
by z = ί, intersects U % p . Define G as {(JC, y, z) \ x2 + y2 < 4 and \z\<
1} — U ® so that G is the union of two congruent, open, trumpet-shaped
3-cells each with p in its closure. For each t such that 0 < | 11< 1, let Gt

denote the open circular 2-cell G Π Pn let Go = {/?}, and let A be an arc
in / such that p lies in its interior and A C G U {p}. Then / is locally
tame at p if and only if A is locally tame at p.

The strategy is much like that in [5]; A is "unwound" with a space
homeomorphism h so that the orthogonal projection of h(A) into the
jz-plane has no multiple points. A straight line Lt in Pt is called a
projective line if no line in Pt parallel to Lt contains two points of A.
Through a sequence of alphabetically named lemmas I shall identify
suitable restrictions on a vertical interval [-w, u] and on A to insure the
existence of a family {Lt \ -u < / < u) of projective lines whose directions
are continuous except at a certain closed O-dimensional subset of [-w, u\
This family will provide a means for rotating various levels to obtain the
desired homeomorphism h.

LEMMA A. There exists uλ E (0,1 ] such that, for any ball B in U ©
containing a point of A Π Gn \t\< uλ, the circular 2-cell B Π Pt has radius
at least 1.

Since balls from <$)p intersect Po in circular 2-cells of radius 2, Lemma
A follows easily from the fact that U ( U ®) is closed.

If I /1< w,, q E Gt Π A, and B and £ ' are tangent balls from <$>q9 it
follows from Lemma A that B Π Pt and ί ' Π P , contain unique tangent
circular disks D and D\ respectively, of radius 1 such that D Π Dr = {#}.
The line through the centers of D and Z>' is called a normal line at #. There
may be infinitely many of these normal lines at the point q but they all he
in Pt and are in a one-to-one correspondence with the set of such tangent
unit disks coming from tangent balls of %q.
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If L and L' are two intersecting lines in E3, Θ(L, L') denotes the
radian measure of the small angle between L and L'. If L and L' are
coplanar and do not intersect, 0(L, L') = 0.

LEMMA B. There exists u2 G (0, uλ) such that if \ 11< u2 and Pt contains
normal lines Nx andNy at two distinct points x andy of Gv then Θ(NX, Ny) <
τr/36.

Proof Choose u2 such that 0 < u2 < uλ and such that if c is any point
of Pt(\ t\< u2) at a distance 1 or more from some point of Gt9 then Gt

subtends an angle less than ττ/36 at c. Let 111< w2, let x and y be two
points of Gt Π A, and let Nx and Ny be normal lines in Pt at x and y9

respectively. Suppose θ(Nχ9 Ny) > ττ/36, and let cy and ĉ  be the centers
of the two tangent unit disks at y relative to which Ny is defined. Let cx

and cx be the analogous two centers on Nx. The definition of u2 insures
<£ ycyx and <£ ycyx have measures less than ττ/36, so it follows from the
above supposition that Nx intersects Ny at a point b between c'y and cy on
ΛΓ,. Thus d(b9 y) < \9 and, analogously, rf(6, JC) < 1. Assume for conveni-
ence that d(b, x) < d(6, j ) so that x lies in the interior of the disk D of
radius d(b, y) centered at b. But D lies in one of the unit disks centered at
cy and c'y both of which lie in tangent balls from U S . This yields the
contradiction that a ball from U® contains the point x of / in its
interior.

LEMMA C.If\t\<u2,qGGtΠA, Nq is a normal line at q in Pn and L
is a line in Pt such that θ(Nq, L) < ir/3, then L is a projectiυe line.

Proof. The conclusion is clear if Gt Π A = [q}\ otherwise let U be a
line in Pt parallel to L such that L' contains a point x of Gt Π (A — {#}),
and let JVX be a normal line at x in P r By Lemma B, Θ(NX, Nq) < ττ/36,
and from the hypotheses, Θ(NX, V) < τr/36 + π/3 = 13ττ/36. The nor-
mal Nx contains the centers c and c' of the two unit disks D and Dr used
to define Λ .̂ Because of the condition on θ(Nχ9 L') above, the chord
U Π Ώ subtends an angle at c of measure larger than π — 2(137r/36) >
ττ/36. Then by the definition of u2 in the first line of the proof of Lemma
B, L' Π Gt lies in D U Df. Therefore U Π A - {x}, and L is projective.

Each point q of Gt Π F9 where / G [-t/2? ι/2L has the property that
each horizontal line through q is a normal line at #. As a consequence
there exists a circular horizonal neighborhood Q of q lying entirely in the
union of the corresponding unit tangent disks; that is Q Π A — {q}. More
generally such a neighborhood exists when there are two distinct normal
lines through a point q, the maximum radius of the neighborhood depends
on the angle between the two normals. Define S = {q G A | there exist
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two normal lines N and N' at q such that Θ(N, N') >: π/36}. Elementary
trigonometry reveals that, for each q E S, there is a circular horizontal
neighborhood Qq of q lying entirely in the union of four balls in <$>q such
that Qq is centered at q and has radius r0 = 2 sin 7r/72. Define w3 to be
small enough that u3 < u2 and the diameter of Gt is less than r0 when
\t\<u3. Then GtCQq if <j E S and | ί | < w3. Define T to be {ί E
[-w3, w3] I G, Π S 7̂  0 } , and notice that Gt Π A is a singleton set if ί E Γ.
Furthermore, if t E ([-w3, w3] — T) and JV and N' are any two normals at
a point # of A Π G,, then 0(7V, JV') < ττ/36.

A family {Lw \ w E (r, s)} of lines L w in Pw is said to be continuous
provided [Lt} converges to Lt whenever {tt} converges to / in (r, s).

LEMMA D. // | /1< w3, t & T, and Pt Π A φ 0 , then there exists an
open interval (r, s) containing t, a continuous family {Lw | w E (r, s) and
Pw Π A φ 0 } of projective lines, and a corresponding family {Nw} of
normal lines such that, whenever w E (r, s) and Pw Π A φ 0 , Lw U Nw C
Pwandθ(LwfNw).< τr/12.

Proof. Let ̂  be a point of i Π P r Suppose there exists a sequence {7J
converging to t such that each Pt contains a normal line Nt such that
0(7V,, ω(iVJ)) > 7r/12 where co denotes the vertical projection of E3 onto P?

and JVJ is any normal line at q in Pr Then the limiting set of {N^ in Pt

contains a normal line N such that 0(iV, iV,) > ττ/12. If ΛΓ is not a normal
line at q, then Lemma B is contradicted. On the other hand / ί Γ s o
q& S and it follows that N and iV, cannot both be normal at q. Since no
such sequence {/J exists there must exist an interval (r, s) containing t
and a family of normal lines {Nw\w E (r, s) and P ^ Π ^ ^ 0 } such that
Nw C Pw and θ(ω(Nw), Nt) < m/Yl for each appropriate w in (r, 5). For
each w E (r, 5) define L w = αΓ^iV,) Π P w , and notice that Θ(LW, Nw) <
77/12. From Lemma C it is clear that each Lw is a projective line, and the
lemma follows.

LEMMA E. There exist an arc A in J and a homeomorphism hofE3 onto
itself such that p E Int A and the orthogonal projection of h(A) into the
yz-plane is infective; hence J is locally tame at p.

Proof. It is beneficial to consider first the simplified situation where
the point p of S is not a limit point of the closed set S. In this situation
choose u4 such that 0 < w4 < u3 and [-w4, u4] Π T — {0} and let A be an
arc in J such that p E Int A and A Γ) Gt= 0 iΐ \t\> u4. For conve-
nience in writing, assume A intersects the upper "trumpet" of G. Mark a
decreasing sequence {st} of points in (0, u4] converging to 0 such that
each of the intervals [si+l9 st] lies in the interior of an open interval (r, s)
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of the type guaranteed by Lemma D. At a point si where two such open
intervals overlap Lemma D provides two projective lines Ls and Us and
two normal lines TV, and Λζ such that Θ(LS., Ns) < ττ/12 and'0(Z^, Λζ) <
π/12. By Lemma B (or by the choice of u3 if Ns. and iV,' are normals at the
same point), θ(NSι, Λζ) < TΓ/36** therefore, Θ(LS, L^) < τr/36 + ττ/12 +
Ίt/Yl- Ίττ/36. The point is that any line L in Ps within 7ττ/36 of L5 is
known to be a projective line by Lemma C because 0(L, JV,.) < 0(L, Ls)
+ 0(1^, NSι) < 777/36 + 77-/12 < 7r/3. Thus one can rotate L's through
projectives to Ls. In order to obtain a continuous family of projective
lines over ( j ί + 1 , st) U (5., st_x) one accomplishes this rotation through a
small vertical interval containing s .

A continuous family {Lw | 0 < | w |< u4} of projective Unes can be
constructed using this procedure at each point of overlap and repeating it
for [-w4,0] if A pierces Po at p. It is convenient to assume each Lw

intersects the z-axis. The homeomorphism h is constructed to take each
horizontal plane onto itself, to be fixed on the z-axis, and to be fixed
outside U{G, | 0 < | / | < w 4 } . Specifically, h isometrically rotates the vari-
ous concentric circular sections of Gt to bring the segments Gt Π Lt into
the vertical xz-plane. With sufficient controls to be described later, A is a
space homeomorphism such that the orthogonal projection of h(A) into
the j/z-plane is injective. This completes the special case.

The general case is much the same except the scheme above is applied
to each of countably infinitely many intervals rather than to just two. Let
T be the union of all the endpoints of the nondegenerate components of
T together with the points of T lying in degenerate components of T. Then
7" is a closed O-dimensional subset of [-w3, u3]. It is convenient to assume
u3 and -u3 belong to T because then each component of [-w3, u3] — 7" is
an open interval. Name A as an arc in / such that p E Int A and
G, Π A = 0 if 111 > w3, and let V be a component of [-w3, u3] — T with
endpoints r and s in V named so that r < s. Since A G Gt is a point for
each / in Γ, it follows that if V C T there is a vertical plane P such that
each P Π Pt, t G F, is a projective line. If F jέ Γ, Lemma D can be used
just as in the special case to construct a continuous family {Lt} of
projective lines over V.

Let A(V) denote the compact set U{A Π Gt\ r < t <s}, A(V) Π
Pr = {*}, and A(V) ΠPS= {y}. There is a 3-cell C(V) such that C(K) Π
Pr = {*}, C(F) ΠPS= {y}, A(V) C C(F), diamC(F) < 3diam^(K),
and, for each / G K, the horizontal section C(V) Π P, of C(V) is a
circular disk containing A(V) Π Pr in its interior. Let G[ denote the
interior of the disk C(V) Π Pn for / in V. It is also important that C(V)
be constructed so that the 2-sphere Bd C(V) lies in {x, y) U { U {Bd G[ \
t G V}) because this insures that A(V) — {x, y} lies in the interior of
C(V) and that the circles {Bd G[ \ t G V) and the degenerate circles {x}
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and {y} together form a closed continuous collection. To provide room to
match two homeomorphisms later, let {G" \ t G V) be a collection of
open disks arising as horizontal sections of a second 3-cell C'{V) where
C\V) C (JC, y) U Int C(F), C'(V) is constructed to satisfy the condi-
tions on C(V), and G" is concentric with G[. Then A Π Pt C G[ C closure
G" C G't for ί G F. For each ί in F, let L; be the line through the center
of the open disk G[ parallel to the projective line Lr A homeomoφhism
hv, fixed on (E3 - U {G/ | / G K } ) U {x, y) U {the centers of the disks
G/} and taking each Pt onto itself, that rotates the open segments {G'/ Π
L't\ t G F} into planes parallel to the xz-plane, is obtained using the
annular regions {G't — G[' \ t G F} to "feather out" the rotation to the
identity outside U (G/ 11 G V).

The desired space homeomoφhism h is defined by specifying that it
agree with hv on U {Pt \ t G F}, for each component F of [-w3, w3] — T',
and that it be the identity elsewhere. The construction of C(V) insures
that a sequence {hv} of homeomoφhisms, where {V^ is a sequence of
components of [-ι/3, w3] — T" converging to a point tQ in 7", must con-
verge to the identity on Pt. As in the special case the orthogonal
projection of h(A) into the >>z-plane is injective because of the realignment
of the projective segments {G" Π L't} parallel to the vertical jcz-plane, and
the proof is complete.

3. Generalizations to arbitrary sets in E3. The proof given for
Theorem 2.3 actually establishes a much stronger result. For example, an
arc embedded in E3 that has congruent double tangent balls must be
tamely embedded. Moreover, any subset J of E3 that has congruent
double tangent balls must locally lie on a tame 2-sphere in E3 in the sense
that each point of / lies in an open subset of / that lies in a tame 2-sphere.
The set / need not be closed because its closure will have congruent
double tangent balls if it does.

THEOREM 3.1. If J is a subset of E3 such that J has congruent double
tangent balls, then J locally lies on a tame 2-sphere in E3.

COROLLARY 3.2. // U is an open subset of a 2-sphere Σ in E3 such that
Σ has congruent double tangent balls over ί/, then Σ is locally tame at each
point of U.

The hypothesis of Corollary 3.2 does not specify that the double
tangent balls at a point p of U lie on the opposite sides of Σ. In this sense
Corollary 3.2 generlizes Griffith's theorem [6]; however, the seeming
generality is illusory because my hypotheses actually imply that the
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tangent balls lie on opposite sides of Σ, as can be verified by the reader. I
have not verified the higher dimensional analogue of Corollary 3.2 nor do
I have an answer to the following question for n > 3.

tangent
Question 3.3. Is an (n — 2)-sphere in En flat if it has congruent double
ent balls?
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