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ULTRAFILTERS AND MAPPINGS

TAKESI ISIWATA

We give characterizations of closed, quasi-perfect, d-, Z-, WZ-,
W*-open, N-, WN-, WrN- and other maps using closed or open ultra-
filters and investigate relations between these maps and various proper-
ties as generalizations of realcompactness, i.e., almost-, a-, c- and wα-real
compactness, cfr*-ness and weak cfr*-ness. Finally we establish several
theorems about the perfect W*-open image of a weak cb* space and its
application to the absolute E{X) of a given space X.

We characterize closed, Z-, WZ-, N- and WN-maps by closed ultra-
filters in §1 and show that φ is W* -open iff φ#βll is an open ultrafilter for
each open ultrafilter % in §2. In §3, introducing the notion of *-open
map, we show that βφ is open iff φ is a *-open W Âf-map iff there is GHP

with φ#6llp = Ύq for each q G βY, each Ύq and each/? G (βφ)~λq. In §4,
we discuss invariance concerning CIP of closed or open ultrafilters under
various maps and establish invariances and inverse invariance of various
properties as a generalization of realcompactness under suitable maps in
§5. In §6, we give several theorems about the perfect W*-open image of
weak cb* spaces which contain, as corollaries, known results concerning
the absolute E{ X) of X.

Throughout this paper, by a space we mean a completely regular
Hausdorff space and assume familiarity with [3] whose notion and
terminology will be used throughout. We denote by φ: X -> Y a continu-
ous onto map and by βX(vX) the Stone-Cech compactification (real-
compactification) of X and by βφ the Stone extension over βX of φ. In
the sequel, we use the following notation and abbreviation. N = the set of
positive integers, CIP = countable intersection property, nbd =
neighborhood, <$* — a closed ultrafilter converging to p. We denote by
(ΰ(Gll) a closed (open) ultrafilter on X and by S((Y) a closed (open)
ultrafilter on Y. φ # f = {E C Y; φ~ιE G ̂ and E is closed in Y}. Simi-
larly define φ # % .

1. Closed ultrafilters.

1.1. In the sequel, we use frequently the following results.
(1) If p G Π c l ^ φ ^ S * = Cλ{c\βxφ-χE\ E G S*}, then there is $p

with φ#($p = &q. For, & = {φ-1^ Π F; E <Ξ Sq, F <Ξ N(p)} is a closed
filter base where N(ρ) is a closed nbd base ofp in βX. Obviously & -> p.
Thus any (%p containing & has the property φ*($p = &q. It is easily seen
that the same method above can be applied to open ultrafilter and
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Z-ultrafilter respectively i.e., if p E Πclβxψ~ιΎq(Πclβxφ-ι%q\ there is

(2) For x E X, a closed ultrafilter *$ converging to x is unique and
<$' — {F; x E F and F is closed}. Obviously {JC} E S7. It is easy to see that
X is normal iff for each p E /?X, a closed ultrafilter ξF converging to p is
unique and ̂  — {F; p E c l ^ F a n d Fϊs closed).

(3) Forp E βX, a Z-ultrafilter 2 ^ is unique and %p = {Z; Z is a zero
set and/? E cl^^Z).

1.2. Lei φ:*-* Y,(βφ)p = q,p GβXandq^βY.

(2)
(3) β

(4) ΓΊcl^φ-^^ - dβxφ-ιyfory E 7.
(5) φ # f ̂  C δ ^ c\(φF) Π E ̂  0 for F G <$p and E E &q.
(6) 77zere is <SP such that φ#($p is a closed ultrafilter iff there is &q with

/>E

Proof. (1) It suffices to show that fλc\βγψ
#(Sp consists of only one

point. Let qf E. Πclβγφ
#($p (i = 1,2). Then there are disjoint closed

nbd's Vx and V2 of qλ and q2 in βY respectively, so X Π (βψ)~ιVι <E %p

(/ = 1,2), a contradiction.
(2) Obvious.
(3) If r E Π c l ^ φ - 1 ^ - (βφ)~ιq, there is <$r with φ ^ S ^ C %r by

1.1(1) and (2) above. This shows (βφ)~ιq 3 r, a contradiction.
(4) From {y) E &y.
(5) =>). From d ( φ F ) E φ # ^ for F E ̂ . <=). Let K E φ # ^ - S^.

Then ^ = φ-]iΓ E ̂ . Since J5Γ ί S^, there is E G &q with KΠ E= 0 ,
i.e., cl(φ.F) Π £ = 0 , a contradiciton.

(6) =>). Let S^ = φ#$p. Then φ- 1 ^^ C #*, s o ^ E Π c l ^ φ - ^ ^ . <=).
From 1.1(1).

1.3. DEFINITION. We recall that φ: X -> y is a Z-map if φZ is closed
for every zero set Z and φ is a WZ-map if (βφ)~ιy — c\βxφ~ιy for each
j E y. It is known that a closed map is a Z-map and a Z-map is WZ [12].
Woods [21] introduced the notions of N- and WW-map. φ is an N(WN)
map if (βφ)~] c\βγR = clβxφ~ιR for every closed set (zero set) R of Y. An
iV-map is WN and W Ẑ. In the following, we characterize maps mentioned
above by closed ultrafilters.

THEOREM 1.4. Let φ: X -> y.

(1) φ « WZ iff there is <SP with φ # f p = S^ /or rac/z j G

(2) φ w β Z-map iff there is (5P such that Z E ̂ p and <p# = &y for each
y E y, eachp E (βφ)" 1 ^ flrcd e«c/ί zero ^eί Z with p E clβxZ.
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(3) The following are equivalent:
(i) φ is closed.

(ii) φ^&is a closed ultrafilter for any Φ.
(iii) There is ^p such that F e.<$p and φ#<SP = &y for each y E Y,

eachp E (βφ)~ι and each closed set F with p E clβXF.
(4) The following are equivalent:

(i) φ is an N-map.
(ii) (βφ)~ιq = Πclβxφ'ι&q for each q E βY and each &q.

(iii) ΓΛm? w ξP wi/Λ φ # 3 P = S^/or eαcΛ # E β 7 , eαcΛ &q and each
p E (βφ)-ιq.

(5) The following are equivalent:
(i) φ w α WN-map.

(ii) c l ^ φ ' 1 ^ = (βφ)-χqfor each q E £7.
(iii) φ*2* = 2«/or ««* <? E βY and each p E (βφ)'ιq.

Proof (1) =>). Since φ is WZ9 we have (βφ) ιy — cl^^φ V and
(βφ)-ιy = Π d ^ φ ^ S ^ by 1.2(4). Thus there is # * with φ#<$p = S^ by
1.1(1) <=). For each /? E (j8φ)"V, we have j7 E Πcl^^φ-1©^ by 1.2(6).
Since n c l ^ φ ^ S * = cl^^φ"1^ by 1.2(4), (^Sφ)"1^ C cl^^φ-^, so (jSφΓV
= cl^^φ"1^ which shows that φ is WZ.

(2) ==>). Let/? E (βφ)"1;; and Z a zero set with/? E c l ^ Z . Since φ is a
Z-map, φZ is closed, so y E φZ. On the other hand, φ"1^ — X Γ\
{nc\βxq>-χ&y) by 1.2(4). If p E Z, then there is f with φ # ^ = &y by
1.2(6) and since p E X, /? E Z so Z G(S:p. Now suppose p & X. Since
>> E £ for £ E S^ and φZ B j , we have Z Π φ- 1^ ̂  0 . We shall show
p E n c l ^ x ( Z Π φ - 1£) for J? E Sy. Suppose contrary. There is a zero set
K of βX such that/? E int^iΓ and K Π c l ^ ( Z ΓΊ <p-]£) = 0.Z' = KΠ
Z Φ 0 and p E c l ^ Z ' , but y £ φZ', a contradiction. Thus there is
f ^ D f Z Π φ-1^; E E S'} by 1.1(1). Obviously φ~ι&y C ̂ , so φ#(5p =
S 7 and Z E ί P . <=). Let Z be a zero set and y E cl φZ — φZ. Then we
have/? E c l ^ Z Π (βφ)"V, so there is <$p with Z G ^ and φ # f p = S^.
Since {j} E S7, φ~V E f̂ , but Z Π φ"V = 0, a contradiction.

(3) (i) => (ii) => (iii). Evident, (iii) ==> (i). Suppose that there is a closed
set F of X with j> E cl(φF) - φF. Then K = cl^^F Π (βφ)" 1^ ^ 0 . Let
/? E iί. By (iii), there is F E #* with φ#f^ = &y. Since j j } G g ^ and
F E ^ , we have F n f ^ 0 which is a contradiction.

(4) (i) => (ii). Since φ is an Λ̂ -map and q E cl^yis for each E E &q

9 we
have (iSφ)"1? C Π( iβφ)-1cl)gyS^ = Π d ^ φ ^ S ^ , and hence (βφ)~ιq =
Π c l ^ φ ^ S * by 1.2(3). (ii) => (iii). From (ii) and 1.2(6). (iii) => (i). Suppose
that there is a closed set EoίY with J£ = (βφ)""1 c\βγE - c l ^ φ " 1 ^ ^ 0 .\βγ ^
Let p E # and (βφ)/? = ήr. Then q E cl̂ yJE:. Let E G&q. Take ί P with

zz: g?. Since/? §= cl^^φ"^, we have φ~ιE & (SSP\ a contradiction.
(5) This is proven by the analogous method used in (4) above.
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2. Open ultrafilters.
2Λ.Letg:X^ Yand(βφ)p = q,p G βX, q G βY.
(1) Πclβγφ

#Gllp = Πdβγψ
ΰίip = {q}.

(2) φ-lΎq C <&* <*> φ*<&/ = T 7 .
(3) Πcl^φ-'rC Πd^φ-'ίclΎ') C(βφ)-ιq.
(4) φ*<?l' C.Ύ" **<pUΓ)dVΦ 0forU£ΰlLpandVe Ύq.
(5) 7%m? is % * swc/ι ίΛαί φ * ^ w α« opew ultrafilter iff there is Ύq

withp G

The proof of 2.1 is obtained by the same method used in 1.2. By
1.1(1), "if part" of 2.1(5) implies that there is %p with ψ#Glip = Ύq. As is
shown by 2.2 below, it is not necessarily true that if there is Ύq with
p G Πdβxφ-\cl Ύq), then there is %" with φ#6llp = Ύq.

EXAMPLE 2.2. Let X = [0,1) Θ [1,2] and Y = [0,2]. Define φ: X -> y
by φ(χ) = JC for xGX. Let Ύ 9 3 [0,1), q = 1 <Ξ Y. Then / ) = 1 G
Πd/ 8 xφ-1(clcV'7) and any <&' contain (1,2] and hence φ * ^ ^ ^ Ύ 9 (cf.
3.1 below).

LEMMA 2.3. Let φ*%p C Ύ", U e % = % ' , F e Ύq = Ύ and let us

put B(U,V) = U Π φ-'(cl V). Then we have
(Y)\Ώ\B{U,V) G%.

(2) Ifφ*% C Ύand V Π φU = 0, then int cl(cl V Π φ£/) = 0 .

(3) 7 / φ * % = % ίΛ<?« intcl(φt/) ε Ύ.

Proo/. (1). By 2.1(4), B(U, V) Φ 0 . Suppose S = int B(U, V) = 0 .
U- B(U, V) is open in C/, so in X Since (ΛΓ - cl t/) U (U - B(U, V)) is
dense in X and 4l is prime, we have U— B(U,V) G %. But φ"1 cl F Π
(ί/ - B(U, V))= 0 , and hence cl V Π φ(t/ - B(U, V)) = 0, a con-
tradiction by 2.1(4). Thus S φ 0 . If S g <&, there is W G % with W Π
5 = 0 . This implies S Γ) W = int(U Π φ-'(cl V) ΓΊ IF) =
int(l/ Π W Π φ-'(cl F)) = int B(U Π W,V) = 0 , a contradiction.

(2) Since F Π <pU — 0 implies F Π cl(φί7) = 0 , we have

cl(φt/ Π cl V) C cl φ*7 ΓΊ cl F C cl(φC/) Π (cl F - F ) ,

sointcl(<pl/Π clF) = 0 .
(3) If intclφU & % we have Y - dψU G% so X- φ"1 cl(φC/) G

%, a contradiction.

THEOREM 2.4. <p#6llp is an open ultrafilter iff intcl(φl/) φ 0 for
U(Ξ%P.
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Proof. =*) Let φ # % ^ = Ύq. Then this follows from 2.3(3). «-). Sup-
pose φ#6lίp C Ύq for some # G βY. Put % = <?l* and Ύ = Ύ«. There is

F G Ύ - φ # % with F Π φ ί / = 0 for some U G %. By 2.3(1), ΪF =
int£(ί/, F) G % and φJFΠ V= 0, so intcl(φίF) = 0 by 2.3(2), a
contradiction.

2.5. DEFINITION, φ: X -> Y is said to be a W*-0pe« map if cl φU is
regular closed (i.e., cl(int(cl φU)) = cl φt/) whenever ί/is open [8]. This is
a generalization of an open map. We use this notion in the following.

THEOREM 2.6. Let φ: X -* Y. The following are equivalent:
(1) φ is W*-open.
(Γ) Cl φU is regular closed whenever U is a basic open set of X.
(2) Int(cl φU) Φ 0 for each non-empty open set U of X.
(2') Int(cl φU) Φ 0 for each non-empty basic open set U of X.
(3) Int(cl φ-ψ) = int φ-^cl V) for each open set V of Y.
(4) φ#βll is an open ultrafilter for any %.
(5) There is %p such that φ#6llp is an open ultrafilter for each q G βY

and each p G (βφ)~ιq.
(6) (βφ)~ιq = U { ΠclβX<p~ιΎ] Ύis an open ultrafilter converging to

q) for each q G βY.

Proof. ( 1 ) ^ ( 1 0 ^ ( 2 0 ^ ( 2 ) and (4)=>(5) are evident. (2)^(4).
From 2.4 (5) ~ (6). From 2.1(3, 5).

(2) ^(3). It suffices to show i n t φ ^ c l F C c^φ"1!^). Suppose x G
- cl(φ~ιV). There is an open set W3x such that WΠ

= 0 and W C int φ-^cl V). Then V Π φW = 0, so V Π cl φW
= 0. On the other hand, φW C cl V, so int(cl φίF) C cl V — V and hence
intcl(φW) = 0, a contradiction.

(5) => (2). Let U <ZXhe open and x G U. Then any open ultrafilter %
converging to x contains U. There is %* such that φ#6llx is an open
ultrafilter by (5). Thus int cl φU Φ 0 by 2.4.

(3) => (2). Suppose that there is an open set U with int cl φU = 0 . Let
us put V = Y - cl φU. Then cl V = Y and int φ'^cl V) = X. But
int(cl ψ~ιV) Π U= 0, a contradiction.

(2) => (1). Let ί/ be open and put K = clint(cl φU). Suppose y G φU
— K. Then there is an open set W 3 y with K Π cl W = 0 . Since
Γ = £/ Π φ"1 JF =̂  0 and cl ψT C cl W Π cl φί7, int cl(φΓ) C int(cl Ŵ )
Π int(cl φU) = 0, a contradiction. Thus φU C K and hence cl φ[/ C if,
i.e., cl φί/ = A:.
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3. *-open mappings.

3.1. DEFINITION, φ: X -» Y is said to be *-open if int(cl φU) D φU for
each open set U of X. An open map is *-open but a *-open map is not
necessarily open by 3.2 below. A *-open map is IF*-open by 2.6 but a
W*-open map is not necessarily *-open by 2.2 in which it is easy to see
that φ is ίF*-open. Let ί / = [ l , 2 ] C l Then U is open in X and
int(clφC/) = (1,2] Z$ φC/= [1,2], so φ is not *-open (cf. 5.6 below). We
say that φ is a WrN-map if clβxφ~ιR — (βφ)~ι c\βγR for every regular
closed set R of Y [10]. X is almost normal [17] (κ-normal [16]) if each
regular closed set is completely separated from each closed (regular
closed) set disjoint from it.

EXAMPLE 3.2. Let P be the set of rational numbers in [0,1], X =
[0,1] θ P, Y = [0,1] and φ( c) = JC G 7 for each x G X Then φ is not
open. To show that φ is *-open, it suffices to prove that int(cl φU) D φU
for each open set U of P. Let ί / C P b e open. There is an open set
W C [0,1] with P Π W — U. W is the union of countably many disjoint
open interval Wn = (an, bn). Put Pn = P ΓΊ ^ n . Obviously cl <pPn =
[tfrt, 6J and int(cl φPn) D Pn, so int(cl φί/) D φU, i.e., φ is *-open.

THEOREM 3.3. Letφ: X-* Y. The following are equivalent:
(1) φ is *-open.
(2) Cl φ- ! F = φ"1 cl Vfor each open set V of Y.
(3) Π c l ^ φ - ' Ύ ' D clβxφ-ιy for each y G YandeachΎy.
(4) Γ/iere is <%LP with φ#Gllp = Ύ ' /or eαc/i ̂  G Y, each p G cl^^φ" ιy

and each Ύγ.

Proof. (1) =>(2). Suppose that there is an open set V of Y with
x E φ ^ c l F - clφ^F. Take an open set W3 x disjoint from clφ^F.
Since V Π cl φW = 0 and φ is *-open, we have int(cl φW) Π cl V = 0
and int(cl φfΓ) D φίΐΓ 3 φ(*), a contradiction.

(2) => (3). Take Ύy. Since cl^^φ- 1^ = cl^^φ-^cl V) and j G cl F for
V G ΎΛ we have φ'ιy C Π c l ^ ^ φ ' 1 ^ , so clβxφ-ιy C n c l ^ ^ φ " 1 ^ .

(3) =>(4). From 2.1(5).
(4) =»(1). Suppose that there is an open set U with JC G U and

7 = φ(x) G φ[/ - int(cl φί/). Let ίF 3 y be open. Then V = W Π (Y-
cl φ[/) 7̂  0 , y ί F and j ; G cl F. Take Ύ^ 3 F. Any %* contains U. If

φ # % * = c ;̂; f o r s o m e βfSχ9 then φ" ι F G %*, but φ ^ F Π ( / = 0 , a con-
tradiction.

In general the equality in 3.3(3) does not hold by 3.8 below. From the
definition of a PFZ-map, 2.1(3) and 3.3(3) we have
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COROLLARY 3.4. If φ: X^Y is ""-open WZ, then (βφ)~ιy =
Π dβxqΓιΎy for each y G Y and each Ύy.

EXAMPLE 3.5. We give an example which shows that the converse of
3.4 is not necessarily true. Let X= [0, ωx] θ [0, ωλ), Y = [0, ωλ] and
φ(x) — x G Y for each x G X where coj is the first uncountable ordinal.
Then φ is open but not WZ. It is easy to see (βφ)~ιy = Π c l ^ φ " 1 ^ for
each .y G 7 and each ΎΛ

THEOREM 3.6. φ: * -* Y is WrN iff (βφ)-ιq = Πclβxφ-1 clΎq for
each q G βY and each Ύq.

Proof. =>). Since cl^^φ" 1 cl V) - (^φ)"1 cl^y V for V G Ύ
C Πcl^φ^c lΎ^, so we have the equality by 2.1(3). <-). Let p G
(βφ)~ι cl^y F — cl^^φ"1 cl Ffor some open set Kof Y. Then/? G (βφ)~ιq
for some # G cl̂ y F. Take Ύq with F G Ύq. Then cl^^φ"1 cl Vrt(βφ)-ιq,
a contradiction.

THEOREM 3.7. (1) The following are equivalent ([10], Theorems 1

(i) y/y almost normal
(ii) ^n.y WZ-map onto Y is WrN.

(in) Λtπy perfect map onto Y is WrN.
(2) The following are equivalent:

(i) y is κ-normal.
(ii) ylwy IF*-6!pe« WZ-map onto Y is WrN.

(iii) 4̂«y W*-open perfect map onto Y is WrN.

Proof. (2) (i) =» (ii). Let φ: X -» y be ΪF*-open and ίFZ. Suppose
/? G (βφ)~ι c\βγ V — c\βxφ~ι cl F for some open set V of Y. Then (βφ)p
= q G cl^y F and take an open set IF of βX such that /? G ϊF and
c l ^ JFΠ c l ^ ^ φ ' ^ l F ^ 0 . Since φ is JF*-open and WZ, we have that
()Sφ)cli8Λr fFΠ c l F = 0 and cl φ(X Π W) is regular closed. Thus
clφ(JTn W) Π c l F = 0, and hence cl^yφίXΠ ίF) Π dβγV= 0 be-
cause y is κ-normal. On the other hand, cl^x(X Π ίF) = c l ^ W3 p, so
q G cl^^φί^ Π fF) Π cl̂ y F, a contradiction, (ii) => (iii). Evident.

(iii) =^(i). This follows from the same method used in 1.5 of [21].
Suppose that there are disjoint regular closed sets E and K such that
c\βγE Π cl̂ yA: B q. Let X = y θ £. Define φ: X -* y by φ(x) = x for
x G X It is evident that φ is JF*-open perfect. On the other hand,

^ΛΓ^cl^yΛ: and (βφ)-ιclβYK Π βE Φ 0 , so ^
^ which shows that φ is not WrN.
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EXAMPLE 3.8. In 3.7(2, ii), "WZ-ness of φ" is necessary as shown by
the following. Let Y = [0,3], X = [0,2) 0(1,3] and φ(x) = x f o r j c E X
Then φ is open and Y is metrizable. φ~\l) — 1 and (βφ)~λl Φ c l ^ φ ' ^ l )
= 1 and hence φ is not WZ. Let Y 3 y = 1 and Ύy 3 [0,1). Then it is
obvious Πclβxφ-1 cl Ύy = {1} C ( β φ ) - y Thus φ is not WrN by 3.6 and

hence βφ is not open by 3.10 below. But βφ is W*-open by Theorem 4 of
[7]. Let Y 3 z = 2 and Ύz 3 [0,2). Then it is easy to see that Π clβxφ'ιΎz

D c l^φ^z = {2} (cf. Remark of 3.3).

THEOREM 3.9. //φ: X -> Y is a *-open Z-map, then it is open.

Proof. Let U be open in X and x G U. Then there is a zero set Z with
xGint Z=WCZCU and φt/ D φZ = cl φZ D cl φ(int Z) D
int(cl φ(int Z)) D φW B φ(*), and hence φ is open.

THEOREM 3.10. Let φ: X -> Y. Then the following are equivalent:
(1) βφ is open.
(2) φ is *~open and WrN.
(3) C\βx<f)-χV = (jSφ)"1 cl^y Vfor each open set Vof Y.
(4) (βφ)~ιq = Πclβxφ-χΎg for each q G βY and each Ύq.
(5) 77*m> w 91^ wι7A φ * ^ 7 7 = Ύ^/or racΛ ^ G β

p G

/. (1) => (2). Let [/be open in Xand put W= βX- cl^^X— ί/).
Then U — W Π X and cl^^ fF = c l ^ U. Since jβφ is closed, we have
(βφ)clβxW= clβγ(βφ)U= clβγφUD (βφ)WD φU and cl φU=YΠ
clβγφU D Y Π (βφ)W D φU. Since βφ is open, int(cl φί/) D φ[/, i.e., φ
is *-open. We shall show that <p is WrN. Let V be open in Y. T - βY -
clβY(Y- V) is open and V= Y Π T. Since cl^y T = cl^y V and βφ is
*-open, clβx(βφ)-ιT= (βφ)~ι c\βY T = (βφ)"1 c l ^ F. Thus it suffices to
show c l ^ β φ ) " 1 ^ = c l^φ" 1 cl V. Suppose p G (βφ)~ιT- c\βxφ'1 cl V.
Let ? G Γ and (βφ)p = g. Take an open set 5 of βX such that S 9 p and
cl^^S Π cl̂ g^φ"1 cl V = 0 . Let us put K = int^y^βφ) cl^^S). Then ϋ: =
int^cl^yίβφ)^) D (βφ)S 3 q and ϋΓ Π V= 0 , so KΠc\βYV= 0.
This is a contradiction because ^ G cl̂ y F. (2) =» (3). From 3.3(2). (3) =>
(4). From 2.1(3) and the fact that q G cl^y V for each K G Ύq. (4) => (5).
From 2.1(5).

(5) => (1). We first show that βφ is *-open. Let p G (βφ)"1 cl^y W -
c\βx(βφ)~λW ίox some open set Wof βY. Then there is an open set U of
βX withp G i n t ^ c l ^ U and cl^^ U Π c l ^ ^ β φ ) " 1 ^ = 0 . Let (βφ)/? =
9 and take Ύq with fΓ G Ύ^. Then any 6llp contains U. If φ#Gllp = Ύq

for some %/ ?, then φ ' ^ G ^ ^ , but U Π φ'Ψ - 0 , a contradiction.
Thus βφ is *-open by 3.3, so open by 3.9.
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If φ: X -» Y is open WZ, then βψ is open by Theorem 4.4(1) of [12].
Let X C Z C βX and f = (βφ) | Z. Then f: Z -* fZ has the Stone exten-
sion βζ = βφ, so βf is open, and hence ξ is *-open WrN by 3.10. Thus we
have

THEOREM 3.11. Let φ: X-> Y be open WZ. Then for any space
Z, X C Z C βX, ξ: Z ^ ζZ C βY is *-open WrN where ξ = (βφ) | Z.

4. Countable intersection property.

4.1. DEFINITION. We denote by {Fn}cli0 ({Fn}zei0 or {Fn}rei0
resp.) a decreasing sequence of closed sets (zero sets or regular closed sets
resp.) with empty intersection, φ: X-> Y is said to be a d (d' or d*
τesp.ymap if Πcl ΨFn = 0 for each {Fn}cli0 ({Fn}rel® or {Fn}zei0
resp.) [5, 8, 11]. Obviously a c/-map is d' and a d'-map is d* ([8], Theorem
7). We say that φ is hyper-real if (βφ)(βX - vX) C βY - vY. A hyper-real
map is d* [11] (cf. the diagram of 5.4 below). Let us put X* = βX - X.

F(χ; o) = {p G X*; any #* has CIP}.
F(X; 0, Δ) = {p G X*; there is Φf with CIP and ^/ without CIP}.
F(X, Δ) = {p G X*; any ^ does not have CIP}.
F(Z; υ, Δ) = ( υ Z - X) Π F(X; Δ).

Similarly we define U(X; 0), C/(X; 0, Δ), U(X; Δ) and ί/(X; υ9 Δ) using
free open ultrafilters. It is known that βX - vX C U(X; Δ), £/( AT; Δ) C
F(X; Δ) and F(X; 0) C U(X; 0) [13]. Concerning invariance of CIP under
a map, we note the following. Let φ: X -> F.

(1) If % has CIP, then any ΎD φ # % has CIP by 2.3(1) where " % has
CIP" means " Π cl t/Λ ¥= 0 for ί/M G %". Thus, in general, for φ: X -> 7,
we have 1/(7; Δ) Π (iβφ)(t/(AΓ; 0) U ί/(I; 0, Δ)) = 0 and hence

(2) If ^has CIP and φ # § ^ S, then S has CIP. This follows from
φ- 1^ G ̂ for E G S.

(3) The following (a) and (b) are not necessarily true as is shown by
4.2 below.

(a) ψ#βll = Ύdoes not have CIP for % without CIP.
(b) φ # ^ = S does not have CIP for ^without CIP.

Problem. Does & D φ # f have CIP whenever S'has CIP?

4.2. EXAMPLE. Let Y= {y}. In (1) and (2) below, define φ(x) = y.
Then φ is open, closed, jRC-preserving, Z-preserving and an iV-map where
φ is RC{Z)-preserυing if φE is regular closed (a zero) set whenever E is a
regular closed set (a zero set).
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(1) Let X be pseudocompact but not countably compact. Then φ is a
rf'-map but not a d-map. Evidently there is ^without CIP but φ # f = {y}
has CIP.

(2) Let X be a non-pseudocompact space. Then φ is not a d*-map.
Evidently there is % without CIP but φ#6ll = {y} has CIP. It is easy to
construct an TV-map which is not a d*-map by taking a suitable space X.

THEOREM 4.3. Let φ: X -» Y. The following are equivalent:
(1) φ is ad-map.
(2) If ty does not have CIP, so neither does any S D φ*f.
(3) (βφ)-\Y U F(7; 0)) C X U

*(2). From the fact that ΠclφF n = 0 for {Fn E f } i 0
and cl φi^ G S.

(2) => (3). There is <&* without CIP forp G F( X; Δ) U F(X; 0, Δ), so
every S D φ # < P does not have CIP by (2) and hence (βφ)p ί 7 U
F(7,0), so (βψ)-\Y U F(7; 0)) C X U F(X; 0).

(3) => (4). Evident.
(4) =* (1). Let {FM}cl j, 0 and7 G Πcl φFΛ. Then c\βxFn Π (yβφ)"^ ^

0 for w G TV. Take /? e(ΠclβxFn) Π (iβφ)-1^ and ^ with Fn G ^ ,
nGJV. Then/? G F(JT; 0) by (4) but <$p does not have CIP, a contradic-
tion.

REMARK. In general, the equality of 4.3(3) does not hold as shown by
5.6 below. An analogous theorem concerning a d*- and J'-map was
obtained respectively (see, 4.4(2,3) below). A closed d-map is precisely
quasi-perfect ( = closed and each fiber is countably compact), so we have
the following 4.4(1) using 1.4(3) and 4.3.

4.4. Let φ: X -* Y. (\) φ is quasi-perfect iffφ#($is a closed ultrafilter for
each %and <p#<3Γdoes not have CIP for each ^without CIP.

(2) φ is a d*-map iff{βψ)~xY C %JΓ[11].
(3) φ is a d'-rnap iff {βφ)-χY C X U U(X; 0) [5].

4.5. Let φ:X-^ Y.
(1) Let φ be a d'-map and φ * % = Ύ. If % does not have CIP, then

neither does Ύ.
(2) If φ is not a d'-map, there is % without CIP such that every

ΎDφ*6ίihasClF.
(3) Ifφ is W*-open, then φ is a d'-map iff ^ φ # % does not have CIP for

each % without CIP (cf., 4.6(2)).
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Proof. (1) Since % does not have CIP, there is {£/„£%}! with
Π cl Un = 0 . If Ύhas CIP, Y - cl φt/n ε Ύfor some «. φ # % = Ύimplies
φ~\Y -dφUn) = X- φ-'(cl φt/n) E %, a contradiction.

(2) Since φ is not d', there is {Un}open I 0 withy e Πcl φUn for some
j ε 7 . This implies (βψ)~ιy Γ\ c l ^ t/n Φ 0 for n e N. By 1.1(2), there is
%p without CIP and £/„ E %* where/? E ((Ίcl^C/J Π (j6(p)-y Obvi-
ously any Ύ D φ * ^ / converges toy, i.e., Ύhas CIP.

(3) =*). From (1) and 2.6 ̂ ) . From (2) and 2.6.

4.6. Definitions and some properties. Let φ: X -* Y. φ is said to be an
sd-map if f does not have CIP iff no S D φ*^has CIP. We say that φ is
an sd'-map if some ΎD φ * % does not have CIP for % without CIP.

(1) A quasi-perfect map is sd by 4.4 and an sd-map is d by 4.3.
(2) Any W*-open ί/'-map is sd' by 4.5(3) and an sd'-map is d' by

4.5(2).
(3) If φ is sd, then we have that (βψ)-\Y U F(y; O ) ) C I U F(X; 0),

(βψ)F(X 0, Δ) C F(Γ; 0, Δ) and (βψ)F(X Δ) C F(Y; Δ) U F(7; 0, Δ).
(4) If φ is sd', then we have that (βψ)-\YU U(Y; O ) ) C I U

U(X; 0), (βφ)U(X 0, Δ) C U(Y; 0, Δ) and (βφ)U(X Δ) C U(Y; Δ) U

; o, Δ).
(5) If φ is *-oρen WrN, then (βφ)~ιU(Y; 0, Δ)C(ΛΓ; 0, Δ),

/(F; Δ) C U(X, Δ) and (βφ)U(X 0) C Y U U(Y; 0) by 3.10 and
4.1(1).

(6) If φ is a *-open WrN ί/'-map, then (βφ)-χU(Y; Δ) = U(X; Δ) by
3.10. (βφ)-ιU(Y; 0, Δ) = ί/(Jf; 0, Δ) and (βφ)-\YU t/(7; 0) = I U
C/(X; 0).

(7) If φ is closed, then (βφ)(F(X; 0) U F(JT; 0, Δ)) Π f (7 ; Δ) = 0
by 1.4(3) and 4.1(2).

(8) If φ is an N-map, then we have (βφ)F(X; 0) Π (F(Y; 0, Δ) U
F(Y; Δ)) = 0 by 1.1(1) and 1.4(4).

It is not necessarily true that a perfect map is sd' as shown by 4.7
below. X is said to be nd — cp if for a decreasing sequence {Fn} of
nowhere dense closed sets with Γ\Fn= 0, there is {Un}open I with Fn C ί/n

and Π cl C4 = 0 . It is easy to see the following

(9) If A" is countably paracompact, then X is nd — cp.
(10) If X is pseudocompact, then X is countably compact iff X is

nd — cp.

4.7. If Y is pseudocompact but not countably compact, then there is a
space X and a perfect map φ: X -* Y which is neither sd' nor W*-open.
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Proof. Let A = {an; n G N) be a discrete closed set of Y and put
X — Y® A. Define φ(x) = x. Obviously φ is perfect but not W*-oρen.
Let us put Un = {am; m > n) C ̂ 4 C X and take % with £/π G' %, Λ G N.
Then % does not have CIP but any Ύ D φ * % has CIP because 7 is
pesudocompact.

THEOREM 4.8. Let φ: X -> 7.

(1) If Y is countably compact, then X is countably compact iff φ is sd.
(2) // y is pseudocompact, then X is pseudocompact iff φ is sdf.

4.8(2) is a generalization of 4.3 of [12] and Theorem 12 of [8].

Proof. (1) =>). Evident. <=). If Jf is not countably compact, there is
{Fn}dl0. Take ($^ Fn for each n. Then <fdoes not have CIP and hence
there is & without CIP containing φ * ^ because φ is sd. But this is a
contradiction because Y is countably compact.

(2) is obtained by the same method used in the proof of (1).

THEOREM 4.9. Let φ: X -> Y and Ybend — cp.
(1) Ifφ is d\ then φ is sd'.
(2) 7y φ ώ J, /Λew φ is sd.

Proof. (1). Suppose that there is % without CIP such that each
φ # % has CIP. If φ # % = Ύ, then Ύdoes not have CIP by 4.5(1), and

hence we may assume that φ # % Φ Ύfor each ΎD φ#6ll. Since % does
not have CIP, there is {Un G6H)i0 with ΠclUn= 0. φ being d\
ΠclφUn= 0. Let V G Ύ - φ # % . Then there is 1/ G % with U Π φ- 1 ^
= 0 and hence we may assume Un C U for each «. Now φB(Un, V) C
φ£4 Π clF, so by 2.3(2) Kn = clφ(int 5(ί/w, F)) is nowhere dense and
ΠKn = 0. Since Y is nd - cp, there is {Vn}opeΏ I 0 such that Kn C Fn

and ΠclKΛ = 0. Obviously φ'ιVn D int B(Un, V), so Vn G Ύby 2.3(1)
which shows that Ύdoes not CIP, a contradiction.

(2) By 4.3, it suffices to show that if ^has CIP, then any g D φ ^ h a s
CIP. Suppose that ^has CIP and some S D φ#^does not have CIP. We
may assume g ^ ( p # f . There is { £ n G g - φ # f } 1 0 . Then there is
F G f with i?j Π φF = 0, and hence En Π φF = 0 for each «. Since
S 3 #„ = En Π cl φi7 7̂  0 and Jfπ is nowhere dense, there is {J^}open i 0
such that Kn C Vn and Π cl Frt = 0 . If cl Vn & φ # ^ , then there i s ΰ G f
with cl F̂  Π φD = 0 . F̂  being open, ^ Π cl φZ> = 0 and hence ^ Π
cl φZ> = 0 which contradicts δ D φ*f. This shows cl Vn C φ ^ f o r each
n, so F does not have CIP, a contradiction.
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5. Spaces and mappings.
5.1. We recall the following [13].
(1) Xis almost realcompact iff U(X; 0) U U(X; 0, Δ) = 0 .
(2) X is c-realcompact iff U( X; 0) = 0 .
(3) X is a-realcompact iff F( X; 0) U F( X; 0, Δ) = 0 .
(4) X is wα-realcompact iff F(X;0)= 0 .
(5) Xis weakcb* iff J7(X; v, Δ) U ί/(X; 0, Δ) = 0 .
(6) Xispseudocompactiff U(X; Δ) U l / ( J f ; O , Λ ) = 0 .
(7) JΠscfe* iff F(X; υ, Δ) U F(X; 0, Δ) = 0 .
(8) Xis countably compact iff F(X; Δ) U F( X; 0, Δ) = 0 .

Dykes and Frolίk proved the following respectively.
(9) Let φ: X -* Y be perfect. Then
(i) Xis almost realcompact iff Γis almost realcompact [2].

(ii) X is α-realcompact iff Y is α-realcompact [1].
From (1) — (8), we have the following diagram.

countably compact =» pseudocompact

realcompact =» cb* =» ŵ αA: cό*

almost realcompact =» a-realcompact

c-realcompact =» wa-realcompact

5.2. Let/? G * * , Z = Jf U {p} C βXandY the space obtained from
Z by identifying p and a fixed point xQ of X It is easy to see that the
identifying map φ is PF*-open but not *-open. In this case we have

(1) Ifp G ΎX - X, then φ is d* [11].
(2) Ifp G U{X\ 0), then φ is d' [5].

THEOREM 5.3. (1) The following are equivalent:
(i) X is wa-realcompact.

(ii) Any d-map defined on X is perfect.
(in) Any W*-open sd-map defined on X is perfect.
(2) The following are equivalent ([5], Theorem 1 and [8], Theorem 13):

(i) X w c-realcompact.
(ii) yίwy d'-map defined on X is perfect.

(in) Λt«y W*-open df-map defined on X is perfect.
(3) The following are equivalent ([11], Theorem 6.3):

(i) Fwc6*.
(ii) v4wy d*-map onto Y is hyper-real.

(in) Any perfect map onto Y is hyper-real.
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(4) The following are equivalent:
(i) Y is weak cb*.

(ii) Any sd'-map onto Y is hyper-real.
(in) Any W*-open d'-map onto Y is hyper-real.
(iv) Any W*-open perfect map onto Y is hyper-real.

Proof. (1) (i) => (ii). From 4.3(2,3) and wα-realcompactness. (ii) =» (in).
Evident, (in) => (i). If X is not wα-realcompact, take p G F(X; 0) in 5.2.
Obviously φ is ϊ^*-open sd-msφ but φ~ι(x0) = xQ and (βX)~ιxQ 3 p, so
φ is not perfect.

(4) (i) => (ii). Since φ is sd\ (βφ)(βX - υX) C (βφ)U(X Δ) U
U(Y; Δ) U U(Y; 0, Δ) = βY - vYbecause Yis weak cb*9 i.e., φ is hyper-
real, (ii) => (in). From 4.6(2). (iii) => (iv). Evident, (iv) => (i). Suppose that
there is %/ without CIP and p G υY - Y. There is {Un G %/} 10 with
Π cl Un = 0 . Let us put X = 7 Θ Σ θ d ί/Λ and define φ( c) = x. Obvi-
ously φ is W*-open perfect. On the other hand, vX = υY @ Σ θυ(cl Un)
and υφ is onto υY, but (υφ)"1/? (/? G υY) is not compact where υφ =
(βφ) I (vX)9 and hence φ is not hyper-real.

5.4. NOTE AND PROBLEM. We define that φ: X-* Y is a dι(d2)-map if
( j B φ ^ y c J Π J £/(*; 0 ) U ί / ( I ; 0 , A ) ( C l U F ( I ; 0 ) U F ( I ; 0, Δ)).
Then we have the following:

(1) X is almost realcompact iff any dx-map defined on X is perfect.
(2) X is a-realcompact iff any d2-map defined on X is perfect.

"only i f part of (1) and (2) are obvious and " i f part of (1) and (2) are
obtained by the method used in 5.2 taking/? G U(X; 0, Δ) U U(X; 0) and
p G F(X; 0, Δ) U F(X; 0) respectively. But these definitions of dλ- and
J2-map are affected.

Problem. What is the intrinsic definition of a dx (or d2)-map? Con-
cerning various maps in this paper, we have the following:

open => *-open

perfect open

quasi-perfect =>

Φ
cte^ί/ and d

=>

closed

W*-open <

=> z =*

sd =>

*= W*-open and d'
II
^.

WZ dr

fl Si

d => d, =

hyper-real

4

d*

ί

> d,.

THEOREM 5.5. L̂ / φ: X -> y.

(1) Suppose that φ is a d-map. Then we have
(i) IfXis wa-realcompact, so is Y.

(ii) IfXis a-realcompact, so is Y.
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(2) Let φ be an sd'-map. Then if X is c-realcompact, so is Y (this is a
generalization of Theorem 1.3 of [7] by 4.6(2)).

(3) Let φbe a d'-map. Then ifXis almost realcompact, so is Y.
(4) Let φ be hyper-real Then ifXis weak cb*, so is Y.
(5) Let φ be hyper-real. Then ifXis cb*, so is Y ([11], Theorem 5.7(2)).

Proof. (1) (i). From 5.1(4), 5.3(1) and 4.3(3) (note that a perfect map is
sd). (ii). From the diagram of 5.1, 5.3, (i) above and 5.1(9(ii)).

(2) From U(Y; 0) = 0 by 4.6(4) and U(X;0)= 0, or from 4.6(4),
Theorem 2 of [4] and the fact that uX = X U U(X; 0).

(3) From the diagram of 5.1, 5.3(2) and 5.1(9(i)).
(4) Suppose that there is Ύq without CIP for q E vY - Y. Then

(βφ)-ιq C U(X; 0). Take p G (βφ)'λq and %p D φ~ιΎq. Since %p has
CIP, so does φ*%p = Ύq, a contradiction. Thus U(Y; v, Δ) U
U(Y; 0, Δ) = 0, so 7is weak cb*.

Since a compact space is realcompact, by 4.2(1,2), it is easily seen
that almost-, c-, a- and wα-realcompactness, c&*-ness and weak cZ>*-ness
are not inverse invariant under an open, closed, Z-preserving, iV-map.
Moreover, by the following Example 5.6, we have that (1) c-realcompact-
ness is not inverse invariant under a W*-open perfect map and (2)
c6*-ness and weak c6*-ness are not invariant under a i^*-open perfect
map.

5.6. EXAMPLE. K. Morita [15] constructed an M-space, non c-real-
compact space X and a perfect map φ such that the perfect image Y [14]
of X by φ is not an M space. It is easy to see that φ is W*-open but not
*-oρen. An M-space is cb* and hence weak cb*. On the other hand, Y is
c-realcompact [6] but neither α-realcompact [22] nor weak cb* [11] and
vY-Y=U(Y; 0, Δ) = F(Y; 0, Δ) consists of only one point (see [12,
15]). We note that (βφ)-\Y U F(Y; 0)) = (βφTιY Φ X U F(X; 0) (cf.
Remark of 4.3 and Remark 6.4 below).

THEOREM 5.7. Letψ: X-> Y.
(1) Let φ be an sd'-map. Then if Y is weak cb*, so is X.
(2) Let φbe a d-map. Then if Y is cb*, so is X ([11], Theorem 5.5).
(3) Let φ be a d'-map and Y almost realcompact. Then we have

(i) 17( JΓ;O,Δ)= 0 .
(ii) IfXis c-realcompact, then X is almost realcompact.

(in) Ifφ is perfect, then Xis almost realcompact (5.1(9)).
(4) Let φ be an sd-map and Y a-realcompact. Then we have

(i)JFχJlf;O,Δ)= 0 .
(ii) IfXis wa-realcompact, then Xis a-realcompact.

(iii) Ifφ is perfect, then Xis a-realcompact (5.1(9)).
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(5) Let φ be a perfect open map. If Y is a c-realcompact, so is X ([5],
Theorem 4).

(6) Let φ be a perfect N-map. Then if Y is wa-realcompact, so is X.

Proof. (1) φ being hyper-real, by 5.3(4)0* - υX = (βφ)-\βY - vY)
and U(X; υ, Δ) U U(X; 0, Δ) = 0 by 4.6(4) and 5.1(5), and hence X is
weak cb*.

(3) (i). By 4.1(1) and 4.4(3), (βφ)U(X 0, Δ) C U(Y; 0, Δ) and hence
we have U(X; 0, Δ) = 0 because Y is almost realcompact. (ii). From (i)
and 5.1(1,2). (iii). (New proof) Let p E U(X; 0). Then any ΎD φ#%p

has CIP and converges to a point q G υY — Yby 4.1(1) and X = (βφ)~ιY.
Since F is almost realcompact, υF — Y = t/(F; v, Δ), a contradiction.
Our assertion follows from (i) and 5.1(1).

(4) (i). By 4.6(3), (βφ)F(X 0, Δ) C F(Y; 0, Δ), so F(X; 0, Δ) - 0
and hence X is α-realcompact because Y is α-realcompact. (ii). From (i)
and 5.1(3,4). (iii). (New proof) Let p E F(X; 0). Since φ is sd, some
& D φ # ^has CIP and converges to a point q E vY - Y by X = (/Jφ)"1^.
Since 7 is orealcompact, υΓ— y = F ( Γ ; υ, Δ), a contradiction. Our
assertion follows from (i) and 5.1(3).

(5) (New proof) From 4.6(6) and X = (iβφ)"1^.
(6) Since φ is N(βφ)F(X; 0) C Y U F(Y; 0) = Yby 4.6(8), and since

φ is perfect (βφ)~ιY — X and JP(y; 0) = 0 because 7 is wα-realcompact
and hence X is w<2-realcompact.

6. Weak cδ*-ness and absolute. Using preceding results we give new
proofs of several theorems concerning the absolute E( X) of X which are
obtained as corollaries of theorems about perfect W^-open images of
weak cb* spaces.

THEOREM 6.1. Let φ be a perfect W*-open map of a weak cb* space X
onto Y. Then we have

(1) φ is hyper-real iff Y is weak cb*.
(2) (βφ)vX = Y U U(Y; 0) U U{Y\ 0, Δ).
(3) X is realcompact iff Y is almost realcompact.
(4) vX = (βφ)-ιTfor some T with Y C T C βY iff T = Y U U(Y; 0)

and U{Y\ 0, Δ) = 0 .

Proof. (1) From 5.3(4) and 5.5(4).
(2) Suppose (βφ)~ιq C βX - υX for some point q E U(Y; 0) U

£/(7; 0, Δ). Then there is Ύq with CIP and %p with φ # % ^ - Ύ« for
/? E (βφ)~ιq. Since ^ ^ does not have CIP and φ is sd\ Ύq does not have
CIP, a contradiction.
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(3) =>). Since φ is perfect and X = υX, we have U(Y, 0) U
U(Y; 0, Δ) = 0 by (2), so Y is almost realcompact <=). Since Y is almost
realcompact (βφ)υX - Y by (2). On the other hand, (/8φ)"'Γ = X, and
hence vX = X, i.e., Xis realcompact.

(4) =*). By (2), we have (βφ)υX = T=YU U(Y; 0) U U(Y; 0, Δ).
Since φ is perfect and W*-open, φ is sd' and (βφY\Y U £/(Γ; 0)) C X U
U(X; 0) = vZ by 4.6(4). We shall show U(Y; 0, Δ) = 0 . Let o e
ί/( F; 0, Δ). Then (βφ)-ιq C ί/(X; 0) and there is Ύ" without CIP but any
%* has CIP for each/? ε (y8φ)~V Since φ is W*-open, φ#ΰllp = Ύq for
some p £ (βφ)~xq and some %* and hence Ύ9 has CIP by 4.1(1), a
contradiction «-). By (2), (βφ) U X = Y U U(Y; 0) U ί/(7; 0, Δ) = Y U
C/(Γ; 0). Since φ is sd', (βφ)U(X Δ) C U(Y; Δ) U U(Y; 0, Δ) = U(Y, Δ)
by 4.6(4). Thus (βφ)-^^ vX where Γ = 7 U ί / ( y ; 0).

Let £( Λ") be the set of all fixed open ultrafilters on X topologized by
using {U°; I/is open in X} as a basis where U° = {%; U E %}. E(X) is
called the absolute of X and it is a Hausdorff extremally disconnected
space. Define TJ: T / % = Πcl%. Then it is known that η is a perfect
irreducible map and βE{ X) = E(βX). Since ηU° = cl U [18], η is W*-
open by 2.6(2). We note that an extremally disconnected space is weak
cb*.

COROLLARY 6.2. (1) υE(X) = (βη)-*vX(= E(υX)) iff uX = vX([7],
Theorem 2.4 and [8], Theorem 4.2) ί p i ί weαA: d>*.

(2) (βη)vE(X) = a,X([22], Lemma 2.1).
(3) £( Z) « realcompact iff X is almost realcompact [1].
(4) vE(X) = ( βTϊ)-1^ /or some Γ w/ίA X (Z T C βX iff T = X U

U(X; 0) a«ί/ {/(X; 0, Δ) = 0 ([20],/?. 330 and[22], Theorem 3.3).
(5) £( Jί) w pseudocompact iff X iί pseudocompact ([20], Proposition

2.5).

Proof. We note that £(X) is weak cό* and η is perfect ίF*-open. (1)
Since uX = {p G βX; each %^ has CIP} ([7], Lemma 2.5) and uX = X U
ί/( X\ 0) by 4.4, we have that υX = wX iff X is weak cό*. Thus (1) follows
from 6.1(1). (2) From 6.1(2) and aλX = X U U(X; 0) U U(X; 0, Δ) ([22],
Theorem 2.3). (3) From 6.1(3). (4) From 6.1(4). (5) From 4.6(2) and 4.8(2).

THEOREM 6.3. Let φ be a perfect W*-open map of a non-realcompact
cb* space X onto Y. Then we have

(1) Y is cb* iffφ is hyper-real.
(2) // Y is weak cb* then Y is cb*.
(3) IfvY— YD {q}, then Y is not weak cb* iff Y is c-realcompact but

not a-realcompact.
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Proof. (1) From 5.3(3) and 5.5(5). (2) Since 7 is weak cb*, φ is
hyper-real by 5.3(4), so 7 is cb* by 5.5(5) because Jf is cb*.

(3) =>). By 5.1(5) and vY = 7 U {#}, we have ί/(7; 0) = 0, so Y is
c-realcompact by 5.1(2). On the other hand, (βφ)F(X 0) C F(Y; 0) U
F(7; 0, Δ) = F(Y; 0, Δ) because F(7; 0) C U(Y; 0) = 0 . Thus 7 is not
α-realcompact <=). From realcompactness = (weak cό*-ness) + (c-
realcompactness).

6.4. REMARK. The space X in Example 5.6 is not weak cb* [11] and 7
is a perfect W*-open image of an M-space (we note that an M-space is
cb*). Thus 7 is c-realcompact but not <z-realcompact by 6.5(3). On the
other hand, this assertion follows also from the following Corollary 6.7
since φ: X -» 7 in 5.6 is irreducible [5].

COROLLARY 6.5. Let φ be a perfect irreducible map of a non-real-
compact cb* space Xonto Ywith vY — 7 U {q}. Then Y is not weak cb* iff
7 is c-realcompact but not a-realcompact.

Proof. By Proposition 1.9 of [19], X and 7 are co-absolute, so E(X)
and E(Y) are homeomorphic. Since X is cb*, E(X) is cb* by 5.6(2), so
£"(7) is also. Since the canonical map: E(Y) -» 7is perfect and W*-open,
we have our assertion by 6.3(3).

THEOREM 6.6. (1) // V is an open set of 7 with pseudocompact closure,
then any Ύq 3 V has CIV.

(2) Let φ: X-+Y be W*-open and d'. Then S = βX - (βφ)-ιvY is
dense in βX - vX and βY - (βφ) c\βxS C 7 U U(Y; 0) (this is a gener-
alization of Theorem 2.8 of [20]).

(3) Let vYbe locally compact. Then we have
(i) 7 is weak cb* [4].

(ii) Ifφ:X-*Y is sd\ then ψ is hyper-real.
(in) E(vY) = vE(Y) ([20], Proposition 2.10).

Proof. (1) Suppose that there is {Vn E Ύq} I with Π cl Vn = 0 . Then
we have {cl(F Π Vn)}0 which contradicts the pseudocompactness of cl V.

(2) Suppose p G (βX - υX) - c\βxS. Then any tylp does not have
CIP, so 9*%^ = Ύq for some Ύq

9 qEυY- 7 and hence Ύ* does not
have CIP by 4.5(1). There isU E%p and an open set W of βX such that
W Π X = U and c l ^ JΓ Π c l ^ S = 0 . By 2.3(3), int(cl φU) G Ύ*. Since
( β 7 — vY) Π clβγ(βφ)W = 0 and cl^y(int(cl φU)) is compact and con-
tained in vY, cl φί/ is a regular closed by 2.6 and pseudocompact [4]. Thus
Ύq has CIP by (1), a contradiction. Let us put R = βY - (βφ) c\βxS. R
is locally compact and X Π R G Ύ^ for any point q G i? and any Ύ*.



ULTRAFILTERS AND MAPPINGS 389

Thus Ύq has a member whose closure is pseudocompact, so has CIP by
(1) and hence R C Y U U(Y; 0).

(3) (i) From (1). (ii). From (i) and 5.3(4). (in). From (i) and 6.2(1).
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