ULTRAFILTERS AND MAPPINGS

TAKESI ISIWATA

We give characterizations of closed, quasi-perfect, d-, Z-, WZ-, W^* -open, N-, WN-, W_rN - and other maps using closed or open ultrafilters and investigate relations between these maps and various properties as generalizations of realcompactness, i.e., almost-, a-, c- and wa-real compactness, cb^* -ness and weak cb^* -ness. Finally we establish several theorems about the perfect W^* -open image of a weak cb^* space and its application to the absolute E(X) of a given space X.

We characterize closed, Z-, WZ-, N- and WN-maps by closed ultrafilters in §1 and show that φ is W*-open iff $\varphi^{\#}$ is an open ultrafilter for each open ultrafilter \mathfrak{A} in §2. In §3, introducing the notion of *-open map, we show that $\beta\varphi$ is open iff φ is a *-open W,N-map iff there is \mathfrak{A}^p with $\varphi^{\#}\mathfrak{A}^p = \mathfrak{V}^q$ for each $q \in \beta Y$, each \mathfrak{V}^q and each $p \in (\beta\varphi)^{-1}q$. In §4, we discuss invariance concerning CIP of closed or open ultrafilters under various maps and establish invariances and inverse invariance of various properties as a generalization of realcompactness under suitable maps in §5. In §6, we give several theorems about the perfect W*-open image of weak cb^* spaces which contain, as corollaries, known results concerning the absolute E(X) of X.

Throughout this paper, by a space we mean a completely regular Hausdorff space and assume familiarity with [3] whose notion and terminology will be used throughout. We denote by $\varphi: X \to Y$ a continuous onto map and by $\beta X(\nu X)$ the Stone-Čech compactification (realcompactification) of X and by $\beta \varphi$ the Stone extension over βX of φ . In the sequel, we use the following notation and abbreviation. N = the set of positive integers, CIP = countable intersection property, nbd = neighborhood, $\mathcal{F}^p =$ a closed ultrafilter converging to p. We denote by $\mathcal{F}(\mathfrak{A})$ a closed (open) ultrafilter on X and by $\mathcal{E}(\mathcal{V})$ a closed (open) ultrafilter on Y. $\varphi^{\#} \mathcal{F} = \{E \subset Y; \varphi^{-1}E \in \mathcal{F} \text{ and } E \text{ is closed in } Y\}$. Similarly define $\varphi^{\#} \mathfrak{A}$.

1. Closed ultrafilters.

1.1. In the sequel, we use frequently the following results.

(1) If $p \in \bigcap \operatorname{cl}_{\beta X} \varphi^{-1} \mathcal{E}^q = \bigcap \{\operatorname{cl}_{\beta X} \varphi^{-1} E; E \in \mathcal{E}^q\}$, then there is \mathcal{F}^p with $\varphi^{\#} \mathcal{F}^p = \mathcal{E}^q$. For, $\mathcal{Q} = \{\varphi^{-1} E \cap F; E \in \mathcal{E}^q, F \in N(p)\}$ is a closed filter base where N(p) is a closed nbd base of p in βX . Obviously $\mathcal{Q} \to p$. Thus any \mathcal{F}^p containing \mathcal{Q} has the property $\varphi^{\#} \mathcal{F}^p = \mathcal{E}^q$. It is easily seen that the same method above can be applied to open ultrafilter and *Z*-ultrafilter respectively i.e., if $p \in \bigcap \operatorname{cl}_{\beta X} \varphi^{-1} \mathcal{C}^{q} (\bigcap \operatorname{cl}_{\beta X} \varphi^{-1} \mathcal{Z}^{q})$, there is $\mathfrak{A}^{p}(\mathfrak{Z}^{p})$ with $\varphi^{\#} \mathfrak{A}^{p} = \mathcal{C}^{q}(\varphi^{\#} \mathfrak{Z}^{p} = \mathfrak{Z}^{q})$.

(2) For $x \in X$, a closed ultrafilter \mathcal{F} converging to x is unique and $\mathcal{F} = \{F; x \in F \text{ and } F \text{ is closed}\}$. Obviously $\{x\} \in \mathcal{F}$. It is easy to see that X is normal iff for each $p \in \beta X$, a closed ultrafilter \mathcal{F} converging to p is unique and $\mathcal{F} = \{F; p \in cl_{\beta X}F \text{ and } F \text{ is closed}\}$.

(3) For $p \in \beta X$, a Z-ultrafilter \mathbb{Z}^p is unique and $\mathbb{Z}^p = \{Z; Z \text{ is a zero set and } p \in cl_{\beta X} Z\}.$

- 1.2. Let $\varphi: X \to Y$, $(\beta \varphi)p = q, p \in \beta X$ and $q \in \beta Y$.
- (1) $\cap \operatorname{cl}_{\beta Y} \varphi^{\#} \mathfrak{F}^{p} = \{q\}.$
- (2) $\varphi^{-1} \mathcal{E}^{q} \subset \mathcal{F}^{p} \Leftrightarrow \varphi^{\#} \mathcal{F}^{p} = \mathcal{E}^{q}.$
- (3) $\cap \operatorname{cl}_{\beta X} \varphi^{-1} \mathcal{E}^q \subset (\beta \varphi)^{-1} q.$

(4) $\cap \operatorname{cl}_{\beta X}^{\gamma} \varphi^{-1} \mathcal{E}^{\gamma} = \operatorname{cl}_{\beta X} \varphi^{-1} \gamma$ for $\gamma \in Y$.

(5) $\varphi^{\#} \mathfrak{F}^{p} \subset \mathfrak{E}^{q} \Leftrightarrow \operatorname{cl}(\varphi F) \cap E \neq \emptyset \text{ for } F \in \mathfrak{F}^{p} \text{ and } E \in \mathfrak{E}^{q}.$

(6) There is \mathfrak{F}^p such that $\varphi^{\#}\mathfrak{F}^p$ is a closed ultrafilter iff there is \mathfrak{E}^q with $p \in \bigcap \operatorname{cl}_{\mathcal{B}_X} \varphi^{-1}\mathfrak{E}^q$.

Proof. (1) It suffices to show that $\bigcap \operatorname{cl}_{\beta Y} \varphi^{\#} \mathfrak{F}^{p}$ consists of only one point. Let $q_{i} \in \bigcap \operatorname{cl}_{\beta Y} \varphi^{\#} \mathfrak{F}^{p}$ (i = 1, 2). Then there are disjoint closed nbd's V_{1} and V_{2} of q_{1} and q_{2} in βY respectively, so $X \cap (\beta \varphi)^{-1} V_{i} \in \mathfrak{F}^{p}$ (i = 1, 2), a contradiction.

(2) Obvious.

(3) If $r \in \bigcap \operatorname{cl}_{\beta X} \varphi^{-1} \mathcal{E}^q - (\beta \varphi)^{-1} q$, there is \mathcal{F}^r with $\varphi^{-1} \mathcal{E}^q \subset \mathcal{F}^r$ by 1.1(1) and (2) above. This shows $(\beta \varphi)^{-1} q \ni r$, a contradiction.

(4) From $\{y\} \in \mathcal{E}^{y}$.

(5) \Rightarrow). From cl(φF) $\in \varphi^{\#}F^{p}$ for $F \in \mathcal{F}^{p}$. \Leftarrow). Let $K \in \varphi^{\#}\mathcal{F}^{p} - \mathcal{E}^{q}$. Then $\mathcal{F} = \varphi^{-1}K \in \mathcal{F}^{p}$. Since $K \notin \mathcal{E}^{q}$, there is $E \in \mathcal{E}^{q}$ with $K \cap E = \emptyset$, i.e., cl(φF) $\cap E = \emptyset$, a contradiction.

(6) \Rightarrow). Let $\mathscr{E}^q = \varphi^{\#} \mathscr{F}^p$. Then $\varphi^{-1} \mathscr{E}^q \subset \mathscr{F}^p$, so $p \in \bigcap \operatorname{cl}_{\beta X} \varphi^{-1} \mathscr{E}^q$. \Leftarrow). From 1.1(1).

1.3. DEFINITION. We recall that $\varphi: X \to Y$ is a Z-map if φZ is closed for every zero set Z and φ is a WZ-map if $(\beta \varphi)^{-1}y = \operatorname{cl}_{\beta X} \varphi^{-1}y$ for each $y \in Y$. It is known that a closed map is a Z-map and a Z-map is WZ [12]. Woods [21] introduced the notions of N- and WN-map. φ is an N(WN)map if $(\beta \varphi)^{-1} \operatorname{cl}_{\beta Y} R = \operatorname{cl}_{\beta X} \varphi^{-1} R$ for every closed set (zero set) R of Y. An N-map is WN and WZ. In the following, we characterize maps mentioned above by closed ultrafilters.

THEOREM 1.4. Let $\varphi: X \to Y$.

(1) φ is WZ iff there is \mathfrak{F}^p with $\varphi^{\#}\mathfrak{F}^p = \mathfrak{E}^y$ for each $y \in Y$ and each $p \in (\beta \varphi)^{-1} y$.

(2) φ is a Z-map iff there is \mathfrak{F}^p such that $Z \in \mathfrak{F}^p$ and $\varphi^{\#} = \mathfrak{E}^y$ for each $y \in Y$, each $p \in (\beta \varphi)^{-1}y$ and each zero set Z with $p \in cl_{\beta X}Z$.

(3) The following are equivalent:

(i) φ is closed.

(ii) $\varphi^{\#} \mathfrak{F}$ is a closed ultrafilter for any \mathfrak{F} .

(iii) There is \mathfrak{F}^p such that $F \in \mathfrak{F}^p$ and $\varphi^{\#}\mathfrak{F}^p = \mathfrak{E}^y$ for each $y \in Y$, each $p \in (\beta\varphi)^{-1}$ and each closed set F with $p \in cl_{\beta X} F$.

(4) The following are equivalent:

(i) φ is an N-map.

(ii) $(\beta \varphi)^{-1}q = \bigcap \operatorname{cl}_{\beta X} \varphi^{-1} \mathcal{E}^{q}$ for each $q \in \beta Y$ and each \mathcal{E}^{q} .

(iii) There is \mathfrak{F}^p with $\varphi^{\#}\mathfrak{F}^p = \mathfrak{S}^q$ for each $q \in \beta Y$, each \mathfrak{S}^q and each $p \in (\beta \varphi)^{-1}q$.

(5) The following are equivalent:

(i) φ is a WN-map.

(ii) $\operatorname{cl}_{\beta X} \varphi^{-1} \mathfrak{Z}^{q} = (\beta \varphi)^{-1} q$ for each $q \in \beta Y$.

(iii) $\varphi^{\#} \mathfrak{Z}^{p} = \mathfrak{Z}^{q}$ for each $q \in \beta Y$ and each $p \in (\beta \varphi)^{-1} q$.

Proof. (1) \Rightarrow). Since φ is *WZ*, we have $(\beta\varphi)^{-1}y = \operatorname{cl}_{\beta X} \varphi^{-1}y$ and $(\beta\varphi)^{-1}y = \bigcap \operatorname{cl}_{\beta X} \varphi^{-1} \mathcal{E}^{y}$ by 1.2(4). Thus there is \mathcal{F}^{p} with $\varphi^{\#} \mathcal{F}^{p} = \mathcal{E}^{y}$ by 1.1(1) \Leftarrow). For each $p \in (\beta\varphi)^{-1}y$, we have $p \in \bigcap \operatorname{cl}_{\beta X} \varphi^{-1} \mathcal{E}^{y}$ by 1.2(6). Since $\bigcap \operatorname{cl}_{\beta X} \varphi^{-1} \mathcal{E}^{y} = \operatorname{cl}_{\beta X} \varphi^{-1} y$ by 1.2(4), $(\beta\varphi)^{-1}y \subset \operatorname{cl}_{\beta X} \varphi^{-1}y$, so $(\beta\varphi)^{-1}y = \operatorname{cl}_{\beta X} \varphi^{-1}y$ which shows that φ is *WZ*.

(2) \Rightarrow). Let $p \in (\beta \varphi)^{-1} y$ and Z a zero set with $p \in cl_{\beta X} Z$. Since φ is a Z-map, φZ is closed, so $y \in \varphi Z$. On the other hand, $\varphi^{-1} y = X \cap (\cap cl_{\beta X} \varphi^{-1} \mathbb{S}^{y})$ by 1.2(4). If $p \in X$, then there is \mathfrak{F}^{p} with $\varphi^{\#} \mathfrak{F}^{p} = \mathbb{S}^{y}$ by 1.2(6) and since $p \in X$, $p \in Z$ so $Z \in \mathfrak{F}^{p}$. Now suppose $p \notin X$. Since $y \in E$ for $E \in \mathbb{S}^{y}$ and $\varphi Z \ni y$, we have $Z \cap \varphi^{-1} E \neq \emptyset$. We shall show $p \in \cap cl_{\beta X}(Z \cap \varphi^{-1} E)$ for $E \in \mathfrak{S}^{y}$. Suppose contrary. There is a zero set K of βX such that $p \in int_{\beta X} K$ and $K \cap cl_{\beta X}(Z \cap \varphi^{-1} E) = \emptyset$. $Z' = K \cap Z \neq \emptyset$ and $p \in cl_{\beta X} Z'$, but $y \notin \varphi Z'$, a contradiction. Thus there is $\mathfrak{F}^{p} \supset \{Z \cap \varphi^{-1} E; E \in \mathfrak{S}^{y}\}$ by 1.1(1). Obviously $\varphi^{-1} \mathfrak{S}^{y} \subset \mathfrak{F}^{p}$, so $\varphi^{\#} \mathfrak{F}^{p} = \mathfrak{S}^{y}$ and $Z \in \mathfrak{F}^{p}$. \leftarrow). Let Z be a zero set and $y \in cl \varphi Z - \varphi Z$. Then we have $p \in cl_{\beta X} Z \cap (\beta \varphi)^{-1} y$, so there is \mathfrak{F}^{p} with $Z \in \mathfrak{F}^{p}$ and $\varphi^{\#} \mathfrak{F}^{p} = \mathfrak{S}^{y}$. Since $\{y\} \in \mathfrak{S}^{y}, \varphi^{-1} y \in \mathfrak{F}^{p}$, but $Z \cap \varphi^{-1} y = \emptyset$, a contradiction.

(3) (i) \Rightarrow (ii) \Rightarrow (iii). Evident. (iii) \Rightarrow (i). Suppose that there is a closed set F of X with $y \in cl(\varphi F) - \varphi F$. Then $K = cl_{\beta X}F \cap (\beta \varphi)^{-1}y \neq \emptyset$. Let $p \in K$. By (iii), there is $F \in \mathcal{F}^p$ with $\varphi^{\#}\mathcal{F}^p = \mathcal{E}^y$. Since $\{y\} \in \mathcal{E}^y$ and $F \in \mathcal{F}^p$, we have $F \cap \varphi^{-1}y \neq \emptyset$ which is a contradiction.

(4) (i) \Rightarrow (ii). Since φ is an *N*-map and $q \in \operatorname{cl}_{\beta Y} E$ for each $E \in \mathcal{E}^q$, we have $(\beta \varphi)^{-1} q \subset \cap (\beta \varphi)^{-1} \operatorname{cl}_{\beta Y} \mathcal{E}^q = \cap \operatorname{cl}_{\beta X} \varphi^{-1} \mathcal{E}^q$, and hence $(\beta \varphi)^{-1} q = \cap \operatorname{cl}_{\beta X} \varphi^{-1} \mathcal{E}^q$ by 1.2(3). (ii) \Rightarrow (iii). From (ii) and 1.2(6). (iii) \Rightarrow (i). Suppose that there is a closed set *E* of *Y* with $K = (\beta \varphi)^{-1} \operatorname{cl}_{\beta Y} E - \operatorname{cl}_{\beta X} \varphi^{-1} E \neq \emptyset$. Let $p \in K$ and $(\beta \varphi) p = q$. Then $q \in \operatorname{cl}_{\beta Y} E$. Let $E \in \mathcal{E}^q$. Take \mathcal{F}^p with $\varphi^{\#} \mathcal{F}^p = \mathcal{E}^q$. Since $p \notin \operatorname{cl}_{\beta X} \varphi^{-1} E$, we have $\varphi^{-1} E \notin \mathcal{F}^p$, a contradiction.

(5) This is proven by the analogous method used in (4) above.

2. Open ultrafilters.

2.1. Let $g: X \to Y$ and $(\beta \varphi)_p = q, p \in \beta X, q \in \beta Y$. (1) $\cap \operatorname{cl}_{\beta Y} \varphi^{\#} \mathfrak{A}^p = \cap \operatorname{cl}_{\beta Y} \varphi \mathfrak{A}^p = \{q\}$. (2) $\varphi^{-1} \mathfrak{V}^q \subset \mathfrak{A}^p \Leftrightarrow \varphi^{\#} \mathfrak{A}^p = \mathfrak{V}^q$. (3) $\cap \operatorname{cl}_{\beta X} \varphi^{-1} \mathfrak{V}^q \subset \cap \operatorname{cl}_{\beta X} \varphi^{-1} (\operatorname{cl} \mathfrak{V}^q) \subset (\beta \varphi)^{-1} q$. (4) $\varphi^{\#} \mathfrak{A}^p \subset \mathfrak{V}^q \Leftrightarrow \varphi U \cap \operatorname{cl} V \neq \emptyset$ for $U \in \mathfrak{A}^p$ and $V \in \mathfrak{V}^q$. (5) There is \mathfrak{A}^p such that $\varphi^{\#} \mathfrak{A}^p$ is an open ultrafilter iff there is \mathfrak{V}^q .

with $p \in \bigcap \operatorname{cl}_{\beta X} \varphi^{-1} \mathbb{V}^{q}$.

The proof of 2.1 is obtained by the same method used in 1.2. By 1.1(1), "if part" of 2.1(5) implies that there is \mathfrak{A}^p with $\varphi^{\#}\mathfrak{A}^p = \mathfrak{V}^q$. As is shown by 2.2 below, it is not necessarily true that if there is \mathfrak{V}^q with $p \in \bigcap \operatorname{cl}_{RY} \varphi^{-1}(\operatorname{cl} \mathfrak{V}^q)$, then there is \mathfrak{A}^p with $\varphi^{\#}\mathfrak{A}^p = \mathfrak{V}^q$.

EXAMPLE 2.2. Let $X = [0, 1) \oplus [1, 2]$ and Y = [0, 2]. Define $\varphi: X \to Y$ by $\varphi(x) = x$ for $x \in X$. Let ${}^{\mathbb{V}q} \ni [0, 1)$, $q = 1 \in Y$. Then $p = 1 \in \bigcap_{g \in X} \varphi^{-1}(\operatorname{cl}^{\mathbb{V}q})$ and any \mathfrak{A}^{p} contain (1, 2] and hence $\varphi^{\#} \mathfrak{A}^{p} \neq \mathbb{V}^{q}$ (cf. 3.1 below).

LEMMA 2.3. Let $\varphi^{\#}\mathfrak{A} \mathfrak{P} \subset \mathfrak{V}^q$, $U \in \mathfrak{A} = \mathfrak{A}^p$, $V \in \mathfrak{V}^q = \mathfrak{V}$ and let us put $B(U, V) = U \cap \varphi^{-1}(\operatorname{cl} V)$. Then we have

(1) Int $B(U, V) \in \mathfrak{A}$.

(2) If $\varphi^{\#} \mathfrak{A} \subset \mathfrak{V}$ and $V \cap \varphi U = \emptyset$, then int $\operatorname{cl}(\operatorname{cl} V \cap \varphi U) = \emptyset$.

(3) If $\varphi^{\#} \mathfrak{A} \stackrel{\neq}{=} \mathfrak{N}$, then int $cl(\varphi U) \in \mathfrak{N}$.

Proof. (1). By 2.1(4), $B(U, V) \neq \emptyset$. Suppose $S = \operatorname{int} B(U, V) = \emptyset$. U - B(U, V) is open in U, so in X. Since $(X - \operatorname{cl} U) \cup (U - B(U, V))$ is dense in X and \mathfrak{A} is prime, we have $U - B(U, V) \in \mathfrak{A}$. But $\varphi^{-1} \operatorname{cl} V \cap$ $(U - B(U, V)) = \emptyset$, and hence $\operatorname{cl} V \cap \varphi(U - B(U, V)) = \emptyset$, a contradiction by 2.1(4). Thus $S \neq \emptyset$. If $S \notin \mathfrak{A}$, there is $W \in \mathfrak{A}$ with $W \cap$ $S = \emptyset$. This implies $S \cap W = \operatorname{int}(U \cap \varphi^{-1}(\operatorname{cl} V) \cap W) =$ $\operatorname{int}(U \cap W \cap \varphi^{-1}(\operatorname{cl} V)) = \operatorname{int} B(U \cap W, V) = \emptyset$, a contradiction.

(2) Since $V \cap \varphi U = \emptyset$ implies $V \cap cl(\varphi U) = \emptyset$, we have

$$\operatorname{cl}(\varphi U \cap \operatorname{cl} V) \subset \operatorname{cl} \varphi U \cap \operatorname{cl} V \subset \operatorname{cl}(\varphi U) \cap (\operatorname{cl} V - V),$$

so int $\operatorname{cl}(\varphi U \cap \operatorname{cl} V) = \emptyset$.

(3) If int cl $\varphi U \notin \mathbb{V}$, we have $Y - cl \varphi U \in \mathbb{V}$, so $X - \varphi^{-1} cl(\varphi U) \in \mathbb{Q}$, a contradiction.

THEOREM 2.4. $\varphi^{\#} \mathfrak{A}^{p}$ is an open ultrafilter iff $\operatorname{int} \operatorname{cl}(\varphi U) \neq \emptyset$ for $U \in \mathfrak{A}^{p}$.

Proof. ⇒) Let $\varphi^{\#} \mathfrak{A}^{p} = \mathfrak{V}^{q}$. Then this follows from 2.3(3). ←). Suppose $\varphi^{\#} \mathfrak{A}^{p} \subseteq \mathfrak{V}^{q}$ for some $q \in \beta Y$. Put $\mathfrak{A} = \mathfrak{A}^{p}$ and $\mathfrak{V} = \mathfrak{V}^{q}$. There is $V \in \mathfrak{V} - \varphi^{\#} \mathfrak{A}$ with $V \cap \varphi U = \emptyset$ for some $U \in \mathfrak{A}$. By 2.3(1), W = int $B(U, V) \in \mathfrak{A}$ and $\varphi W \cap V = \emptyset$, so int cl(φW) = Ø by 2.3(2), a contradiction.

2.5. DEFINITION. $\varphi: X \to Y$ is said to be a W^* -open map if $\operatorname{cl} \varphi U$ is regular closed (i.e., $\operatorname{cl}(\operatorname{int}(\operatorname{cl} \varphi U)) = \operatorname{cl} \varphi U$) whenever U is open [8]. This is a generalization of an open map. We use this notion in the following.

THEOREM 2.6. Let φ : $X \rightarrow Y$. The following are equivalent: (1) φ is W^* -open.

(1') Cl φU is regular closed whenever U is a basic open set of X.

(2) $\operatorname{Int}(\operatorname{cl} \varphi U) \neq \emptyset$ for each non-empty open set U of X.

(2') $\operatorname{Int}(\operatorname{cl} \varphi U) \neq \emptyset$ for each non-empty basic open set U of X.

(3) Int(cl $\varphi^{-1}V$) = int φ^{-1} (cl V) for each open set V of Y.

(4) $\varphi^{\#}$ U is an open ultrafilter for any U.

(5) There is \mathfrak{A}^p such that $\varphi^{\#}\mathfrak{A}^p$ is an open ultrafilter for each $q \in \beta Y$ and each $p \in (\beta \varphi)^{-1}q$.

(6) $(\beta \varphi)^{-1}q = \bigcup \{ \cap cl_{\beta X} \varphi^{-1} \mathbb{V}; \mathbb{V} \text{ is an open ultrafilter converging to } q \}$ for each $q \in \beta Y$.

Proof. $(1) \Rightarrow (1') \Rightarrow (2') \Leftrightarrow (2)$ and $(4) \Rightarrow (5)$ are evident. $(2) \Leftrightarrow (4)$. From 2.4 (5) \Leftrightarrow (6). From 2.1(3, 5).

(2) \Rightarrow (3). It suffices to show int $\varphi^{-1} \operatorname{cl} V \subset \operatorname{cl}(\varphi^{-1}V)$. Suppose $x \in$ int $\varphi^{-1}(\operatorname{cl} V) - \operatorname{cl}(\varphi^{-1}V)$. There is an open set $W \ni x$ such that $W \cap$ $\operatorname{cl}(\varphi^{-1}V) = \emptyset$ and $W \subset \operatorname{int} \varphi^{-1}(\operatorname{cl} V)$. Then $V \cap \varphi W = \emptyset$, so $V \cap \operatorname{cl} \varphi W$ $= \emptyset$. On the other hand, $\varphi W \subset \operatorname{cl} V$, so $\operatorname{int}(\operatorname{cl} \varphi W) \subset \operatorname{cl} V - V$ and hence int $\operatorname{cl}(\varphi W) = \emptyset$, a contradiction.

 $(5) \Rightarrow (2)$. Let $U \subset X$ be open and $x \in U$. Then any open ultrafilter \mathfrak{A} converging to x contains U. There is \mathfrak{A}^x such that $\varphi^{\#}\mathfrak{A}^x$ is an open ultrafilter by (5). Thus int cl $\varphi U \neq \emptyset$ by 2.4.

(3) \Rightarrow (2). Suppose that there is an open set U with int cl $\varphi U = \emptyset$. Let us put $V = Y - \text{cl } \varphi U$. Then cl V = Y and int $\varphi^{-1}(\text{cl } V) = X$. But int(cl $\varphi^{-1}V$) $\cap U = \emptyset$, a contradiction.

(2) \Rightarrow (1). Let U be open and put $K = \operatorname{cl}\operatorname{int}(\operatorname{cl}\varphi U)$. Suppose $y \in \varphi U - K$. Then there is an open set $W \ni y$ with $K \cap \operatorname{cl} W = \emptyset$. Since $T = U \cap \varphi^{-1}W \neq \emptyset$ and $\operatorname{cl}\varphi T \subset \operatorname{cl} W \cap \operatorname{cl}\varphi U$, $\operatorname{int}\operatorname{cl}(\varphi T) \subset \operatorname{int}(\operatorname{cl} W) \cap \operatorname{int}(\operatorname{cl}\varphi U) = \emptyset$, a contradiction. Thus $\varphi U \subset K$ and hence $\operatorname{cl}\varphi U \subset K$, i.e., $\operatorname{cl}\varphi U = K$.

3. *-open mappings.

3.1. DEFINITION. $\varphi: X \to Y$ is said to be *-open if $\operatorname{int}(\operatorname{cl} \varphi U) \supset \varphi U$ for each open set U of X. An open map is *-open but a *-open map is not necessarily open by 3.2 below. A *-open map is W*-open by 2.6 but a W*-open map is not necessarily *-open by 2.2 in which it is easy to see that φ is W*-open. Let $U = [1, 2] \subset X$. Then U is open in X and $\operatorname{int}(\operatorname{cl} \varphi U) = (1, 2] \not\supset \varphi U = [1, 2]$, so φ is not *-open (cf. 5.6 below). We say that φ is a $W_r N$ -map if $\operatorname{cl}_{\beta X} \varphi^{-1} R = (\beta \varphi)^{-1} \operatorname{cl}_{\beta Y} R$ for every regular closed set R of Y [10]. X is almost normal [17] (κ -normal [16]) if each regular closed set is completely separated from each closed (regular closed) set disjoint from it.

EXAMPLE 3.2. Let P be the set of rational numbers in [0, 1], $X = [0, 1] \oplus P$, Y = [0, 1] and $\varphi(x) = x \in Y$ for each $x \in X$. Then φ is not open. To show that φ is *-open, it suffices to prove that $\operatorname{int}(\operatorname{cl} \varphi U) \supset \varphi U$ for each open set U of P. Let $U \subset P$ be open. There is an open set $W \subset [0, 1]$ with $P \cap W = U$. W is the union of countably many disjoint open interval $W_n = (a_n, b_n)$. Put $P_n = P \cap W_n$. Obviously $\operatorname{cl} \varphi P_n = [a_n, b_n]$ and $\operatorname{int}(\operatorname{cl} \varphi P_n) \supset P_n$, so $\operatorname{int}(\operatorname{cl} \varphi U) \supset \varphi U$, i.e., φ is *-open.

THEOREM 3.3. Let $\varphi: X \to Y$. The following are equivalent: (1) φ is *-open. (2) Cl $\varphi^{-1}V = \varphi^{-1}$ cl V for each open set V of Y. (3) $\bigcap \operatorname{cl}_{\theta X} \varphi^{-1} \nabla^{Y} \supset \operatorname{cl}_{\theta X} \varphi^{-1} y$ for each $y \in Y$ and each ∇^{Y} .

(4) There is \mathfrak{A}^p with $\varphi^{\#}\mathfrak{A}^p = \mathfrak{V}^y$ for each $y \in Y$, each $p \in \mathrm{cl}_{\beta X} \varphi^{-1} y$ and each \mathfrak{V}^y .

Proof. (1) \Rightarrow (2). Suppose that there is an open set V of Y with $x \in \varphi^{-1} \operatorname{cl} V - \operatorname{cl} \varphi^{-1} V$. Take an open set $W \ni x$ disjoint from $\operatorname{cl} \varphi^{-1} V$. Since $V \cap \operatorname{cl} \varphi W = \emptyset$ and φ is *-open, we have $\operatorname{int}(\operatorname{cl} \varphi W) \cap \operatorname{cl} V = \emptyset$ and $\operatorname{int}(\operatorname{cl} \varphi W) \supset \varphi W \ni \varphi(x)$, a contradiction.

(2) \Rightarrow (3). Take \Im^{y} . Since $\operatorname{cl}_{\beta X} \varphi^{-1} V = \operatorname{cl}_{\beta X} \varphi^{-1} (\operatorname{cl} V)$ and $y \in \operatorname{cl} V$ for $V \in \Im^{y}$, we have $\varphi^{-1} y \subset \cap \operatorname{cl}_{\beta X} \varphi^{-1} \Im^{y}$, so $\operatorname{cl}_{\beta X} \varphi^{-1} y \subset \cap \operatorname{cl}_{\beta X} \varphi^{-1} \Im^{y}$. (3) \Rightarrow (4). From 2.1(5).

(4) \Rightarrow (1). Suppose that there is an open set U with $x \in U$ and $y = \varphi(x) \in \varphi U - \operatorname{int}(\operatorname{cl} \varphi U)$. Let $W \ni y$ be open. Then $V = W \cap (Y - \operatorname{cl} \varphi U) \neq \emptyset$, $y \notin V$ and $y \in \operatorname{cl} V$. Take ${}^{\circ}V^{y} \ni V$. Any ${}^{\circ}U^{x}$ contains U. If $\varphi^{\#} \mathfrak{A}^{x} = {}^{\circ}V^{y}$ for some ${}^{\circ}U^{x}$, then $\varphi^{-1}V \in \mathfrak{A}^{x}$, but $\varphi^{-1}V \cap U = \emptyset$, a contradiction.

In general the equality in 3.3(3) does not hold by 3.8 below. From the definition of a WZ-map, 2.1(3) and 3.3(3) we have

COROLLARY 3.4. If $\varphi: X \to Y$ is *-open WZ, then $(\beta \varphi)^{-1} y = \bigcap \operatorname{cl}_{\beta X} \varphi^{-1} \mathcal{V}^{Y}$ for each $y \in Y$ and each \mathcal{V}^{Y} .

EXAMPLE 3.5. We give an example which shows that the converse of 3.4 is not necessarily true. Let $X = [0, \omega_1] \oplus [0, \omega_1)$, $Y = [0, \omega_1]$ and $\varphi(x) = x \in Y$ for each $x \in X$ where ω_1 is the first uncountable ordinal. Then φ is open but not WZ. It is easy to see $(\beta \varphi)^{-1}y = \bigcap \operatorname{cl}_{\beta X} \varphi^{-1} \mathcal{O}_Y^{\gamma}$ for each $y \in Y$ and each \mathcal{O}_Y^{γ} .

THEOREM 3.6. $\varphi: X \to Y$ is $W_r N$ iff $(\beta \varphi)^{-1}q = \bigcap \operatorname{cl}_{\beta X} \varphi^{-1} \operatorname{cl}^{\mathcal{V}q}$ for each $q \in \beta Y$ and each \mathcal{V}^q .

Proof. ⇒). Since $cl_{\beta X}(\varphi^{-1} cl V) = (\beta \varphi)^{-1} cl_{\beta Y} V$ for $V \in {}^{\mathbb{V}_{q}}, (\beta \varphi)^{-1}q$ $\subset \cap cl_{\beta X} \varphi^{-1} cl {}^{\mathbb{V}_{q}}$, so we have the equality by 2.1(3). \leftarrow). Let $p \in (\beta \varphi)^{-1} cl_{\beta Y} V - cl_{\beta X} \varphi^{-1} cl V$ for some open set V of Y. Then $p \in (\beta \varphi)^{-1}q$ for some $q \in cl_{\beta Y} V$. Take ${}^{\mathbb{V}_{q}}$ with $V \in {}^{\mathbb{V}_{q}}$. Then $cl_{\beta X} \varphi^{-1} cl V \not\supseteq (\beta \varphi)^{-1}q$, a contradiction.

THEOREM 3.7. (1) The following are equivalent ([10], Theorems 1 and 6):

- (i) Y is almost normal.
- (ii) Any WZ-map onto Y is W_rN .
- (iii) Any perfect map onto Y is W_rN .
- (2) The following are equivalent:
- (i) Y is κ -normal.
- (ii) Any W^* -open WZ-map onto Y is W_rN .
- (iii) Any W^* -open perfect map onto Y is W_rN .

Proof. (2) (i) \Rightarrow (ii). Let $\varphi: X \to Y$ be W^* -open and WZ. Suppose $p \in (\beta\varphi)^{-1} \operatorname{cl}_{\beta Y} V - \operatorname{cl}_{\beta X} \varphi^{-1} \operatorname{cl} V$ for some open set V of Y. Then $(\beta\varphi)p = q \in \operatorname{cl}_{\beta Y} V$ and take an open set W of βX such that $p \in W$ and $\operatorname{cl}_{\beta X} W \cap \operatorname{cl}_{\beta X} \varphi^{-1} \operatorname{cl} V = \emptyset$. Since φ is W^* -open and WZ, we have that $(\beta\varphi)\operatorname{cl}_{\beta X} W \cap \operatorname{cl} V = \emptyset$ and $\operatorname{cl} \varphi(X \cap W)$ is regular closed. Thus $\operatorname{cl} \varphi(X \cap W) \cap \operatorname{cl} V = \emptyset$, and hence $\operatorname{cl}_{\beta Y} \varphi(X \cap W) \cap \operatorname{cl}_{\beta Y} V = \emptyset$ because Y is κ -normal. On the other hand, $\operatorname{cl}_{\beta X}(X \cap W) = \operatorname{cl}_{\beta X} W \ni p$, so $q \in \operatorname{cl}_{\beta X} \varphi(X \cap W) \cap \operatorname{cl}_{\beta Y} V$, a contradiction. (ii) \Rightarrow (iii). Evident.

(iii) \Rightarrow (i). This follows from the same method used in 1.5 of [21]. Suppose that there are disjoint regular closed sets E and K such that $\operatorname{cl}_{\beta\gamma}E \cap \operatorname{cl}_{\beta\gamma}K \ni q$. Let $X = Y \oplus E$. Define $\varphi: X \to Y$ by $\varphi(x) = x$ for $x \in X$. It is evident that φ is W^* -open perfect. On the other hand, $\operatorname{cl}_{\beta\chi}\varphi^{-1}K = \operatorname{cl}_{\beta\gamma}K$ and $(\beta\varphi)^{-1}\operatorname{cl}_{\beta\gamma}K \cap \beta E \neq \emptyset$, so $(\beta\varphi)^{-1}\operatorname{cl}_{\beta\gamma}K \neq \operatorname{cl}_{\beta\chi}\varphi^{-1}K$ which shows that φ is not W_rN . EXAMPLE 3.8. In 3.7(2, ii), "WZ-ness of φ " is necessary as shown by the following. Let Y = [0, 3], $X = [0, 2) \oplus (1, 3]$ and $\varphi(x) = x$ for $x \in X$. Then φ is open and Y is metrizable. $\varphi^{-1}(1) = 1$ and $(\beta \varphi)^{-1}1 \neq cl_{\beta X} \varphi^{-1}(1)$ = 1 and hence φ is not WZ. Let $Y \ni y = 1$ and $(\nabla y) \ni [0, 1)$. Then it is obvious $\bigcap cl_{\beta X} \varphi^{-1} cl (\nabla y) = \{1\} \subset (\beta \varphi)^{-1} y$. Thus φ is not $W_r N$ by 3.6 and hence $\beta \varphi$ is not open by 3.10 below. But $\beta \varphi$ is W*-open by Theorem 4 of [7]. Let $Y \ni z = 2$ and $(\nabla z) \equiv [0, 2)$. Then it is easy to see that $\bigcap cl_{\beta X} \varphi^{-1} (\nabla y)^{-1} = \{2\}$ (cf. Remark of 3.3).

THEOREM 3.9. If $\varphi: X \to Y$ is a *-open Z-map, then it is open.

Proof. Let U be open in X and $x \in U$. Then there is a zero set Z with $x \in \text{int } Z = W \subset Z \subset U$ and $\varphi U \supset \varphi Z = \text{cl } \varphi Z \supset \text{cl } \varphi(\text{int } Z) \supset \text{int}(\text{cl } \varphi(\text{int } Z)) \supset \varphi W \ni \varphi(x)$, and hence φ is open.

THEOREM 3.10. Let $\varphi: X \to Y$. Then the following are equivalent: (1) $\beta \varphi$ is open. (2) φ is *-open and $W_r N$. (3) $\operatorname{Cl}_{\beta X} \varphi^{-1} V = (\beta \varphi)^{-1} \operatorname{cl}_{\beta Y} V$ for each open set V of Y. (4) $(\beta \varphi)^{-1} q = \bigcap \operatorname{cl}_{\beta X} \varphi^{-1} \mathbb{V}^q$ for each $q \in \beta Y$ and each \mathbb{V}^q . (5) There is \mathfrak{A}^p with $\varphi^{\#} \mathfrak{A}^p = \mathbb{V}^q$ for each $q \in \beta Y$, each \mathbb{V}^q and each $p \in (\beta \varphi)^{-1} q$.

Proof. (1) ⇒ (2). Let *U* be open in *X* and put $W = \beta X - cl_{\beta X}(X - U)$. Then $U = W \cap X$ and $cl_{\beta X} W = cl_{\beta Y} Q$. Since βq is closed, we have $(\beta q) cl_{\beta X} W = cl_{\beta Y}(\beta q)U = cl_{\beta Y} qU \supset (\beta q)W \supset qU$ and $cl qU = Y \cap cl_{\beta Y} qU \supset Y \cap (\beta q)W \supset qU$. Since βq is open, int $(cl qU) \supset qU$, i.e., qis *-open. We shall show that q is W_rN . Let *V* be open in *Y*. $T = \beta Y - cl_{\beta Y}(Y - V)$ is open and $V = Y \cap T$. Since $cl_{\beta Y} T = cl_{\beta Y} V$ and βq is *-open, $cl_{\beta X}(\beta q)^{-1}T = (\beta q)^{-1}cl_{\beta Y}T = (\beta q)^{-1}cl_{\beta Y}V$. Thus it suffices to show $cl_{\beta X}(\beta q)^{-1}T = cl_{\beta X}q^{-1}clV$. Suppose $p \in (\beta q)^{-1}T - cl_{\beta X}q^{-1}clV$. Let $q \in T$ and $(\beta q)p = q$. Take an open set *S* of βX such that $S \ni p$ and $cl_{\beta X}S \cap cl_{\beta X}q^{-1}clV = \emptyset$. Let us put $K = int_{\beta Y}((\beta q) cl_{\beta X}S)$. Then $K = int_{\beta Y}(cl_{\beta Y}(\beta q)S) \supset (\beta q)S \ni q$ and $K \cap V = \emptyset$, so $K \cap cl_{\beta Y}V = \emptyset$. This is a contradiction because $q \in cl_{\beta Y}V$. (2) ⇒ (3). From 3.3(2). (3) ⇒ (4). From 2.1(3) and the fact that $q \in cl_{\beta Y}V$ for each $V \in \mathbb{V}^q$. (4) ⇒ (5). From 2.1(5).

(5) \Rightarrow (1). We first show that $\beta \varphi$ is *-open. Let $p \in (\beta \varphi)^{-1} \operatorname{cl}_{\beta Y} W - \operatorname{cl}_{\beta X}(\beta \varphi)^{-1}W$ for some open set W of βY . Then there is an open set U of βX with $p \in \operatorname{int}_{\beta X} \operatorname{cl}_{\beta X} U$ and $\operatorname{cl}_{\beta X} U \cap \operatorname{cl}_{\beta X}(\beta \varphi)^{-1}W = \emptyset$. Let $(\beta \varphi)p = q$ and take \mathbb{V}^q with $W \in \mathbb{V}^q$. Then any \mathfrak{U}^p contains U. If $\varphi^{\#}\mathfrak{U}^p = \mathbb{V}^q$ for some \mathfrak{U}^p , then $\varphi^{-1}W \in \mathfrak{U}^p$, but $U \cap \varphi^{-1}V = \emptyset$, a contradiction. Thus $\beta \varphi$ is *-open by 3.3, so open by 3.9.

If $\varphi: X \to Y$ is open WZ, then $\beta \varphi$ is open by Theorem 4.4(1) of [12]. Let $X \subset Z \subset \beta X$ and $\zeta = (\beta \varphi) | Z$. Then $\zeta: Z \to \zeta Z$ has the Stone extension $\beta \zeta = \beta \varphi$, so $\beta \zeta$ is open, and hence ζ is *-open $W_r N$ by 3.10. Thus we have

THEOREM 3.11. Let $\varphi: X \to Y$ be open WZ. Then for any space $Z, X \subset Z \subset \beta X, \zeta: Z \to \zeta Z \subset \beta Y$ is *-open W_rN where $\zeta = (\beta \varphi) | Z$.

4. Countable intersection property.

4.1. DEFINITION. We denote by $\{F_n\}_{cl} \downarrow \emptyset$ $(\{F_n\}_{ze} \downarrow \emptyset$ or $\{F_n\}_{re} \downarrow \emptyset$ resp.) a decreasing sequence of closed sets (zero sets or regular closed sets resp.) with empty intersection. $\varphi: X \to Y$ is said to be a d (d' or d^* resp.)-map if $\bigcap cl \varphi F_n = \emptyset$ for each $\{F_n\}_{cl} \downarrow \emptyset$ ($\{F_n\}_{re} \downarrow \emptyset$ or $\{F_n\}_{ze} \downarrow \emptyset$ resp.) [5, 8, 11]. Obviously a d-map is d' and a d'-map is d^* ([8], Theorem 7). We say that φ is hyper-real if $(\beta \varphi)(\beta X - \nu X) \subset \beta Y - \nu Y$. A hyper-real map is d^* [11] (cf. the diagram of 5.4 below). Let us put $X^* = \beta X - X$.

 $F(X; 0) = \{ p \in X^*; \text{ any } \mathcal{F}^p \text{ has CIP} \}.$

 $F(X; 0, \Delta) = \{ p \in X^*; \text{ there is } \mathfrak{F}_1^p \text{ with CIP and } \mathfrak{F}_2^p \text{ without CIP} \}.$

 $F(X, \Delta) = \{ p \in X^*; \text{ any } \mathcal{F}^p \text{ does not have CIP} \}.$

 $F(X; v, \Delta) = (vX - X) \cap F(X; \Delta).$

Similarly we define U(X; 0), $U(X; 0, \Delta)$, $U(X; \Delta)$ and $U(X; v, \Delta)$ using free open ultrafilters. It is known that $\beta X - vX \subset U(X; \Delta)$, $U(X; \Delta) \subset F(X; \Delta)$ and $F(X; 0) \subset U(X; 0)$ [13]. Concerning invariance of CIP under a map, we note the following. Let $\varphi: X \to Y$.

(1) If \mathfrak{A} has CIP, then any $\mathfrak{V} \supset \varphi^{\#} \mathfrak{A}$ has CIP by 2.3(1) where " \mathfrak{A} has CIP" means " $\cap \operatorname{cl} U_n \neq \emptyset$ for $U_n \in \mathfrak{A}$ ". Thus, in general, for $\varphi: X \to Y$, we have $U(Y; \Delta) \cap (\beta \varphi)(U(X; 0) \cup U(X; 0, \Delta)) = \emptyset$ and hence $(\beta \varphi)^{-1} U(Y; \Delta) \subset U(X; \Delta)$.

(2) If \mathcal{F} has CIP and $\varphi^{\#}\mathcal{F} = \mathcal{E}$, then \mathcal{E} has CIP. This follows from $\varphi^{-1}E \in \mathcal{F}$ for $E \in \mathcal{E}$.

(3) The following (a) and (b) are not necessarily true as is shown by 4.2 below.

(a) $\varphi^{\#} \mathfrak{A} = \mathfrak{V}$ does not have CIP for \mathfrak{A} without CIP.

(b) $\varphi^{\#} \mathcal{F} = \mathcal{E}$ does not have CIP for \mathcal{F} without CIP.

Problem. Does $\mathcal{E} \supset \varphi^{\#} \mathcal{F}$ have CIP whenever \mathcal{F} has CIP?

4.2. EXAMPLE. Let $Y = \{y\}$. In (1) and (2) below, define $\varphi(x) = y$. Then φ is open, closed, *RC*-preserving, *Z*-preserving and an *N*-map where φ is *RC*(*Z*)-preserving if φE is regular closed (a zero) set whenever *E* is a regular closed set (a zero set).

TAKESI ISIWATA

(1) Let X be pseudocompact but not countably compact. Then φ is a d'-map but not a d-map. Evidently there is \mathcal{F} without CIP but $\varphi^{\#}\mathcal{F} = \{y\}$ has CIP.

(2) Let X be a non-pseudocompact space. Then φ is not a d^* -map. Evidently there is \mathfrak{A} without CIP but $\varphi^* \mathfrak{A} = \{y\}$ has CIP. It is easy to construct an N-map which is not a d^* -map by taking a suitable space X.

THEOREM 4.3. Let $\varphi: X \to Y$. The following are equivalent: (1) φ is a d-map. (2) If \mathscr{F} does not have CIP, so neither does any $\mathscr{E} \supset \varphi^{\#} \mathscr{F}$. (3) $(\beta \varphi)^{-1}(Y \cup F(Y; 0)) \subset X \cup F(X, 0)$. (4) $(\beta \varphi)^{-1}Y \subset X \cup F(X; 0)$.

Proof (1) \Rightarrow (2). From the fact that $\bigcap \operatorname{cl} \varphi F_n = \emptyset$ for $\{F_n \in \mathfrak{F}\} \downarrow \emptyset$ and $\operatorname{cl} \varphi F_n \in \mathfrak{S}$.

(2) \Rightarrow (3). There is \mathscr{F}^p without CIP for $p \in F(X; \Delta) \cup F(X; 0, \Delta)$, so every $\mathfrak{F} \supset \varphi^{\#} \mathscr{F}^p$ does not have CIP by (2) and hence $(\beta \varphi) p \notin Y \cup F(Y, 0)$, so $(\beta \varphi)^{-1} (Y \cup F(Y; 0)) \subset X \cup F(X; 0)$.

(3) \Rightarrow (4). Evident.

(4) \Rightarrow (1). Let $\{F_n\}_{cl} \downarrow \emptyset$ and $y \in \cap cl \varphi F_n$. Then $cl_{\beta X} F_n \cap (\beta \varphi)^{-1} y \neq \emptyset$ for $n \in N$. Take $p \in (\cap cl_{\beta X} F_n) \cap (\beta \varphi)^{-1} y$ and \mathfrak{F}^p with $F_n \in \mathfrak{F}^p$, $n \in N$. Then $p \in F(X; 0)$ by (4) but \mathfrak{F}^p does not have CIP, a contradiction.

REMARK. In general, the equality of 4.3(3) does not hold as shown by 5.6 below. An analogous theorem concerning a d^* - and d'-map was obtained respectively (see, 4.4(2, 3) below). A closed d-map is precisely quasi-perfect (= closed and each fiber is countably compact), so we have the following 4.4(1) using 1.4(3) and 4.3.

4.4. Let $\varphi: X \to Y$. (1) φ is quasi-perfect iff $\varphi^{\#} \mathfrak{F}$ is a closed ultrafilter for each \mathfrak{F} and $\varphi^{\#} \mathfrak{F}$ does not have CIP for each \mathfrak{F} without CIP.

(2) φ is a d*-map iff $(\beta \varphi)^{-1} Y \subset \mathfrak{A} X$ [11].

(3) φ is a d'-map iff $(\beta \varphi)^{-1} Y \subset X \cup U(X; 0)$ [5].

4.5. Let $\varphi: X \to Y$.

(1) Let φ be a d'-map and $\varphi^{\#} \mathfrak{A} = \mathbb{V}$. If \mathfrak{A} does not have CIP, then neither does \mathbb{V} .

(2) If φ is not a d'-map, there is U without CIP such that every $\mathcal{V} \supset \varphi^{\#} \mathcal{U}$ has CIP.

(3) If φ is W*-open, then φ is a d'-map iff $\varphi^{\#}$ does not have CIP for each \mathfrak{A} without CIP (cf., 4.6(2)).

380

Proof. (1) Since \mathfrak{A} does not have CIP, there is $\{U_n \in \mathfrak{A}\}\downarrow$ with $\bigcap \operatorname{cl} U_n = \varnothing$. If \mathbb{V} has CIP, $Y - \operatorname{cl} \varphi U_n \in \mathbb{V}$ for some n. $\varphi^{\#} \mathfrak{A} = \mathbb{V}$ implies $\varphi^{-1}(Y - \operatorname{cl} \varphi U_n) = X - \varphi^{-1}(\operatorname{cl} \varphi U_n) \in \mathfrak{A}$, a contradiction.

(2) Since φ is not d', there is $\{U_n\}_{\text{open}} \downarrow \emptyset$ with $y \in \bigcap \operatorname{cl} \varphi U_n$ for some $y \in Y$. This implies $(\beta \varphi)^{-1} y \cap \operatorname{cl}_{\beta X} U_n \neq \emptyset$ for $n \in N$. By 1.1(2), there is \mathfrak{A}^p without CIP and $U_n \in \mathfrak{A}^p$ where $p \in (\bigcap \operatorname{cl}_{\beta X} U_n) \cap (\beta \varphi)^{-1} y$. Obviously any $\mathfrak{V} \supset \varphi^{\#} \mathfrak{A}^p$ converges to y, i.e., \mathfrak{V} has CIP.

(3) \Rightarrow). From (1) and 2.6 \Leftarrow). From (2) and 2.6.

4.6. Definitions and some properties. Let $\varphi: X \to Y$. φ is said to be an *sd-map* if \mathscr{F} does not have CIP iff no $\mathscr{E} \supset \varphi^{\#} \mathscr{F}$ has CIP. We say that φ is an *sd'-map* if some $\mathscr{V} \supset \varphi^{\#} \mathscr{Q}$ does not have CIP for \mathscr{Q} without CIP.

(1) A quasi-perfect map is sd by 4.4 and an sd-map is d by 4.3.

(2) Any W^* -open d'-map is sd' by 4.5(3) and an sd'-map is d' by 4.5(2).

(3) If φ is *sd*, then we have that $(\beta \varphi)^{-1}(Y \cup F(Y; 0)) \subset X \cup F(X; 0)$, $(\beta \varphi)F(X; 0, \Delta) \subset F(Y; 0, \Delta)$ and $(\beta \varphi)F(X; \Delta) \subset F(Y; \Delta) \cup F(Y; 0, \Delta)$.

(4) If φ is *sd'*, then we have that $(\beta \varphi)^{-1}(Y \cup U(Y; 0)) \subset X \cup U(X; 0), (\beta \varphi)U(X; 0, \Delta) \subset U(Y; 0, \Delta)$ and $(\beta \varphi)U(X; \Delta) \subset U(Y; \Delta) \cup U(Y; 0, \Delta)$.

(5) If φ is *-open $W_r N$, then $(\beta \varphi)^{-1} U(Y; 0, \Delta) \subset (X; 0, \Delta)$, $(\beta \varphi)^{-1} U(Y; \Delta) \subset U(X, \Delta)$ and $(\beta \varphi) U(X; 0) \subset Y \cup U(Y; 0)$ by 3.10 and 4.1(1).

(6) If φ is a *-open $W_r N d'$ -map, then $(\beta \varphi)^{-1} U(Y; \Delta) = U(X; \Delta)$ by 3.10. $(\beta \varphi)^{-1} U(Y; 0, \Delta) = U(X; 0, \Delta)$ and $(\beta \varphi)^{-1} (Y \cup U(Y; 0) = X \cup U(X; 0)$.

(7) If φ is closed, then $(\beta \varphi)(F(X; 0) \cup F(X; 0, \Delta)) \cap F(Y; \Delta) = \emptyset$ by 1.4(3) and 4.1(2).

(8) If φ is an N-map, then we have $(\beta \varphi)F(X; 0) \cap (F(Y; 0, \Delta) \cup F(Y; \Delta)) = \emptyset$ by 1.1(1) and 1.4(4).

It is not necessarily true that a perfect map is sd' as shown by 4.7 below. X is said to be nd - cp if for a decreasing sequence $\{F_n\}$ of nowhere dense closed sets with $\bigcap F_n = \emptyset$, there is $\{U_n\}_{open} \downarrow$ with $F_n \subset U_n$ and $\bigcap cl U_n = \emptyset$. It is easy to see the following

(9) If X is countably paracompact, then X is nd - cp.

(10) If X is pseudocompact, then X is countably compact iff X is nd - cp.

4.7. If Y is pseudocompact but not countably compact, then there is a space X and a perfect map $\varphi: X \to Y$ which is neither sd' nor W*-open.

TAKESI ISIWATA

Proof. Let $A = \{a_n; n \in N\}$ be a discrete closed set of Y and put $X = Y \oplus A$. Define $\varphi(x) = x$. Obviously φ is perfect but not W^* -open. Let us put $U_n = \{a_m; m \ge n\} \subset A \subset X$ and take \mathfrak{A} with $U_n \in \mathfrak{A}, n \in N$. Then \mathfrak{A} does not have CIP but any $\mathfrak{V} \supset \varphi^{\#} \mathfrak{A}$ has CIP because Y is pesudocompact.

THEOREM 4.8. Let $\varphi: X \to Y$.

(1) If Y is countably compact, then X is countably compact iff φ is sd. (2) If Y is pseudocompact, then X is pseudocompact iff φ is sd'.

4.8(2) is a generalization of 4.3 of [12] and Theorem 12 of [8].

Proof. (1) \Rightarrow). Evident. \Leftarrow). If X is not countably compact, there is $\{F_n\}_{cl} \downarrow \emptyset$. Take $\mathfrak{T} \ni F_n$ for each n. Then \mathfrak{T} does not have CIP and hence there is \mathfrak{S} without CIP containing $\varphi^{\#}\mathfrak{T}$ because φ is sd. But this is a contradiction because Y is countably compact.

(2) is obtained by the same method used in the proof of (1).

THEOREM 4.9. Let $\varphi: X \to Y$ and Y be nd - cp. (1) If φ is d', then φ is sd'. (2) If φ is d, then φ is sd.

Proof. (1). Suppose that there is \mathfrak{A} without CIP such that each $\mathfrak{V} \supset \varphi^{\#}\mathfrak{A}$ has CIP. If $\varphi^{\#}\mathfrak{A} = \mathfrak{V}$, then \mathfrak{V} does not have CIP by 4.5(1), and hence we may assume that $\varphi^{\#}\mathfrak{A} \neq \mathfrak{V}$ for each $\mathfrak{V} \supset \varphi^{\#}\mathfrak{A}$. Since \mathfrak{A} does not have CIP, there is $\{U_n \in \mathfrak{A}\} \downarrow \emptyset$ with $\bigcap \operatorname{cl} U_n = \emptyset$. φ being d', $\bigcap \operatorname{cl} \varphi U_n = \emptyset$. Let $V \in \mathfrak{V} - \varphi^{\#}\mathfrak{A}$. Then there is $U \in \mathfrak{A}$ with $U \cap \varphi^{-1}V = \emptyset$ and hence we may assume $U_n \subset U$ for each n. Now $\varphi B(U_n, V) \subset \varphi U_n \cap \operatorname{cl} V$, so by 2.3(2) $K_n = \operatorname{cl} \varphi(\operatorname{int} B(U_n, V))$ is nowhere dense and $\bigcap K_n = \emptyset$. Since Y is nd - cp, there is $\{V_n\}_{\operatorname{open}} \downarrow \emptyset$ such that $K_n \subset V_n$ and $\bigcap \operatorname{cl} V_n = \emptyset$. Obviously $\varphi^{-1}V_n \supset \operatorname{int} B(U_n, V)$, so $V_n \in \mathfrak{V}$ by 2.3(1) which shows that \mathfrak{V} does not CIP, a contradiction.

(2) By 4.3, it suffices to show that if \mathcal{F} has CIP, then any $\mathcal{E} \supset \varphi^{\#} \mathcal{F}$ has CIP. Suppose that \mathcal{F} has CIP and some $\mathcal{E} \supset \varphi^{\#} \mathcal{F}$ does not have CIP. We may assume $\mathcal{E} \neq \varphi^{\#} \mathcal{F}$. There is $\{E_n \in \mathcal{E} - \varphi^{\#} \mathcal{F}\} \downarrow \emptyset$. Then there is $F \in \mathcal{F}$ with $E_1 \cap \varphi F = \emptyset$, and hence $E_n \cap \varphi F = \emptyset$ for each *n*. Since $\mathcal{E} \ni K_n = E_n \cap \operatorname{cl} \varphi F \neq \emptyset$ and K_n is nowhere dense, there is $\{V_n\}_{\operatorname{open}} \downarrow \emptyset$ such that $K_n \subset V_n$ and $\bigcap \operatorname{cl} V_n = \emptyset$. If $\operatorname{cl} V_n \notin \varphi^{\#} \mathcal{F}$, then there is $D \in \mathcal{F}$ with $\operatorname{cl} V_n \cap \varphi D = \emptyset$. V_n being open, $V_n \cap \operatorname{cl} \varphi D = \emptyset$ and hence $K_n \cap \operatorname{cl} \varphi D = \emptyset$ which contradicts $\mathcal{E} \supset \varphi^{\#} \mathcal{F}$. This shows $\operatorname{cl} V_n \subset \varphi^{\#} \mathcal{F}$ for each *n*, so *F* does not have CIP, a contradiction.

5. Spaces and mappings.

5.1. We recall the following [13].

(1) X is almost realcompact iff $U(X; 0) \cup U(X; 0, \Delta) = \emptyset$.

(2) X is c-realcompact iff $U(X; 0) = \emptyset$.

(3) X is a-realcompact iff $F(X; 0) \cup F(X; 0, \Delta) = \emptyset$.

(4) X is wa-real compact iff $F(X; 0) = \emptyset$.

(5) X is weak cb^* iff $U(X; v, \Delta) \cup U(X; 0, \Delta) = \emptyset$.

(6) X is pseudocompact iff $U(X; \Delta) \cup U(X; 0, \Delta) = \emptyset$.

(7) X is cb^* iff $F(X; v, \Delta) \cup F(X; 0, \Delta) = \emptyset$.

(8) X is countably compact iff $F(X; \Delta) \cup F(X; 0, \Delta) = \emptyset$.

Dykes and Frolik proved the following respectively.

(9) Let $\varphi: X \to Y$ be perfect. Then

(i) X is almost realcompact iff Y is almost realcompact [2].

(ii) X is a-realcompact iff Y is a-realcompact [1].

From (1) \sim (8), we have the following diagram.

 $countably \ compact \Rightarrow \ pseudocompact$ $\downarrow \qquad \downarrow$ $realcompact \Rightarrow \ cb^* \Rightarrow \ weak \ cb^*$ \downarrow $almost \ realcompact \Rightarrow \ a-realcompact$ $\downarrow \qquad \qquad \downarrow$ $c-realcompact \Rightarrow \ wa-realcompact$

5.2. Let $p \in X^*$, $Z = X \cup \{p\} \subset \beta X$ and Y the space obtained from Z by identifying p and a fixed point x_0 of X. It is easy to see that the identifying map φ is W^* -open but not *-open. In this case we have

(1) If $p \in \mathbb{V}X - X$, then φ is d^* [11]. (2) If $p \in U(X; 0)$, then φ is d' [5].

THEOREM 5.3. (1) The following are equivalent:

(i) X is wa-realcompact.

(ii) Any d-map defined on X is perfect.

(iii) Any W*-open sd-map defined on X is perfect.

(2) The following are equivalent ([5], Theorem 1 and [8], Theorem 13):

(i) X is c-realcompact.

(ii) Any d'-map defined on X is perfect.

(iii) Any W*-open d'-map defined on X is perfect.

(3) The following are equivalent ([11], Theorem 6.3):

(i) *Y* is cb*.

(ii) Any d*-map onto Y is hyper-real.

(iii) Any perfect map onto Y is hyper-real.

(4) The following are equivalent:

(i) Y is weak cb*.

(ii) Any sd'-map onto Y is hyper-real.

(iii) Any W*-open d'-map onto Y is hyper-real.

(iv) Any W*-open perfect map onto Y is hyper-real.

Proof. (1) (i) \Rightarrow (ii). From 4.3(2, 3) and *wa*-realcompactness. (ii) \Rightarrow (iii). Evident. (iii) \Rightarrow (i). If X is not *wa*-realcompact, take $p \in F(X; 0)$ in 5.2. Obviously φ is W*-open sd-map but $\varphi^{-1}(x_0) = x_0$ and $(\beta X)^{-1}x_0 \ni p$, so φ is not perfect.

(4) (i) \Rightarrow (ii). Since φ is sd', $(\beta\varphi)(\beta X - vX) \subset (\beta\varphi)U(X; \Delta) \cup U(Y; \Delta) \cup U(Y; 0, \Delta) = \beta Y - vY$ because Y is weak cb^* , i.e., φ is hyperreal. (ii) \Rightarrow (iii). From 4.6(2). (iii) \Rightarrow (iv). Evident. (iv) \Rightarrow (i). Suppose that there is \mathfrak{A}^p without CIP and $p \in vY - Y$. There is $\{U_n \in \mathfrak{A}^p\} \downarrow \emptyset$ with $\bigcap \operatorname{cl} U_n = \emptyset$. Let us put $X = Y \oplus \Sigma \oplus \operatorname{cl} U_n$ and define $\varphi(x) = x$. Obviously φ is W^* -open perfect. On the other hand, $vX = vY \oplus \Sigma \oplus v(\operatorname{cl} U_n)$ and $v\varphi$ is onto vY, but $(v\varphi)^{-1}p$ ($p \in vY$) is not compact where $v\varphi = (\beta\varphi) \mid (vX)$, and hence φ is not hyper-real.

5.4. NOTE AND PROBLEM. We define that $\varphi: X \to Y$ is a $d_1(d_2)$ -map if $(\beta \varphi)^{-1}Y \subset X \cup U(X; 0) \cup U(X; 0, \Delta) (\subset X \cup F(X; 0) \cup F(X; 0, \Delta))$. Then we have the following:

(1) X is almost realcompact iff any d_1 -map defined on X is perfect.

(2) X is a-real compact iff any d_2 -map defined on X is perfect.

"only if" part of (1) and (2) are obvious and "if" part of (1) and (2) are obtained by the method used in 5.2 taking $p \in U(X; 0, \Delta) \cup U(X; 0)$ and $p \in F(X; 0, \Delta) \cup F(X; 0)$ respectively. But these definitions of d_1 - and d_2 -map are affected.

Problem. What is the intrinsic definition of a d_1 (or d_2)-map? Concerning various maps in this paper, we have the following:

THEOREM 5.5. Let $\varphi: X \to Y$.

(1) Suppose that φ is a d-map. Then we have

(i) If X is wa-realcompact, so is Y.

(ii) If X is a-realcompact, so is Y.

384

(2) Let φ be an sd'-map. Then if X is c-realcompact, so is Y (this is a generalization of Theorem 1.3 of [7] by 4.6(2)).

(3) Let φ be a d'-map. Then if X is almost realcompact, so is Y.

(5) Let φ be hyper-real. Then if X is cb^* , so is Y ([11], Theorem 5.7(2)).

Proof. (1) (i). From 5.1(4), 5.3(1) and 4.3(3) (note that a perfect map is sd). (ii). From the diagram of 5.1, 5.3, (i) above and 5.1(9(ii)).

(2) From $U(Y; 0) = \emptyset$ by 4.6(4) and $U(X; 0) = \emptyset$, or from 4.6(4), Theorem 2 of [4] and the fact that $uX = X \cup U(X; 0)$.

(3) From the diagram of 5.1, 5.3(2) and 5.1(9(i)).

(4) Suppose that there is \mathbb{V}^q without CIP for $q \in vY - Y$. Then $(\beta \varphi)^{-1}q \subset U(X; 0)$. Take $p \in (\beta \varphi)^{-1}q$ and $\mathfrak{U}^p \supset \varphi^{-1}\mathbb{V}^q$. Since \mathfrak{U}^p has CIP, so does $\varphi^{\#}\mathfrak{U}^p = \mathbb{V}^q$, a contradiction. Thus $U(Y; v, \Delta) \cup U(Y; 0, \Delta) = \emptyset$, so Y is weak cb^* .

Since a compact space is realcompact, by 4.2(1,2), it is easily seen that almost-, *c*-, *a*- and *wa*-realcompactness, *cb**-ness and weak *cb**-ness are not inverse invariant under an open, closed, *Z*-preserving, *N*-map. Moreover, by the following Example 5.6, we have that (1) *c*-realcompactness is not inverse invariant under a *W**-open perfect map and (2) *cb**-ness and weak *cb**-ness are not invariant under a *W**-open perfect map.

5.6. EXAMPLE. K. Morita [15] constructed an *M*-space, non *c*-realcompact space X and a perfect map φ such that the perfect image Y [14] of X by φ is not an *M* space. It is easy to see that φ is *W**-open but not *-open. An *M*-space is cb^* and hence weak cb^* . On the other hand, Y is *c*-realcompact [6] but neither *a*-realcompact [22] nor weak cb^* [11] and $vY - Y = U(Y; 0, \Delta) = F(Y; 0, \Delta)$ consists of only one point (see [12, 15]). We note that $(\beta \varphi)^{-1}(Y \cup F(Y; 0)) = (\beta \varphi)^{-1}Y \neq X \cup F(X; 0)$ (cf. Remark of 4.3 and Remark 6.4 below).

THEOREM 5.7. Let $\varphi: X \to Y$.

- (1) Let φ be an sd'-map. Then if Y is weak cb^* , so is X.
- (2) Let φ be a d-map. Then if Y is cb^* , so is X ([11], Theorem 5.5).
- (3) Let φ be a d'-map and Y almost real compact. Then we have
- (i) $U(X; 0, \Delta) = \emptyset$.
- (ii) If X is c-realcompact, then X is almost realcompact.
- (iii) If φ is perfect, then X is almost realcompact (5.1(9)).
- (4) Let φ be an sd-map and Y a-real compact. Then we have (i) $F(X; 0, \Delta) = \emptyset$.
- (ii) If X is wa-realcompact, then X is a-realcompact.
- (iii) If φ is perfect, then X is a-realcompact (5.1(9)).

⁽⁴⁾ Let φ be hyper-real. Then if X is weak cb^* , so is Y.

TAKESI ISIWATA

(5) Let φ be a perfect open map. If Y is a c-realcompact, so is X ([5], Theorem 4).

(6) Let φ be a perfect N-map. Then if Y is wa-realcompact, so is X.

Proof. (1) φ being hyper-real, by 5.3(4) $\beta X - \nu X = (\beta \varphi)^{-1}(\beta Y - \nu Y)$ and $U(X; \nu, \Delta) \cup U(X; 0, \Delta) = \emptyset$ by 4.6(4) and 5.1(5), and hence X is weak cb^* .

(3) (i). By 4.1(1) and 4.4(3), $(\beta\varphi)U(X; 0, \Delta) \subset U(Y; 0, \Delta)$ and hence we have $U(X; 0, \Delta) = \emptyset$ because Y is almost realcompact. (ii). From (i) and 5.1(1,2). (iii). (New proof) Let $p \in U(X; 0)$. Then any $\Im \supset \varphi^{\#} \mathfrak{A}^p$ has CIP and converges to a point $q \in vY - Y$ by 4.1(1) and $X = (\beta\varphi)^{-1}Y$. Since Y is almost realcompact, $vY - Y = U(Y; v, \Delta)$, a contradiction. Our assertion follows from (i) and 5.1(1).

(4) (i). By 4.6(3), $(\beta\varphi)F(X; 0, \Delta) \subset F(Y; 0, \Delta)$, so $F(X; 0, \Delta) = \emptyset$ and hence X is a-realcompact because Y is a-realcompact. (ii). From (i) and 5.1(3,4). (iii). (New proof) Let $p \in F(X; 0)$. Since φ is sd, some $\mathcal{E} \supset \varphi^{\#}\mathcal{F}$ has CIP and converges to a point $q \in vY - Y$ by $X = (\beta\varphi)^{-1}Y$. Since Y is c-realcompact, $vY - Y = F(Y; v, \Delta)$, a contradiction. Our assertion follows from (i) and 5.1(3).

(5) (New proof) From 4.6(6) and $X = (\beta \varphi)^{-1} Y$.

(6) Since φ is $N(\beta\varphi)F(X; 0) \subset Y \cup F(Y; 0) = Y$ by 4.6(8), and since φ is perfect $(\beta\varphi)^{-1}Y = X$ and $F(Y; 0) = \emptyset$ because Y is wa-realcompact and hence X is wa-realcompact.

6. Weak cb^* -ness and absolute. Using preceding results we give new proofs of several theorems concerning the absolute E(X) of X which are obtained as corollaries of theorems about perfect W^* -open images of weak cb^* spaces.

THEOREM 6.1. Let φ be a perfect W*-open map of a weak cb^* space X onto Y. Then we have

(1) φ is hyper-real iff Y is weak cb^* .

(2) $(\beta \varphi) v X = Y \cup U(Y; 0) \cup U(Y; 0, \Delta).$

(3) X is realcompact iff Y is almost realcompact.

(4) $vX = (\beta \varphi)^{-1}T$ for some T with $Y \subset T \subset \beta Y$ iff $T = Y \cup U(Y; 0)$ and $U(Y; 0, \Delta) = \emptyset$.

Proof. (1) From 5.3(4) and 5.5(4).

(2) Suppose $(\beta\varphi)^{-1}q \subset \beta X - \nu X$ for some point $q \in U(Y; 0) \cup U(Y; 0, \Delta)$. Then there is \mathbb{V}^q with CIP and \mathfrak{A}^p with $\varphi^{\#}\mathfrak{A}^p = \mathbb{V}^q$ for $p \in (\beta\varphi)^{-1}q$. Since \mathfrak{A}^p does not have CIP and φ is sd', \mathbb{V}^q does not have CIP, a contradiction.

386

(3) \Rightarrow). Since φ is perfect and $X = \nu X$, we have $U(Y, 0) \cup U(Y; 0, \Delta) = \emptyset$ by (2), so Y is almost realcompact \Leftarrow). Since Y is almost realcompact $(\beta \varphi)\nu X = Y$ by (2). On the other hand, $(\beta \varphi)^{-1}Y = X$, and hence $\nu X = X$, i.e., X is realcompact.

(4) \Rightarrow). By (2), we have $(\beta\varphi)\upsilon X = T = Y \cup U(Y; 0) \cup U(Y; 0, \Delta)$. Since φ is perfect and W^* -open, φ is sd' and $(\beta\varphi)^{-1}(Y \cup U(Y; 0)) \subset X \cup U(X; 0) = \upsilon X$ by 4.6(4). We shall show $U(Y; 0, \Delta) = \emptyset$. Let $q \in U(Y; 0, \Delta)$. Then $(\beta\varphi)^{-1}q \subset U(X; 0)$ and there is \mathbb{V}^q without CIP but any $\mathbb{Q}L^p$ has CIP for each $p \in (\beta\varphi)^{-1}q$. Since φ is W^* -open, $\varphi^{\#}\mathbb{Q}L^p = \mathbb{V}^q$ for some $p \in (\beta\varphi)^{-1}q$ and some $\mathbb{Q}L^p$ and hence \mathbb{V}^q has CIP by 4.1(1), a contradiction \leftarrow). By (2), $(\beta\varphi) \cup X = Y \cup U(Y; 0) \cup U(Y; 0, \Delta) = Y \cup U(Y; 0)$. Since φ is $sd', (\beta\varphi)U(X; \Delta) \subset U(Y; \Delta) \cup U(Y; 0, \Delta) = U(Y, \Delta)$ by 4.6(4). Thus $(\beta\varphi)^{-1}T = \upsilon X$ where $T = Y \cup U(Y; 0)$.

Let E(X) be the set of all fixed open ultrafilters on X topologized by using $\{U^0; U \text{ is open in } X\}$ as a basis where $U^0 = \{\mathfrak{A}; U \in \mathfrak{A}\}$. E(X) is called the *absolute of* X and it is a Hausdorff extremally disconnected space. Define $\eta: \eta \mathfrak{A} = \bigcap \operatorname{cl} \mathfrak{A}$. Then it is known that η is a perfect irreducible map and $\beta E(X) = E(\beta X)$. Since $\eta U^0 = \operatorname{cl} U$ [18], η is W^* open by 2.6(2). We note that an extremally disconnected space is weak cb^* .

COROLLARY 6.2. (1) $vE(X) = (\beta \eta)^{-1} vX$ (= E(vX)) iff uX = vX ([7], Theorem 2.4 and [8], Theorem 4.2) iff X is weak cb^* .

(2) $(\beta \eta) v E(X) = a_1 X([22], Lemma 2.1).$

(3) E(X) is realcompact iff X is almost realcompact [1].

(4) $vE(X) = (\beta\eta)^{-1}T$ for some T with $X \subset T \subset \beta X$ iff $T = X \cup U(X; 0)$ and $U(X; 0, \Delta) = \emptyset$ ([20], p. 330 and [22], Theorem 3.3).

(5) E(X) is pseudocompact iff X is pseudocompact ([20], Proposition 2.5).

Proof. We note that E(X) is weak cb^* and η is perfect W^* -open. (1) Since $uX = \{ p \in \beta X; \text{ each } \mathfrak{A}^p \text{ has CIP} \}$ ([7], Lemma 2.5) and $uX = X \cup U(X; 0)$ by 4.4, we have that vX = uX iff X is weak cb^* . Thus (1) follows from 6.1(1). (2) From 6.1(2) and $a_1X = X \cup U(X; 0) \cup U(X; 0, \Delta)$ ([22], Theorem 2.3). (3) From 6.1(3). (4) From 6.1(4). (5) From 4.6(2) and 4.8(2).

THEOREM 6.3. Let φ be a perfect W*-open map of a non-realcompact cb^* space X onto Y. Then we have

(1) Y is cb^* iff φ is hyper-real.

(2) If Y is weak cb^* then Y is cb^* .

(3) If $vY = Y \cup \{q\}$, then Y is not weak cb^* iff Y is c-realcompact but not a-realcompact.

Proof. (1) From 5.3(3) and 5.5(5). (2) Since Y is weak cb^* , φ is hyper-real by 5.3(4), so Y is cb^* by 5.5(5) because X is cb^* .

(3) \Rightarrow). By 5.1(5) and $vY = Y \cup \{q\}$, we have $U(Y; 0) = \emptyset$, so Y is c-realcompact by 5.1(2). On the other hand, $(\beta\varphi)F(X; 0) \subset F(Y; 0) \cup F(Y; 0, \Delta) = F(Y; 0, \Delta)$ because $F(Y; 0) \subset U(Y; 0) = \emptyset$. Thus Y is not a-realcompact \Leftarrow). From realcompactness = (weak cb^* -ness) + (c-realcompactness).

6.4. REMARK. The space X in Example 5.6 is not weak cb^* [11] and Y is a perfect W^* -open image of an M-space (we note that an M-space is cb^*). Thus Y is c-realcompact but not a-realcompact by 6.5(3). On the other hand, this assertion follows also from the following Corollary 6.7 since $\varphi: X \to Y$ in 5.6 is irreducible [5].

COROLLARY 6.5. Let φ be a perfect irreducible map of a non-realcompact cb* space X onto Y with $vY = Y \cup \{q\}$. Then Y is not weak cb* iff Y is c-realcompact but not a-realcompact.

Proof. By Proposition 1.9 of [19], X and Y are co-absolute, so E(X) and E(Y) are homeomorphic. Since X is cb^* , E(X) is cb^* by 5.6(2), so E(Y) is also. Since the canonical map: $E(Y) \rightarrow Y$ is perfect and W^* -open, we have our assertion by 6.3(3).

THEOREM 6.6. (1) If V is an open set of Y with pseudocompact closure, then any $\mathbb{V}^q \ni V$ has CIP.

(2) Let $\varphi: X \to Y$ be W*-open and d'. Then $S = \beta X - (\beta \varphi)^{-1} vY$ is dense in $\beta X - vX$ and $\beta Y - (\beta \varphi) \operatorname{cl}_{\beta X} S \subset Y \cup U(Y; 0)$ (this is a generalization of Theorem 2.8 of [20]).

(3) Let vY be locally compact. Then we have

- (i) *Y* is weak cb* [4].
- (ii) If $\varphi: X \to Y$ is sd', then φ is hyper-real.
- (iii) E(vY) = vE(Y) ([**20**], *Proposition* 2.10).

Proof. (1) Suppose that there is $\{V_n \in \mathcal{V}^q\} \downarrow$ with $\bigcap \operatorname{cl} V_n = \emptyset$. Then we have $\{\operatorname{cl}(V \cap V_n)\} \emptyset$ which contradicts the pseudocompactness of $\operatorname{cl} V$.

(2) Suppose $p \in (\beta X - \nu X) - cl_{\beta X}S$. Then any \mathfrak{A}^p does not have CIP, so $\varphi^{\#}\mathfrak{A}^p = \mathfrak{V}^q$ for some \mathfrak{V}^q , $q \in \nu Y - Y$ and hence \mathfrak{V}^q does not have CIP by 4.5(1). There is $U \in \mathfrak{A}^p$ and an open set W of βX such that $W \cap X = U$ and $cl_{\beta X}W \cap cl_{\beta X}S = \emptyset$. By 2.3(3), int $(cl \varphi U) \in \mathfrak{V}^q$. Since $(\beta Y - \nu Y) \cap cl_{\beta Y}(\beta \varphi)W = \emptyset$ and $cl_{\beta Y}(int(cl \varphi U))$ is compact and contained in νY , $cl \varphi U$ is a regular closed by 2.6 and pseudocompact [4]. Thus \mathfrak{V}^q has CIP by (1), a contradiction. Let us put $R = \beta Y - (\beta \varphi) cl_{\beta X}S$. Ris locally compact and $X \cap R \in \mathfrak{V}^q$ for any point $q \in R$ and any \mathfrak{V}^q . Thus \mathcal{V}^q has a member whose closure is pseudocompact, so has CIP by (1) and hence $R \subset Y \cup U(Y; 0)$.

(3) (i) From (1). (ii). From (i) and 5.3(4). (iii). From (i) and 6.2(1).

References

1. N. Dykes, Generalizations of realcompact spaces, Pacific J. Math., 33 (1970), 571-581.

2. Z. Frolik, A generalization of realcompact spaces, Czech. Math. J., 13 (1963), 127-138.

3. L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, N.J., 1960.

4. A. Hager and D. Johnson, A note on certain subalgebras of C(X), Canad. J. Math., 20 (1968), 389-391.

5. T. Hanaoka, Note on c-realcompact spaces and mappings, Memoirs of the Osaka Kyoiku Univ., Ser. III, 26 (1977), 55-58.

6. K. Hardy, Notes on two generalizations of almost realcompact spaces, Math. Centrum, ZW, 57/75 (1975).

7. K. Hardy and R. G. Woods, On c-realcompact spaces and locally bounded normal functions, Pacific J. Math., 43 (1972), 647–656.

8. Y. Ikeda and M. Kitano, Notes on RC-preserving mappings, Bull. Tokyo Gakugei Univ., Ser. IV, 29 (1977), 53-60.

9. Y. Ikeda, Mappings and c-realcompact spaces, ibid., 28 (1976), 12-16.

10. ____, RC-mappings and almost normal spaces, ibid., 29 (1977), 19-52.

11. T. Isiwata, d-, d*-maps and cb* spaces, ibid., 31 (1979), 13-18.

12. ____, Mappings and spaces, Pacific J. Math., 20 (1967), 455-480.

13. ____, Closed ultrafiltes and realcompactness, ibid., 92 (1981), 68-78.

14. J. F. Mack and D. G. Johnson, The Dedekind completion of C(X), ibid., 20 (1967), 231-243.

15. K. Morita, Some properties of M-spaces, Proc. Japan Acad., 43 (1967), 869-872.

16. E. V. Schepin, Real functions and near-normal spaces, Siberian Math. J., 13 (1972), 870-830.

17. M. K. Singal and S. P. Arya, Almost normal and almost completely regular spaces, Glasnik Math., 5 (1970), 141-152.

18. D. P. Strauss, Extremally disconnected spaces, Proc. Amer. Math. Soc., 18 (1967), 305-309.

19. R. G. Woods, Co-absolutes of Remainder of Stone-Čech compactifications, Pacific J. Math., 37 (1971), 545-560.

20. _____, Ideals of pseudocompact regular closed sets and absolute of Hewitt realcompactifications, General Topology and its Appl., 2 (1972), 315-331.

21. ____, Maps that characterize normality properties and pseudocompactness, J. London Math. Soc., (2) 7 (1973), 454-461.

22. ____, A Tychonoff almost realcompactification, Proc. Amer. Math. Soc., 45 (1974), 200–208.

Received April 21, 1981 and in revised form August 5, 1981.

Tokyo Gakugei University (184) 4-4-1 Nukuikita Machi Koganeishi, Tokyo, Japan