SURJECTIVE EXTENSION OF THE REDUCTION OPERATOR

Moses Glasner and Mitsuru Nakai

Abstract

In this paper it is shown that there exists a Riemann surface R and a nonnegative 2 -form P on R such that the space of energy finite solutions of $d * d u=u P$ on R is properly contained in the space of Dirichlet finite solutions yet the subspaces of bounded functions in these two spaces coincide.

Consider a nonnegative locally Hölder continuous 2 -form P on a hyperbolic Riemann surface R. Let $P X(R)$ denote the space of solutions of $d * d u=u P$ on R satisfying a certain boundedness property X, e.g. D (finite Dirichlet integral $\int_{R} d u \wedge * d u$), E (finite energy integral $\int_{R} d u \wedge$ $* d u+u^{2} P$), B (finite supremum norm) or the combinations $B D$ and $B E$. The reduction operator T_{X} is defined to be the linear injection of the space $P X(R)$ into the space $H X(R)$ such that for each $u \in P X(R)$ there is a potential p_{u} on R with $\left|u-T_{X} u\right| \leq p_{u}$. The unique existence of T_{X} for the cases $X=B, D, E$ was established in [5] together with the representations

$$
T_{X} u(z)=u(z)+\frac{1}{2 \pi} \int_{R} G_{R}(z, \zeta) u(\zeta) P(\zeta)
$$

where $G_{R}(\cdot, \zeta)$ is the Green's function for T with pole at ζ.
One of the central questions concerning reduction operators is whether

$$
\begin{equation*}
T_{B X} \text { is surjective implies that } T_{X} \text { is surjective, } \tag{1}
\end{equation*}
$$

$X=D, E$. Since $\operatorname{PBX}(R)$ is dense in $P X(R)$ in the same fashion as $H B D(R)$ is dense in $H D(R)$ (cf. [1], [4]), it is natural to conjecture that the implication (1) holds. Surprisingly, in [12] and [7] it was shown that (1) is false for $X=D, E$. Even the stronger conditions $\int_{R} P<+\infty$, $\int_{R \times R} G_{R}(z, \zeta) P(z) P(\zeta)<+\infty$ do not imply the surjectiveness of T_{E} and T_{D} respectively as was shown in [8], [9], [10].

In this connection we raise the question whether the fact that (1) does not hold for $X=E$ by itself implies that (1) does not hold for $X=D$. This is closely related to the following: Is it true that $P B D(R)=P B E(R)$ implies that $P D(R)=P E(R)$? We shall show here that the answer to the latter question is no even under the stronger assumption that $\operatorname{PBD}(R)=$ $\operatorname{PBE}(R) \cong H B D(R)$ which is a consequence of the surjectiveness of $T_{B E}$. Therefore the former question will also be settled in the negative.

1. We freely use the machinery of the Royden ideal boundary theory and the equation $d * d u=u P$, as well as some of the techniques introduced in [2]. Let $W \subset R$ be an open set with ∂W consisting of analytic curves. The extremization operator $\mu_{x}^{P}, X=D, E, B D, B E$, is the linear injection of the relative class $P X(W ; \partial W)$ into $P X(R)$ characterized by the property that for each $u \in P X(W ; \partial W)$ there is a potential p_{u} on R with $\left|u-\mu_{X}^{P} u\right| \leq p_{u}$. An alternate characterization of μ_{X}^{P} is the condition that $u-\mu_{X}^{P} u \mid \Delta=0$ for each $u \in P X(W ; \partial W)$. We also consider the reduction operator $T_{X, W}: P X(W) \cap \tilde{M}(R) \rightarrow H D(W)$, which can be characterized by the condition $u-T_{X, W} u \mid \partial W \cup b W=0$, where $b W=$ $(\bar{W} \cap \Delta) \backslash \bar{\partial} W$. In particular, $T_{X, W}: P X(W ; \partial W) \rightarrow H D(W ; \partial W)$ is determined by $u-T_{X, W} u \mid b W=0$.

In [2] we completely characterized the functions in $H D(R)$ that are in the image of μ_{D}. In view of the following result, which we will make essential use of here, the corresponding problem for $P X(R)$ is also settled.

Theorem. Let u be in $P X(R)$ and set $h=T_{X} u$. Then $u \in$ $\mu_{X}^{P}(P X(W ; \partial W))$ if and only if $h \in \mu_{D}(H D(W ; \partial W)), X=D$ or E.

The necessity is simple. Let $s \in P X(W ; \partial W)$ such that $\mu_{X}^{P} s=u$. Define $v=T_{X, W} s$. Since $v|\Delta=s| \Delta=u|\Delta=h| \Delta$, we conclude that $h=\mu_{D} v$. Conversely, assume that $h=\mu_{D} v, v \in H D(W ; \partial W)$. It suffices to establish the sufficiency in case $v \geq 0$. We begin by showing that the assertion holds for $X=D$. For each positive integer k, set $\psi_{k}=(h \cap k)$ $\cup k^{-1}$ and $v_{k}=\Pi_{\overline{R W W}}\left(\psi_{k}-k^{-1}\right)$, the harmonic projection of $\psi_{k}-k^{-1}$ on W. The sequence $\left\{v_{k}\right\}$ is easily seen to have the following properties (cf. [2]): $v_{k} \in H B D(W ; \partial W), v_{k} \leq v_{k+1} \leq v, v=C D-\lim v_{k}, \operatorname{Supp}\left(v_{k} \mid \Delta\right) \subset$ $\{p \in \Delta \mid v(p)>0\}, \lim \left(v_{k} \mid \Delta\right)=v \mid \Delta$ and

$$
\begin{equation*}
D_{W}\left(v_{k}\right) \leq D_{W}(v) . \tag{3}
\end{equation*}
$$

In view of $v|\Delta=h| \Delta=u \mid \Delta$ and $u \in P D(R)$ we have that $v \mid \Delta \backslash \Delta_{P}=0$. Thus $\operatorname{Supp}\left(v_{k} \mid \Delta\right) \subset b W \cap \Delta_{P}$ and consequently there is a function $s_{k} \in \operatorname{PBD}(W ; \partial W)$ such that $s_{k}\left|\Delta=v_{k}\right| \Delta$. By the maximum principle, $s_{k} \leq s_{k+1} \leq v_{k+1} \leq v$ on R and then by the Harnack principle $s=C$-lim s_{k} exists on W. Since $v \mid R \backslash W=0$, we actually have $s=C-\lim s_{k}$ on R with $s \mid R \backslash W=0$, in particular, $s \in P(W ; \partial W)$.

We show that in fact $s \in P D(W ; \partial W)$. In view of the identity $D_{W}(u)=D_{W}\left(T_{D, W} u\right)+\langle u, u\rangle_{W}^{P}$ (cf. [5]), we have $\langle u, u\rangle_{W}^{P}<+\infty$. Comparing boundary values shows that $s_{k} \leq u$ on W. This together with (3) gives the following bound on $D_{W}\left(s_{k}\right)$:

$$
D_{W}\left(s_{k}\right)=D_{W}\left(v_{k}\right)+\left\langle s_{k}, s_{k}\right\rangle_{W}^{P} \leq D_{W}(v)+\langle u, u\rangle_{W}^{P}<+\infty .
$$

By Fatou's lemma we obtain $D_{W}(s)<+\infty$.

In view of $s \leq u$, we have $s|\Delta \leq u| \Delta$. On the other hand,

$$
s\left|\Delta \geq \lim \left(s_{k} \mid \Delta\right)=\lim \left(v_{k} \mid \Delta\right)=v\right| \Delta=u \mid \Delta
$$

We conclude that $\mu_{D}^{P} s=u$, establishing the sufficiency in case $X=D$. If in addition $u \in P E(R)$, then $s \leq u$ gives $\int_{W} s^{2} P \leq \int_{W} u^{2} P<+\infty$, i.e. $s \in P E(W ; \partial W)$, which completes the proof.
2. Let T be a hyperbolic Riemann surface such that $H B D(R)$ consists only of the constant functions. Examples of such surfaces are the Tôki surface and the Tôki covering surfaces (cf. [11]). The harmonic boundary of T consists of a single point which we denote by p^{*}. Fix $q_{0} \in T$ and consider the polar coordinate differentials ($d r, d \theta$) on T defined by

$$
\frac{d r(z)}{r(z)}=-d G_{T}\left(z, q_{0}\right), d \theta(z)=-* d G_{T}\left(z, q_{0}\right)
$$

Fix α such that \bar{U}_{α} is homeomorphic to a closed disk, where $U_{\alpha}=$ $\left\{p \in T \mid r(p)<e^{-\alpha}\right\}$. Also fix $\beta \leq \alpha / 2$. For each $\lambda>0$ define a rotation free 2-form $P_{\lambda}=\varphi_{\lambda}(r) r d r \wedge d \theta$, where φ_{λ} is the nonnegative Hölder continuous function on $[0,1)$ determined by the following conditions:

$$
\varphi_{\lambda}(t)= \begin{cases}(1-t)^{-\lambda}, & \text { if } e^{-\beta} \leq t<1 \\ \text { linear, } & \text { if } e^{-2 \beta} \leq t<e^{-\beta} \\ 0, & \text { if } 0 \leq t<e^{-2 \beta}\end{cases}
$$

According to the main results of [6] we have

$$
\begin{aligned}
& P_{\lambda} B D(T)=\{0\} \text { if and only if } \lambda \in[3 / 2,+\infty) \\
& P_{\lambda} B E(T)=\{0\} \text { if and only if } \lambda \in[1,+\infty)
\end{aligned}
$$

By our choice of T here it follows that $\operatorname{dim} P_{\lambda} X(T)=\operatorname{dim} P_{\lambda} B X(T) \leq 1$ for $X=D, E$. Furthermore, it can be seen from [6] that

$$
\begin{gather*}
\int_{T} G_{T}\left(q_{0}, \cdot\right) P_{\lambda}<+\infty, \text { if } \lambda<2 \tag{4}\\
\langle 1,1\rangle_{T}^{P_{\lambda}}<+\infty, \text { if } \lambda<\frac{3}{2} \tag{5}\\
\int_{T} P_{\lambda}<+\infty, \text { if } \lambda<1
\end{gather*}
$$

Set $W_{\alpha}=T \backslash \bar{U}_{\alpha}$. Then $P_{\lambda} X\left(W_{\alpha} ; \partial W_{\alpha}\right)=P_{\lambda} B X\left(W_{\alpha} ; \partial W_{\alpha}\right)$ is isometric to $P_{\lambda} X(T)=P_{\lambda} B X(T), X=D, E$. So for each $\lambda \in(0,1]$ we may choose $w_{\lambda} \in P_{\lambda} D\left(W_{\alpha} ; \partial W_{\alpha}\right)$ with $w_{\lambda}\left(p^{*}\right)=1$. Then w_{λ} spans $P_{\lambda} D\left(W_{\alpha} ; \partial W_{\alpha}\right)$. For
$\lambda \in(0,1), w_{\lambda} \in P_{\lambda} E\left(W_{\alpha} ; \partial W_{\alpha}\right)$ whereas $\int_{W_{\alpha}} w_{1}^{2} P_{1}=+\infty$. Define

$$
\Phi(\lambda)=E_{T}^{P_{\lambda}}\left(w_{\lambda}\right)
$$

Lemma. Φ is a continuous function on $(0,1)$ and $\liminf _{\lambda \uparrow 1} \Phi(\lambda)=+\infty$.
Fix $\lambda_{0} \in(0,1)$. We first show that Φ is continuous from the right at λ_{0}. Let $\lambda_{0} \leq \lambda<\nu<1$. Since $P_{\lambda} \leq P_{\nu}$, we see that w_{λ} is a supersolution with respect to $d * d u=u P_{\nu}$ and thus $w_{\nu} \leq w_{\lambda} \leq w_{\lambda_{0}}<1$. The function $\hat{w}=\lim _{\lambda \downarrow \lambda_{0}} w_{\lambda}$ exists and $\hat{w} \leq w_{\lambda_{0}}$ on T. The Harnack inequality applied to (4) implies $\int_{T} G_{T}(\zeta, \cdot) P_{1}<+\infty$, for any $\zeta \in W_{\alpha}$ and hence $\int_{W_{\alpha}} G_{W_{\alpha}}(\zeta, \cdot) P_{1}<+\infty$. Set

$$
\tau^{P_{\lambda}} \varphi(\zeta)=\frac{1}{2 \pi} \int_{W_{\alpha}} G_{W_{\alpha}}(\zeta, z) \varphi(z) P_{\lambda}(z)
$$

for a suitable function φ on W_{α}. Since $w_{\lambda} P_{\lambda}<P_{1}$ on W_{α}, the Lebesgue dominated convergence theorem gives $\lim _{\lambda \downarrow \lambda_{0}} \tau^{P_{\lambda}} w_{\lambda}=\tau^{P_{\lambda_{0}}} \hat{w}$. Note that for any $\lambda, T_{D, W_{\alpha}} w_{\lambda}$ is the same function $v \in \operatorname{HBD}\left(W_{\alpha} ; \partial W_{\alpha}\right)$. Therefore,

$$
\begin{aligned}
v & =w_{\lambda_{0}}+\tau^{P_{\lambda_{0}}} w_{\lambda_{0}} \geq \hat{w}+\tau^{P_{\lambda_{0}}} \hat{w} \\
& =\lim _{\lambda \uparrow \lambda_{0}}\left(w_{\lambda}+\tau^{P_{\lambda}} w_{\lambda}\right)=v
\end{aligned}
$$

on W_{α}. This implies that $w_{\lambda_{0}}=\hat{w}$ on W_{α} and consequently on T. By Dini's theorem we arrive at $w_{\lambda_{0}}=B-\lim _{\lambda \uparrow \lambda_{0}} w_{\lambda}$ on T.

We continue with $\lambda_{0} \leq \lambda<\nu<1$. Note that the function $w_{\lambda}-w_{\nu}$ is P_{λ} energy finite. Indeed, $w_{\lambda}-w_{\nu}$ is clearly Dirichlet finite and the inequality $0 \leq w_{\lambda}-w_{\nu} \leq w_{\lambda}$ gives $\int_{T}\left(w_{\lambda}-w_{\nu}\right)^{2} P_{\lambda} \leq \int_{T} w_{\lambda}^{2} P_{\lambda}<+\infty$. Since $w_{\lambda}-w_{\nu}$ vanishes at p^{*} we may choose a sequence $\left\{f_{n}\right\} \subset M_{0}(T)$ such that $w_{\lambda}-w_{\nu}=B E^{P_{\lambda}-\lim } f_{n}$. Moreover, the sequence $\left\{f_{n}\right\}$ may be chosen with $f_{n} \mid U_{\alpha}=0$ since $w_{\lambda}-w_{\nu}$ has this property. Thus

$$
E_{T}^{P_{\lambda}}\left(w_{\lambda}-w_{\nu}, w_{\lambda}\right)=\lim _{n} E_{W_{\alpha}}^{P_{\lambda}}\left(f_{n}, w_{\lambda}\right)=0
$$

and consequently

$$
\begin{aligned}
0 & \leq D_{T}\left(w_{\nu}-w_{\lambda}\right) \leq E_{T}^{P_{\lambda}}\left(w_{\nu}-w_{\lambda}\right) \\
& =E_{T}^{P_{\lambda}}\left(w_{\nu}\right)-E_{T}^{P_{\lambda}}\left(w_{\lambda}\right) \leq \Phi(\nu)-\phi(\lambda)
\end{aligned}
$$

This shows that $\lim _{\lambda \downarrow \lambda_{0}} \Phi(\lambda)$ exists which in turn implies that $\left\{w_{\lambda}\right\}$ is D-Cauchy. By Kawamura's lemma we arrive at $w_{\lambda_{0}}=B D-\lim _{\lambda \downarrow \lambda_{0}} w_{\lambda}$, and in particular, $\lim _{\lambda \downarrow \lambda_{0}} D_{T}\left(w_{\lambda}\right)=D_{T}\left(w_{\lambda_{0}}\right)$. By (6), $\int_{T} P_{\nu}<+\infty$ and we apply the Lebesgue dominated convergence theorem to obtain $\lim _{\lambda \downarrow \lambda_{0}} \int_{T} w_{\lambda}^{2} P_{\lambda}=\int_{T} w_{\lambda_{0}}^{2} P_{\lambda_{0}}$. This completes the proof of $\lim _{\lambda \downarrow \lambda_{0}} \Phi(\lambda)=$ $\Phi\left(\lambda_{0}\right)$.

We now consider $\lambda_{0} \in(0,1]$ and show that $w_{\lambda_{0}}=B D-\lim _{\lambda \uparrow \lambda_{0}} w_{\lambda}$. Let $0<\nu<\lambda \leq \lambda_{0}$ and note that $w_{\lambda_{0}} \leq w_{\lambda}<w_{\nu}<1$. Thus $\lim _{\lambda \uparrow \lambda_{0}} w_{\lambda}$ exists and by an argument analogous to the one above we see that actually $w_{\lambda_{0}}=B-\lim _{\lambda \uparrow \lambda_{0}} w_{\lambda}$. Since $w_{\nu}-w_{\lambda}$ vanishes at p^{*} we can find a sequence $\left\{f_{n}\right\} \subset M_{0}(T)$ such that $w_{\nu}-w_{\lambda}=B D-\lim f_{n}$. We choose $\left\{f_{n}\right\}$ with the additional properties $f_{n} \geq 0, f_{n} \mid U_{\alpha}=0$. Thus

$$
\begin{aligned}
D_{T}\left(w_{\nu}-w_{\lambda}, w_{\nu}\right) & =\lim _{n} D_{W_{\alpha}}\left(f_{n}, w_{\nu}\right) \\
& =-\lim _{n} \int_{W_{\alpha}} f_{n} d * d w_{\nu} \leq 0
\end{aligned}
$$

which implies that

$$
0 \leq D_{T}\left(w_{\lambda}-w_{\nu}\right) \leq D_{T}\left(w_{\lambda}\right)-D_{T}\left(w_{\nu}\right)
$$

Thus $D_{T}\left(w_{\lambda}\right)$ increases as λ increases and is bounded above by $D_{T}\left(w_{\lambda_{0}}\right)$. Therefore $\left\{w_{\lambda}\right\}$ is D-Cauchy and by Kawamura's lemma $w_{\lambda_{0}}=$ $B D-\lim _{\lambda \uparrow \lambda_{0}} w_{\lambda}$.

In case $\lambda_{0} \in(0,1)$, as before we see that $\lim _{\lambda \uparrow \lambda_{0}} \int_{T} w_{\lambda}^{2} P_{\lambda}=\int_{T} w_{\lambda_{0}}^{2} P_{\lambda_{0}}$. We arrive at $\lim _{\lambda \uparrow \lambda_{0}} \Phi(\lambda)=\Phi\left(\lambda_{0}\right)$ and the continuity of Φ at λ_{0} is established. In case $\lambda_{0}=1$ we apply Fatou's lemma to conclude that $+\infty=\int_{T} w_{1}^{2} P_{1} \leq \liminf _{\lambda \uparrow 1} \int_{T} w_{\lambda}^{2} P_{\lambda} \leq \liminf _{\lambda \uparrow 1} \Phi(\lambda)$.
3. Recall that the definition of P_{λ} involved a parameter β. We now adopt the notations $P_{\lambda}^{(\beta)}, w_{\lambda}^{(\beta)}$ to indicate the dependence of P_{λ}, w_{λ} on β. Set $a=D_{W_{\alpha}}(v)$, where v is the function in $\operatorname{HBD}\left(W_{\alpha} ; \partial W_{\alpha}\right)$ determined by $v\left(p^{*}\right)=1$.

Lemma. Let b, c be given such that $a<b<c$. It is possible to choose $\beta \in(0, \alpha / 2), \lambda \in(0,1)$ such that

$$
\begin{align*}
& D_{W_{\alpha}}\left(w_{\lambda}^{(\beta)}\right)<b \tag{7}\\
& E_{W_{\alpha}}^{P_{\alpha}^{(\beta)}}\left(w_{\lambda}^{(\beta)}\right)=c \tag{8}
\end{align*}
$$

Note that for $\beta \leq \beta^{\prime}$ we have $P_{\lambda}^{(\beta)} \leq P_{\lambda}^{\left(\beta^{\prime}\right)}$ and that $\lim _{\beta \downarrow 0} P_{\lambda}^{(\beta)}=0$. Thus in view of (4), (5) we have

$$
\lim _{\beta \downarrow 0}\langle 1,1\rangle{ }_{W_{\alpha}}^{p(\beta)}=0, \lim _{\beta \downarrow 0} \int_{W_{\alpha}} P_{1 / 2}^{(\beta)}=0
$$

We therefore may choose β such that

$$
\langle 1,1\rangle_{W_{\alpha}}^{P_{\alpha}^{(\beta)}}<\frac{b--a}{2}
$$

and

$$
\begin{equation*}
\int_{W_{\alpha}} P_{1 / 2}^{(\beta)}<\frac{b-a}{2} . \tag{9}
\end{equation*}
$$

For any $\lambda \in(0,1]$ we have $T_{D, W_{\alpha}} w_{\lambda}^{(\beta)}=v$ and hence

$$
\begin{aligned}
D_{W_{\alpha}}\left(w_{\lambda}^{(\beta)}\right) & =D_{W_{\lambda}}(v)+\left\langle w_{\lambda}^{(\beta)}, w_{\lambda}^{(\beta)}\right\rangle_{W_{\alpha}}^{P^{(\beta)}} \\
& \leq a+\langle 1,1\rangle_{W_{\alpha}}^{P^{(\beta)}}<\frac{a+b}{2}
\end{aligned}
$$

which shows that (7) holds for this β and any $\lambda \in(0,1]$. By this and (9) we obtain

$$
E_{W_{\alpha}}^{P(\beta / 2)}\left(w_{1 / 2}^{(\beta)}\right)=D_{W_{\alpha}}\left(w_{1 / 2}^{(\beta)}\right)+\int_{W_{\alpha}}\left(w_{1 / 2}^{(\beta)}\right)^{2} P_{1 / 2}^{(\beta)}<\frac{a+b}{2}+\frac{b-a}{2}=b
$$

In view of Lemma 2 we can choose $\lambda \in\left(\frac{1}{2}, 1\right)$ so that (8) also holds.
4. We use the notation v_{α} to indicate the dependence of the function $v \in H B D\left(W_{\alpha} ; \partial W_{\alpha}\right)$ with $v\left(p^{*}\right)=1$ on α. We claim that

$$
\begin{equation*}
D_{W_{\alpha}}\left(v_{\alpha}\right)=\frac{2 \pi}{\pi} \tag{10}
\end{equation*}
$$

In fact, $v_{\alpha}\left|W_{\alpha}=1-\alpha^{-1} G_{T}\left(\cdot, q_{0}\right)\right| W_{\alpha}$ and hence (10) follows from the formula $D_{W_{\alpha}}\left(G_{T}\left(\cdot, q_{0}\right)\right)=2 \pi \alpha^{-1}$ (cf. [6]). Define $\alpha_{n}=4^{n+1} \pi, n=1,2, \ldots$. Then by (10) we have

$$
\begin{equation*}
D_{W_{\alpha_{n}}}\left(v_{\alpha_{n}}\right)=\frac{1}{2 \cdot 4^{n}} \tag{11}
\end{equation*}
$$

According to Lemma 3 we may choose λ_{n}, β_{n} such that

$$
\begin{equation*}
\delta_{n}=D_{W_{\alpha_{n}}}\left(w_{\lambda_{n}}^{\left(\beta_{n}\right)}\right)<\frac{1}{4^{n}} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{n}=E_{W_{\alpha_{n}}}^{P_{\lambda_{n}}}\left(w_{\lambda_{n}}^{\left(\beta_{n}\right)}\right)=\frac{1}{2^{n}} \tag{13}
\end{equation*}
$$

for $n=1,2, \ldots$ Consider $W_{2 \alpha_{n}}=\left\{p \in T \mid r(p)>e^{-2 \alpha_{n}}\right\}$ and $v_{2 \alpha_{n}} \in$ $\operatorname{HBD}\left(W_{2 \alpha_{n}} ; \partial W_{2 \alpha_{n}}\right)$ such that $v_{2 \alpha_{n}}\left(p_{n}^{*}\right)=1$. It can easily be seen that

$$
\begin{equation*}
v_{2 \alpha_{n}} \left\lvert\, \partial W_{\alpha_{n}}=\frac{1}{2}\right. \tag{14}
\end{equation*}
$$

We prepare infinitely many copies T_{n} of $T, n=1,2, \ldots$ and view $W_{2 \alpha_{n}}$ as being a subsurface of T_{n}. Let $V=\mathbf{C} \backslash \cup_{1 \leq n<\infty}\{|z-3 n| \leq 1\}$. We weld $W_{2 \alpha_{n}}$ to V by identifying $\partial W_{2 \alpha_{n}}$ with $\{|z-3 n|=1\}, n=1,2, \ldots$ and let
R be the resulting Riemann surface. We now view $W_{\alpha_{n}}, W_{2 \alpha_{n}}$ as subsurfaces of R and denote them simply by W_{n}, U_{n}. We regard $v_{\alpha_{n}}, v_{2 \alpha_{n}}$ as being defined on W_{n}, U_{n} and denote them by v_{n}, u_{n}. Let Δ be the harmonic boundary of R. Since $\operatorname{dim} \operatorname{HBD}\left(W_{n} ; \partial W_{n}\right) \stackrel{n}{=}, \bar{W}_{n} \cap \Delta$ consists of a single point p_{n}^{*}. Set $\Delta_{1}=\left\{p_{1}^{*}, p_{2}^{*}, \ldots\right\}$. The fact that $u_{n} \left\lvert\, \partial W_{n}=\frac{1}{2}\right., n=$ $1,2, \ldots$, i.e. (14), implies $\bar{\Delta}_{1}=\Delta$ (cf. [3]). Let $W=\cup_{1 \leq n<\infty} W_{n}$ and define v on R by $v \mid W_{n}=v_{n}, n=1,2, \ldots$ and $v \mid R \backslash W=0$. Then by (11) we see that $v \in H B D(W ; \partial W)$. Since $v \mid \Delta_{1}=1$, we must have $v \mid \Delta=1$ and consequently $\bar{W} \backslash \bar{W}$ is a neighborhood of Δ in R^{*}.

Define a 2 -form P on R by

$$
P \mid W_{n}=P_{\lambda_{n}}^{\left(\beta_{n}\right)}, n=1,2, \ldots \text { and } P \mid R \backslash W=0
$$

We view $w_{\lambda_{n}}^{\left(\beta_{n}\right)}$ as a function on W_{n} and use the simplified notation w_{n} for it. In this notation (12) and (13) are written as

$$
\begin{align*}
& \delta_{n}=D_{W_{n}}\left(w_{n}\right)<\frac{1}{4^{n}} \tag{15}\\
& \varepsilon_{n}=E_{W_{n}}^{P}\left(w_{n}\right)=\frac{1}{2^{n}} \tag{16}
\end{align*}
$$

$n=1,2, \ldots$ For $X=D, E$ define measures $m^{P X}$ on Δ by setting $m^{P X}\left(\Delta \backslash \Delta_{1}\right)=0$ and

$$
m^{P D}\left(p_{n}^{*}\right)=\delta_{n}, m^{P E}\left(p_{n}^{*}\right)=\varepsilon_{n}
$$

$n=1,2, \ldots$ We denote the bounded continuous functions on Δ by $B(\Delta)$.

Lemma. For $X=D$ or E
(i) $P B X(W ; \partial W) \mid \Delta=B(\Delta)$,
(ii) $P X(W ; \partial W) \mid \Delta=L^{2}\left(\Delta, m^{P X}\right)$.

Since (i) is an easy consequence of (ii) we proceed directly to the proof of (ii). We consider only the case $X=E$ as $X=D$ is analogous. Let $s \in P E(W ; \partial W)$. Then $+\infty>E_{W}^{P}(s)=\sum_{1}^{\infty} E_{W_{n}}^{P}(s)$. Recall that $\operatorname{PE}\left(W_{n} ; \partial W_{n}\right)$ is spanned by w_{n}. Thus $s \mid W_{n}=a_{n} w_{n}$ with $a_{n}=s\left(p_{n}^{*}\right)$. We see by (16) that $E_{W_{n}}^{P}(s)=a_{n}^{2} \varepsilon_{n}$ and hence $\left\{a_{n}\right\} \in L^{2}\left(\Delta, m^{P E}\right)$. Conversely, if $\left\{a_{n}\right\} \in L^{2}\left(\Delta, m^{n P E}\right)$, then by (16) the function $s=\sum_{1}^{\infty} a_{n} w_{n}$ is in $\operatorname{PE}(W ; \partial W)$ with $s \mid \Delta=a_{n}, m^{P E}$-a.e.
5. We arrive at our main result.

Theorem. The 2-form P and the Riemann surface R have the property that

$$
P B E(R)=P B D(R) \text { and } P E(R) \neq P D(R)
$$

Since $\bar{W} \backslash \bar{W}$ is a neighborhood of Δ, we see that $\mu_{B D}$ is surjective (cf. [8]). By Theorem 1 we see that $\mu_{B D}^{P}$ and $\mu_{B E}^{P}$ are surjective as well. From Lemma 4(i) we deduce that $\operatorname{PBD}(W ; \partial W)=P B E(W ; \partial W)$. Thus the mapping $\mu_{B D}^{P} \circ\left(\mu_{B E}^{P}\right)^{-1}: \operatorname{PBE}(R) \rightarrow P B D(R)$ is a bijection and the first part of the assertion follows.

Let f be defined on Δ_{1} by $f\left(p_{n}^{*}\right)=2^{n / 2}, n=1,2, \ldots$ By (15) and (16) we see that $f \in L^{2}\left(\Delta, m^{P D}\right)$ but $f \notin L^{2}\left(\Delta, m^{P E}\right)$. According to Lemma 4(ii) there is a function $s \in P D(W ; \partial W)$ such that $s \mid \Delta=f, m^{P D}$-a.e. Set $u=\mu_{D}^{P} s \in P D(R)$ and $h=T_{D} u$. By Theorem 1 we have $h \in$ $\mu_{D}(H D(W ; \partial W))$. If u were in $\operatorname{PE}(R)$, then in view of $h=T_{E} u$ Theorem 1 would imply that $u \in \mu_{E}^{P}(P E(W ; \partial W))$. But since $u \mid \Delta \notin L^{2}\left(\Delta, m^{P E}\right)$, Lemma 4(ii) rules out the possibility of u being in $\mu_{E}^{P}(P E(W ; \partial W))$ and the assertion $u \notin P E(R)$ follows.

It is clear that there is a neighborhood V^{*} of Δ with $\int_{V^{*} \cap R} P<+\infty$ but we have not been able to determine whether $\int_{R} P<+\infty$. Thus the relation between $\int_{R} P<+\infty$ and $P E(R)=P D(R)$ remains open.

References

1. M. Glasner and R. Katz, On the behavior of solutions of $\Delta u=P u$ at the Royden boundary, J. Analyse Math., 22 (1969), 345-354.
2. M. Glasner and M. Nakai, Images of reduction operators, Archive Rat. Mech. Anal., 75 (1981), 387-406.
3. \qquad , Roles of sets of nondensity points, Israel J. Math., 36 (1980), 1-12.
4. M. Nakai, Dirichlet finite solutions of $\Delta u=P u$ on open Riemann surfaces, Kōdai Math. Sem. Rep., 23 (1971), 385-397.
5. Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 67-87.
6. \qquad , Uniform densities on hyperbolic Riemann surfaces, Nagoya Math. J., 51 (1973), 1-24.
7. \qquad , Canonical isomorphisms of energy finite solutions of $\Delta u=P u$ on open Riemann surfaces, Nagoya Math. J., 56 (1975), 79-84.
8. _, Extremizations and Dirichlet integrals on Riemann surfaces, J. Math. Soc. Japan, 28 (1976), 581-603.
9. __, Malformed subregions of Riemann surfaces, J. Math. Soc. Japan, 29 (1977), 779-782.
10. __ An example on canonical isomorphism, Nagoya Math. J., 20 (1978), 25-40.
11. M. Nakai and S. Segawa, Tôki covering surfaces and their applications, J. Math. Soc. Japan, 30 (1978), 359-373.
12. I. Singer, Boundary isomorphism between Dirichlet finite solutions of $\Delta u=P u$ and harmonic functions, Nagoya Math. J., 50 (1973), 7-20.

Received April 16, 1981. The second named author is supported by a Grant-in-Aid for Scientific Research, the Japanese Ministry of Education, Science and Culture.

Pennsylvania State University
University Park, Pa 16802
U.S.A.

AND
Nagoya Institute of Technology
Gokiso, ShÓwa, Nagoya 466
JAPAN

