SURJECTIVE EXTENSION OF THE REDUCTION OPERATOR

MOSES GLASNER AND MITSURU NAKAI

In this paper it is shown that there exists a Riemann surface R and a nonnegative 2-form P on R such that the space of energy finite solutions of d * du = uP on R is properly contained in the space of Dirichlet finite solutions yet the subspaces of bounded functions in these two spaces coincide.

Consider a nonnegative locally Hölder continuous 2-form P on a hyperbolic Riemann surface R. Let PX(R) denote the space of solutions of d * du = uP on R satisfying a certain boundedness property X, e.g. D (finite Dirichlet integral $\int_R du \wedge *du$), E (finite energy integral $\int_R du \wedge *du + u^2P$), B (finite supremum norm) or the combinations BD and BE. The reduction operator T_X is defined to be the linear injection of the space PX(R) into the space HX(R) such that for each $u \in PX(R)$ there is a potential p_u on R with $|u - T_X u| \le p_u$. The unique existence of T_X for the cases X = B, D, E was established in [5] together with the representations

$$T_X u(z) = u(z) + \frac{1}{2\pi} \int_R G_R(z,\zeta) u(\zeta) P(\zeta).$$

where $G_R(\cdot, \zeta)$ is the Green's function for T with pole at ζ .

One of the central questions concerning reduction operators is whether

(1) T_{BX} is surjective implies that T_X is surjective,

X = D, E. Since PBX(R) is dense in PX(R) in the same fashion as HBD(R) is dense in HD(R) (cf. [1], [4]), it is natural to conjecture that the implication (1) holds. Surprisingly, in [12] and [7] it was shown that (1) is false for X = D, E. Even the stronger conditions $\int_R P < +\infty$, $\int_{R \times R} G_R(z, \zeta) P(z) P(\zeta) < +\infty$ do not imply the surjectiveness of T_E and T_D respectively as was shown in [8], [9], [10].

In this connection we raise the question whether the fact that (1) does not hold for X = E by itself implies that (1) does not hold for X = D. This is closely related to the following: Is it true that PBD(R) = PBE(R)implies that PD(R) = PE(R)? We shall show here that the answer to the latter question is no even under the stronger assumption that PBD(R) = $PBE(R) \cong HBD(R)$ which is a consequence of the surjectiveness of T_{BE} . Therefore the former question will also be settled in the negative. 1. We freely use the machinery of the Royden ideal boundary theory and the equation d * du = uP, as well as some of the techniques introduced in [2]. Let $W \subset R$ be an open set with ∂W consisting of analytic curves. The extremization operator μ_x^P , X = D, E, BD, BE, is the linear injection of the relative class $PX(W; \partial W)$ into PX(R) characterized by the property that for each $u \in PX(W; \partial W)$ there is a potential p_u on Rwith $|u - \mu_x^P u| \le p_u$. An alternate characterization of μ_x^P is the condition that $u - \mu_x^P u| \Delta = 0$ for each $u \in PX(W; \partial W)$. We also consider the reduction operator $T_{X,W}$: $PX(W) \cap \tilde{M}(R) \to HD(W)$, which can be characterized by the condition $u - T_{X,W}u | \partial W \cup bW = 0$, where bW = $(\overline{W} \cap \Delta) \setminus \partial W$. In particular, $T_{X,W}$: $PX(W; \partial W) \to HD(W; \partial W)$ is determined by $u - T_{X,W}u | bW = 0$.

In [2] we completely characterized the functions in HD(R) that are in the image of μ_D . In view of the following result, which we will make essential use of here, the corresponding problem for PX(R) is also settled.

THEOREM. Let u be in PX(R) and set $h = T_X u$. Then $u \in \mu_X^P(PX(W; \partial W))$ if and only if $h \in \mu_D(HD(W; \partial W))$, X = D or E.

The necessity is simple. Let $s \in PX(W; \partial W)$ such that $\mu_X^P s = u$. Define $v = T_{X,W}s$. Since $v | \Delta = s | \Delta = u | \Delta = h | \Delta$, we conclude that $h = \mu_D v$. Conversely, assume that $h = \mu_D v$, $v \in HD(W; \partial W)$. It suffices to establish the sufficiency in case $v \ge 0$. We begin by showing that the assertion holds for X = D. For each positive integer k, set $\psi_k = (h \cap k) \cup k^{-1}$ and $v_k = \prod_{\overline{R \setminus W}} (\psi_k - k^{-1})$, the harmonic projection of $\psi_k - k^{-1}$ on W. The sequence $\{v_k\}$ is easily seen to have the following properties (cf. [2]): $v_k \in HBD(W; \partial W)$, $v_k \le v_{k+1} \le v$, v = CD-lim v_k , $Supp(v_k | \Delta) \subset \{p \in \Delta | v(p) > 0\}$, $\lim(v_k | \Delta) = v | \Delta$ and

$$(3) D_W(v_k) \le D_W(v).$$

In view of $v | \Delta = h | \Delta = u | \Delta$ and $u \in PD(R)$ we have that $v | \Delta \setminus \Delta_P = 0$. Thus $\text{Supp}(v_k | \Delta) \subset bW \cap \Delta_P$ and consequently there is a function $s_k \in PBD(W; \partial W)$ such that $s_k | \Delta = v_k | \Delta$. By the maximum principle, $s_k \leq s_{k+1} \leq v_{k+1} \leq v$ on R and then by the Harnack principle s = C-lim s_k exists on W. Since $v | R \setminus W = 0$, we actually have s = C-lim s_k on R with $s | R \setminus W = 0$, in particular, $s \in P(W; \partial W)$.

We show that in fact $s \in PD(W; \partial W)$. In view of the identity $D_W(u) = D_W(T_{D,W}u) + \langle u, u \rangle_W^P$ (cf. [5]), we have $\langle u, u \rangle_W^P < +\infty$. Comparing boundary values shows that $s_k \leq u$ on W. This together with (3) gives the following bound on $D_W(s_k)$:

$$D_W(s_k) = D_W(v_k) + \langle s_k, s_k \rangle_W^P \le D_W(v) + \langle u, u \rangle_W^P < +\infty.$$

By Fatou's lemma we obtain $D_W(s) < +\infty$.

In view of $s \le u$, we have $s \mid \Delta \le u \mid \Delta$. On the other hand,

$$s \mid \Delta \ge \lim(s_k \mid \Delta) = \lim(v_k \mid \Delta) = v \mid \Delta = u \mid \Delta.$$

We conclude that $\mu_D^P s = u$, establishing the sufficiency in case X = D. If in addition $u \in PE(R)$, then $s \le u$ gives $\int_W s^2 P \le \int_W u^2 P < +\infty$, i.e. $s \in PE(W; \partial W)$, which completes the proof.

2. Let T be a hyperbolic Riemann surface such that HBD(R) consists only of the constant functions. Examples of such surfaces are the Tôki surface and the Tôki covering surfaces (cf. [11]). The harmonic boundary of T consists of a single point which we denote by p^* . Fix $q_0 \in T$ and consider the polar coordinate differentials $(dr, d\theta)$ on T defined by

$$\frac{dr(z)}{r(z)} = -dG_T(z,q_0), d\theta(z) = -*dG_T(z,q_0).$$

Fix α such that \overline{U}_{α} is homeomorphic to a closed disk, where $U_{\alpha} = \{p \in T \mid r(p) < e^{-\alpha}\}$. Also fix $\beta \leq \alpha/2$. For each $\lambda > 0$ define a rotation free 2-form $P_{\lambda} = \varphi_{\lambda}(r)rdr \wedge d\theta$, where φ_{λ} is the nonnegative Hölder continuous function on [0, 1) determined by the following conditions:

$$\varphi_{\lambda}(t) = \begin{cases} (1-t)^{-\lambda}, & \text{if } e^{-\beta} \le t < 1, \\ \text{linear}, & \text{if } e^{-2\beta} \le t < e^{-\beta}, \\ 0, & \text{if } 0 \le t < e^{-2\beta}. \end{cases}$$

According to the main results of [6] we have

$$P_{\lambda}BD(T) = \{0\} \text{ if and only if } \lambda \in [3/2, +\infty),$$

$$P_{\lambda}BE(T) = \{0\} \text{ if and only if } \lambda \in [1, +\infty).$$

By our choice of T here it follows that dim $P_{\lambda}X(T) = \dim P_{\lambda}BX(T) \le 1$ for X = D, E. Furthermore, it can be seen from [6] that

(4)
$$\int_{T} G_{T}(q_{0},\cdot) P_{\lambda} < +\infty, \text{ if } \lambda < 2,$$

(5)
$$\langle 1,1\rangle_T^{P_\lambda} < +\infty, \text{ if } \lambda < \frac{3}{2},$$

(6)
$$\int_T P_{\lambda} < +\infty, \text{ if } \lambda < 1.$$

Set $W_{\alpha} = T \setminus \overline{U}_{\alpha}$. Then $P_{\lambda}X(W_{\alpha}; \partial W_{\alpha}) = P_{\lambda}BX(W_{\alpha}; \partial W_{\alpha})$ is isometric to $P_{\lambda}X(T) = P_{\lambda}BX(T)$, X = D, E. So for each $\lambda \in (0, 1]$ we may choose $w_{\lambda} \in P_{\lambda}D(W_{\alpha}; \partial W_{\alpha})$ with $w_{\lambda}(p^{*}) = 1$. Then w_{λ} spans $P_{\lambda}D(W_{\alpha}; \partial W_{\alpha})$. For

$$\lambda \in (0, 1), w_{\lambda} \in P_{\lambda} E(W_{\alpha}; \partial W_{\alpha}) \text{ whereas } \int_{W_{\alpha}} w_1^2 P_1 = +\infty. \text{ Define}$$

$$\Phi(\lambda) = E_T^{P_{\lambda}}(w_{\lambda}).$$

LEMMA. Φ is a continuous function on (0, 1) and $\liminf_{\lambda \uparrow 1} \Phi(\lambda) = +\infty$.

Fix $\lambda_0 \in (0, 1)$. We first show that Φ is continuous from the right at λ_0 . Let $\lambda_0 \leq \lambda < \nu < 1$. Since $P_{\lambda} \leq P_{\nu}$, we see that w_{λ} is a supersolution with respect to $d * du = uP_{\nu}$ and thus $w_{\nu} \leq w_{\lambda} \leq w_{\lambda_0} < 1$. The function $\hat{w} = \lim_{\lambda \downarrow \lambda_0} w_{\lambda}$ exists and $\hat{w} \leq w_{\lambda_0}$ on T. The Harnack inequality applied to (4) implies $\int_T G_T(\zeta, \cdot)P_1 < +\infty$, for any $\zeta \in W_{\alpha}$ and hence $\int_{W_{\alpha}} G_{W_{\alpha}}(\zeta, \cdot)P_1 < +\infty$. Set

$$\tau^{P_{\lambda}}\varphi(\zeta) = \frac{1}{2\pi} \int_{W_{\alpha}} G_{W_{\alpha}}(\zeta, z) \varphi(z) P_{\lambda}(z),$$

for a suitable function φ on W_{α} . Since $w_{\lambda}P_{\lambda} < P_{1}$ on W_{α} , the Lebesgue dominated convergence theorem gives $\lim_{\lambda \downarrow \lambda_{0}} \tau^{P_{\lambda}} w_{\lambda} = \tau^{P_{\lambda_{0}}} \hat{w}$. Note that for any λ , $T_{D,W_{\alpha}} w_{\lambda}$ is the same function $v \in HBD(W_{\alpha}; \partial W_{\alpha})$. Therefore,

$$egin{aligned} &v = w_{\lambda_0} + au^{P_{\lambda_0}} w_{\lambda_0} \geq \hat{w} + au^{P_{\lambda_0}} \hat{w} \ &= \lim_{\lambda \uparrow \lambda_0} ig(w_\lambda + au^{P_\lambda} w_\lambda ig) = v \end{aligned}$$

on W_{α} . This implies that $w_{\lambda_0} = \hat{w}$ on W_{α} and consequently on T. By Dini's theorem we arrive at $w_{\lambda_0} = B - \lim_{\lambda \uparrow \lambda_0} w_{\lambda}$ on T. We continue with $\lambda_0 \le \lambda < \nu < 1$. Note that the function $w_{\lambda} - w_{\nu}$ is

We continue with $\lambda_0 \leq \lambda < \nu < 1$. Note that the function $w_{\lambda} - w_{\nu}$ is P_{λ} energy finite. Indeed, $w_{\lambda} - w_{\nu}$ is clearly Dirichlet finite and the inequality $0 \leq w_{\lambda} - w_{\nu} \leq w_{\lambda}$ gives $\int_{T} (w_{\lambda} - w_{\nu})^2 P_{\lambda} \leq \int_{T} w_{\lambda}^2 P_{\lambda} < +\infty$. Since $w_{\lambda} - w_{\nu}$ vanishes at p^* we may choose a sequence $\{f_n\} \subset M_0(T)$ such that $w_{\lambda} - w_{\nu} = BE^{P_{\lambda}}$ -lim f_n . Moreover, the sequence $\{f_n\}$ may be chosen with $f_n \mid U_{\alpha} = 0$ since $w_{\lambda} - w_{\nu}$ has this property. Thus

$$E_T^{P_{\lambda}}(w_{\lambda}-w_{\nu},w_{\lambda})=\lim_n E_{W_{\alpha}}^{P_{\lambda}}(f_n,w_{\lambda})=0$$

and consequently

$$0 \leq D_T(w_{\nu} - w_{\lambda}) \leq E_T^{P_{\lambda}}(w_{\nu} - w_{\lambda})$$
$$= E_T^{P_{\lambda}}(w_{\nu}) - E_T^{P_{\lambda}}(w_{\lambda}) \leq \Phi(\nu) - \phi(\lambda).$$

This shows that $\lim_{\lambda \downarrow \lambda_0} \Phi(\lambda)$ exists which in turn implies that $\{w_{\lambda}\}$ is *D*-Cauchy. By Kawamura's lemma we arrive at $w_{\lambda_0} = BD$ - $\lim_{\lambda \downarrow \lambda_0} w_{\lambda}$, and in particular, $\lim_{\lambda \downarrow \lambda_0} D_T(w_{\lambda}) = D_T(w_{\lambda_0})$. By (6), $\int_T P_{\nu} < +\infty$ and we apply the Lebesgue dominated convergence theorem to obtain $\lim_{\lambda \downarrow \lambda_0} \int_T w_{\lambda}^2 P_{\lambda} = \int_T w_{\lambda_0}^2 P_{\lambda_0}$. This completes the proof of $\lim_{\lambda \downarrow \lambda_0} \Phi(\lambda) = \Phi(\lambda_0)$. We now consider $\lambda_0 \in (0, 1]$ and show that $w_{\lambda_0} = BD-\lim_{\lambda \uparrow \lambda_0} w_{\lambda}$. Let $0 < \nu < \lambda \le \lambda_0$ and note that $w_{\lambda_0} \le w_{\lambda} < w_{\nu} < 1$. Thus $\lim_{\lambda \uparrow \lambda_0} w_{\lambda}$ exists and by an argument analogous to the one above we see that actually $w_{\lambda_0} = B-\lim_{\lambda \uparrow \lambda_0} w_{\lambda}$. Since $w_{\nu} - w_{\lambda}$ vanishes at p^* we can find a sequence $\{f_n\} \subset M_0(T)$ such that $w_{\nu} - w_{\lambda} = BD-\lim_{\lambda \to 0} f_n$. We choose $\{f_n\}$ with the additional properties $f_n \ge 0$, $f_n \mid U_{\alpha} = 0$. Thus

$$D_T(w_{\nu} - w_{\lambda}, w_{\nu}) = \lim_n D_{W_{\alpha}}(f_n, w_{\nu})$$
$$= -\lim_n \int_{W_{\alpha}} f_n d * dw_{\nu} \le 0,$$

which implies that

$$0 \leq D_T(w_{\lambda} - w_{\nu}) \leq D_T(w_{\lambda}) - D_T(w_{\nu}).$$

Thus $D_T(w_{\lambda})$ increases as λ increases and is bounded above by $D_T(w_{\lambda_0})$. Therefore $\{w_{\lambda}\}$ is *D*-Cauchy and by Kawamura's lemma $w_{\lambda_0} = BD$ -lim_{ $\lambda \uparrow \lambda_0} w_{\lambda}$.

In case $\lambda_0 \in (0, 1)$, as before we see that $\lim_{\lambda \uparrow \lambda_0} \int_T w_\lambda^2 P_\lambda = \int_T w_{\lambda_0}^2 P_{\lambda_0}$. We arrive at $\lim_{\lambda \uparrow \lambda_0} \Phi(\lambda) = \Phi(\lambda_0)$ and the continuity of Φ at λ_0 is established. In case $\lambda_0 = 1$ we apply Fatou's lemma to conclude that $+\infty = \int_T w_1^2 P_1 \leq \liminf_{\lambda \uparrow 1} \int_T w_\lambda^2 P_\lambda \leq \liminf_{\lambda \uparrow 1} \Phi(\lambda)$.

3. Recall that the definition of P_{λ} involved a parameter β . We now adopt the notations $P_{\lambda}^{(\beta)}$, $w_{\lambda}^{(\beta)}$ to indicate the dependence of P_{λ} , w_{λ} on β . Set $a = D_{W_{\alpha}}(v)$, where v is the function in $HBD(W_{\alpha}; \partial W_{\alpha})$ determined by $v(p^*) = 1$.

LEMMA. Let b, c be given such that a < b < c. It is possible to choose $\beta \in (0, \alpha/2), \lambda \in (0, 1)$ such that

$$(7) D_{W_{\alpha}}(w_{\lambda}^{(\beta)}) < b,$$

(8)
$$E_{W_{\alpha}}^{P_{\lambda}^{(\beta)}}(w_{\lambda}^{(\beta)}) = c.$$

Note that for $\beta \leq \beta'$ we have $P_{\lambda}^{(\beta)} \leq P_{\lambda}^{(\beta')}$ and that $\lim_{\beta \downarrow 0} P_{\lambda}^{(\beta)} = 0$. Thus in view of (4), (5) we have

$$\lim_{\beta \downarrow 0} \langle 1, 1 \rangle_{W_{\alpha}}^{P^{(\beta)}} = 0, \lim_{\beta \downarrow 0} \int_{W_{\alpha}} P^{(\beta)}_{1/2} = 0.$$

We therefore may choose β such that

$$\langle 1,1\rangle_{W_{\alpha}}^{P_{1}^{(\beta)}} < \frac{b-a}{2}$$

and

(9)
$$\int_{W_a} P_{1/2}^{(\beta)} < \frac{b-a}{2}$$

For any $\lambda \in (0, 1]$ we have $T_{D, W_{\alpha}} w_{\lambda}^{(\beta)} = v$ and hence

$$D_{W_{\alpha}}(w_{\lambda}^{(\beta)}) = D_{W_{\lambda}}(v) + \left\langle w_{\lambda}^{(\beta)}, w_{\lambda}^{(\beta)} \right\rangle_{W_{\alpha}}^{P^{(\beta)}}$$
$$\leq a + \langle 1, 1 \rangle_{W_{\alpha}}^{P^{(\beta)}} < \frac{a+b}{2},$$

which shows that (7) holds for this β and any $\lambda \in (0, 1]$. By this and (9) we obtain

$$E_{W_{\alpha}}^{P_{\alpha}^{(\beta)}}\left(w_{1/2}^{(\beta)}\right) = D_{W_{\alpha}}\left(w_{1/2}^{(\beta)}\right) + \int_{W_{\alpha}}\left(w_{1/2}^{(\beta)}\right)^2 P_{1/2}^{(\beta)} < \frac{a+b}{2} + \frac{b-a}{2} = b.$$

In view of Lemma 2 we can choose $\lambda \in (\frac{1}{2}, 1)$ so that (8) also holds.

4. We use the notation v_{α} to indicate the dependence of the function $v \in HBD(W_{\alpha}; \partial W_{\alpha})$ with $v(p^*) = 1$ on α . We claim that

$$(10) D_{W_{\alpha}}(v_{\alpha}) = \frac{2\pi}{\pi}$$

In fact, $v_{\alpha} | W_{\alpha} = 1 - \alpha^{-1}G_T(\cdot, q_0) | W_{\alpha}$ and hence (10) follows from the formula $D_{W_{\alpha}}(G_T(\cdot, q_0)) = 2\pi\alpha^{-1}$ (cf. [6]). Define $\alpha_n = 4^{n+1}\pi$, n = 1, 2, ... Then by (10) we have

(11)
$$D_{W_{\alpha_n}}(v_{\alpha_n}) = \frac{1}{2 \cdot 4^n}.$$

According to Lemma 3 we may choose λ_n , β_n such that

(12)
$$\delta_n = D_{W_{\alpha_n}} \left(w_{\lambda_n}^{(\beta_n)} \right) < \frac{1}{4^n}$$

and

(13)
$$\varepsilon_n = E_{W_{\alpha_n}}^{P_{\lambda_n}} \left(w_{\lambda_n}^{(\beta_n)} \right) = \frac{1}{2^n},$$

for n = 1, 2, ... Consider $W_{2\alpha_n} = \{ p \in T \mid r(p) > e^{-2\alpha_n} \}$ and $v_{2\alpha_n} \in HBD(W_{2\alpha_n}; \partial W_{2\alpha_n})$ such that $v_{2\alpha_n}(p_n^*) = 1$. It can easily be seen that

(14)
$$v_{2\alpha_n} \mid \partial W_{\alpha_n} = \frac{1}{2}$$

We prepare infinitely many copies T_n of T, n = 1, 2, ... and view $W_{2\alpha_n}$ as being a subsurface of T_n . Let $V = \mathbb{C} \setminus \bigcup_{1 \le n < \infty} \{|z - 3n| \le 1\}$. We weld $W_{2\alpha_n}$ to V by identifying $\partial W_{2\alpha_n}$ with $\{|z - 3n| = 1\}, n = 1, 2, ...$ and let

366

R be the resulting Riemann surface. We now view W_{α_n} , $W_{2\alpha_n}$ as subsurfaces of *R* and denote them simply by W_n , U_n . We regard v_{α_n} , $v_{2\alpha_n}$ as being defined on W_n , U_n and denote them by v_n , u_n . Let Δ be the harmonic boundary of *R*. Since dim $HBD(W_n; \partial W_n) = 1$, $\overline{W_n} \cap \Delta$ consists of a single point p_n^* . Set $\Delta_1 = \{p_1^*, p_2^*, \ldots\}$. The fact that $u_n \mid \partial W_n = \frac{1}{2}$, n = $1, 2, \ldots$, i.e. (14), implies $\overline{\Delta}_1 = \Delta$ (cf. [3]). Let $W = \bigcup_{1 \le n < \infty} W_n$ and define v on *R* by $v \mid W_n = v_n$, $n = 1, 2, \ldots$ and $v \mid R \setminus W = 0$. Then by (11) we see that $v \in HBD(W; \partial W)$. Since $v \mid \Delta_1 = 1$, we must have $v \mid \Delta = 1$ and consequently $\overline{W} \setminus \partial \overline{W}$ is a neighborhood of Δ in R^* .

Define a 2-form P on R by

$$P \mid W_n = P_{\lambda_n}^{(\beta_n)}, n = 1, 2, \dots \text{ and } P \mid R \setminus W = 0.$$

We view $w_{\lambda_n}^{(\beta_n)}$ as a function on W_n and use the simplified notation w_n for it. In this notation (12) and (13) are written as

(15)
$$\delta_n = D_{W_n}(w_n) < \frac{1}{4^n},$$

(16)
$$\varepsilon_n = E_{W_n}^P(w_n) = \frac{1}{2^n},$$

n = 1, 2, ... For X = D, E define measures m^{PX} on Δ by setting $m^{PX}(\Delta \setminus \Delta_1) = 0$ and

$$m^{PD}(p_n^*) = \delta_n, m^{PE}(p_n^*) = \varepsilon_n,$$

 $n = 1, 2, \dots$ We denote the bounded continuous functions on Δ by $B(\Delta)$.

LEMMA. For X = D or E(i) $PBX(W; \partial W) | \Delta = B(\Delta)$, (ii) $PX(W; \partial W) | \Delta = L^2(\Delta, m^{PX})$.

Since (i) is an easy consequence of (ii) we proceed directly to the proof of (ii). We consider only the case X = E as X = D is analogous. Let $s \in PE(W; \partial W)$. Then $+\infty > E_W^P(s) = \sum_1^{\infty} E_{W_n}^P(s)$. Recall that $PE(W_n; \partial W_n)$ is spanned by w_n . Thus $s \mid W_n = a_n w_n$ with $a_n = s(p_n^*)$. We see by (16) that $E_{W_n}^P(s) = a_n^2 \varepsilon_n$ and hence $\{a_n\} \in L^2(\Delta, m^{PE})$. Conversely, if $\{a_n\} \in L^2(\Delta, m^{PE})$, then by (16) the function $s = \sum_1^{\infty} a_n w_n$ is in $PE(W; \partial W)$ with $s \mid \Delta = a_n, m^{PE}$ -a.e.

5. We arrive at our main result.

THEOREM. The 2-form P and the Riemann surface R have the property that

$$PBE(R) = PBD(R)$$
 and $PE(R) \neq PD(R)$.

Since $\overline{W} \setminus \partial \overline{W}$ is a neighborhood of Δ , we see that μ_{BD} is surjective (cf. [8]). By Theorem 1 we see that μ_{BD}^P and μ_{BE}^P are surjective as well. From Lemma 4(i) we deduce that $PBD(W; \partial W) = PBE(W; \partial W)$. Thus the mapping $\mu_{BD}^P \circ (\mu_{BE}^P)^{-1}$: $PBE(R) \rightarrow PBD(R)$ is a bijection and the first part of the assertion follows.

Let f be defined on Δ_1 by $f(p_n^*) = 2^{n/2}$, n = 1, 2, ... By (15) and (16) we see that $f \in L^2(\Delta, m^{PD})$ but $f \notin L^2(\Delta, m^{PE})$. According to Lemma 4(ii) there is a function $s \in PD(W; \partial W)$ such that $s \mid \Delta = f$, m^{PD} -a.e. Set $u = \mu_D^P s \in PD(R)$ and $h = T_D u$. By Theorem 1 we have $h \in$ $\mu_D(HD(W; \partial W))$. If u were in PE(R), then in view of $h = T_E u$ Theorem 1 would imply that $u \in \mu_E^P(PE(W; \partial W))$. But since $u \mid \Delta \notin L^2(\Delta, m^{PE})$, Lemma 4(ii) rules out the possibility of u being in $\mu_E^P(PE(W; \partial W))$ and the assertion $u \notin PE(R)$ follows.

It is clear that there is a neighborhood V^* of Δ with $\int_{V^* \cap R} P < +\infty$ but we have not been able to determine whether $\int_R P < +\infty$. Thus the relation between $\int_R P < +\infty$ and PE(R) = PD(R) remains open.

References

1. M. Glasner and R. Katz, On the behavior of solutions of $\Delta u = Pu$ at the Royden boundary, J. Analyse Math., 22 (1969), 345-354.

2. M. Glasner and M. Nakai, *Images of reduction operators*, Archive Rat. Mech. Anal., 75 (1981), 387-406.

3. ____, Roles of sets of nondensity points, Israel J. Math., 36 (1980), 1-12.

4. M. Nakai, Dirichlet finite solutions of $\Delta u = Pu$ on open Riemann surfaces, Kōdai Math. Sem. Rep., 23 (1971), 385-397.

5. ____, Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 67–87.

6. ____, Uniform densities on hyperbolic Riemann surfaces, Nagoya Math. J., 51 (1973), 1-24.

7. ____, Canonical isomorphisms of energy finite solutions of $\Delta u = Pu$ on open Riemann surfaces, Nagoya Math. J., 56 (1975), 79–84.

8. ____, Extremizations and Dirichlet integrals on Riemann surfaces, J. Math. Soc. Japan, 28 (1976), 581-603.

9. ____, Malformed subregions of Riemann surfaces, J. Math. Soc. Japan, 29 (1977), 779-782.

10. ____, An example on canonical isomorphism, Nagoya Math. J., 20 (1978), 25-40.

11. M. Nakai and S. Segawa, *Tôki covering surfaces and their applications*, J. Math. Soc. Japan, **30** (1978), 359-373.

368

12. I. Singer, Boundary isomorphism between Dirichlet finite solutions of $\Delta u = Pu$ and harmonic functions, Nagoya Math. J., 50 (1973), 7-20.

Received April 16, 1981. The second named author is supported by a Grant-in-Aid for Scientific Research, the Japanese Ministry of Education, Science and Culture.

Pennsylvania State University University Park, Pa 16802 U.S.A. and Nagoya Institute of Technology Gokiso, Shôwa, Nagoya 466 Japan