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SOME PROPERTIES OF THE
CHARACTERISTIC OF CONVEXITY

RELATING TO FIXED POINT THEORY

DAVID J. DOWNING AND BARRY TURETT

Fixed point theorems for uniformly lipschitzian mappings often
restrict the characteristic of convexity, εo(X), of the underlying Banach
space to be less than one. This condition is discussed; in particular, it is
shown that, for Banach spaces, εo(x) < 1 is equivalent to a condition
imposed by E. A. Lif schitz in arbitrary metric spaces. The stability of this
condition with respect to Banach-Mazur distance and Lebesgue-Bochner
function spaces is also considered.

Let K be a nonempty, closed, bounded, convex subset of a Banach
space X. A mapping T: K -» K is said to be uniformly fc-lipschitzian
(k >: 1) if, for each JC, y in K and each natural number n, \\ Tnx — Tny || <
k || x — y ||. Such mappings provide an intermediate class between the class
of nonexpansive mappings and the class of lipschitzian mappings with
Lipschitz constant greater than one. It is well-known (cf. [9]) that map-
pings in this latter class may fail to have fixed points even if the
underlying space is Hubert space and the Lipschitz constant is arbitrarily
near one. However, fixed point theorems for uniformly lipschitzian map-
pings have been obtained by Goebel and Kirk [7], Goebel, Kirk, and
Thele [8], and Lifschitz [11]. (See also [6].) In obtaining their results, two
formally different geometric conditions are imposed on the space in
question. In this paper, the relationship between the two geometric
conditions is explored. It is shown that, in Banach spaces, the conditions
are qualitatively, although not quantitatively, equivalent. In addition, the
stability of these conditions is discussed; in particular, we show that these
conditions lift from a Banach space X to the corresponding Lebesgue-
Bochner function space Lp(μ9 X) for 1 <p < oo and μ an arbitrary
measure.

Uniformly lipschitzian mappings were originally considered by
Goebel and Kirk [7] and then by Goebel, Kirk, and Thele [8] in a more
general semigroup setting. They discovered a relationship between the
modulus of convexity of X and fixed points for uniformly lipschitzian
mappings. Recall, for a normed linear space X, the modulus of convexity
of X is the function 8X: [0,2] -> [0,1] defined by

8x
(e) = i n f j l - I U ^ I ! ; Hxll < i, i^y < i, \\x -y\\ :> ε J.
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The characteristic of convexity of X, εo(X), is then defined to be
sup{ε E [0,2]: 8x(ε) = 0}. It is well-known that X is uniformly rotund
(respectively, uniformly non-square) if and only if εo(ΛΓ) = 0 [4, p. 145]
(respectively, εo(X) < 2 [4, p. 146]). The main idea of [7] and [8] may be
stated as follows:

THEOREM 1 (Goebel, Kirk, Thele). Let X be a Banach space with
εo(X) < 1 and let γ > 1 satisfy γ(l — 8x(l/y)) — I. If K is a nonempty,
closed, bounded, convex subset of X and T: K -> K is uniformly k-lipschitzian
for k < γ, then T has a fixed point in K.

In a subsequent development, Lifschitz [11] initiated a more topologi-
cal approach and considered uniformly lipschitzian mappings in metric
spaces. Instead of using the modulus of convexity, Lifschitz associated,
with each metric space (M, p), a constant κ(M) defined as follows:

κ(M) = sup{β > 0: 3α > 1 such that VJC, y G M and r > 0,

p(x, y) >r=*3z E M such that B(x, βr) Π B(y, ar) C B(z,r)},

where B(x, r) denotes the closed ball of radius r centered at x. It is
immediate that κ(M) > 1 for any metric space (M, p). Lifschitz proved
that if (M, p) is a bounded, complete metric space and if T: M -> M is
uniformly /c-lipschitzian for k < κ(M), then T has a fixed point in M. In
order to compare this to the Goebel-Kirk-Thele resulting in the setting of
Banach spaces, define κo(X) to be the infimum of κ(C) where C ranges
over all nonempty, closed, bounded, convex subsets of the Banach space
X. Then Lifschitz's theorem implies:

THEOREM 2 (Lifschitz). Let X be a Banach space with κo(X) > l.IfK
is a nonempty, closed, bounded, convex subset of X and T: K -* K is
uniformly k-lipschitzian for k < κo(X), then T has a fixed point in K.

Lifschitz proved that κo(%) > γ/2 where % denotes Hubert space;
Goebel, Kirk, and Thele noted that γ = V3~/2 is the solution to
γ(l — δ%(l — γ)) = 1. Thus, for Hubert spaces, Lifschitz's approach yields
a sharper result on how large the Lipschitz constant k may be taken and
still guarantee the mappings have fixed points. It should be mentioned
that J. Baillion (cf. [8]) has found an example of a fixed point-free
uniformly 7r/2-lipschitzian self-mapping defined on a closed, bounded,
convex subset of I2. Our first result states that the approach of Lifschitz
will always provide estimates on the size of k at least as good as those
found using the approach of Goebel-Kirk-Thele.
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THEOREM 3. Let X be a Banach space and assume γ > 1 satisfies
γ(l - ίΛl/γ)) = 1. Theny<κo(X).

In order to facilitate the proof of Theorem 3, we state a lemma from
[11].

LEMMA 4 {Lifschitz). Let X be a normed linear space, Then κo(X) >
sup{/? > 0: for some a > 1 and all y G X with \\y\\ > 1, there exists
t G [0,1] with 5(0, β) Π B(y9 a) C B(ty, 1)}.

Proof of Theorem 3. Let;; G Xwith || y \\ > 1 and suppose x G J3(0, γ)
Π B(y, γ). Then ||jc/γ|| < 1, ||(x - y)/y\\ < 1 and \\x/y - (x - y)/y\\
> 1/γ. Therefore, by the definition of δ^, | |1/2(JC/Y + (x " y)/y)\\ ^
I - 8x(l/y). Thus, ||x - y/2\\ < γ(l ~ δ ^ l / γ ) ) - 1; i.e., x G
B(y/2,1). By Lemma 3, κo(X) >: γ. This completes the proof of Theorem
4.

Although, in a quantitative sense, Lifschitz's result yields sharper
estimates on the size of k than does the Goebel-Kirk-Thele result, the next
theorem shows that, in the setting of Banach spaces, the results are
qualitatively equivalent.

THEOREM 5. Let X be a Banach space. Then εo(X) < 1 // and only if
κo(X)>\.

Proof. If eo(X) < 1, it is immediate that γ satisfying γ(l — 8x(\/y))
— 1 is greater than 1. So, by Theorem 4, κo( X) > y > 1.

Now assume εo(X) >: 1 and let β > 1 and a > 1. Then there exist
norm one elements x, y in X such that ||x — y II > 1/γ and ||(x + y)/2\\
> 1/γ where γ = min{α, β,2} > 1. Consider J5(0, jβ) Π B(y(x - y)9 a).
Since | |γx|| - y < β and ||γx - y(x - y)\\ = γ | | j | | = γ < α, yx G
5(0, β) Π J3(γ(x - j ) , α). Similarly -yy G 5(0, δ̂) Π B(y(x - y)9 a). But
II yx — (-γjOII = γ II x + y II > 2 a n d h e n c e there d o e s n o t exist z in X w i t h
5(0, 0) ΓΊ B(y(x - y)9 a) C B(z, 1). Since 0 and γ(jc - y) are in 4BX,
and β > 1 and a > 1 are arbitrary, K(45^) = 1; thus κo(X) - 1. This
completes the proof of Theorem 5.

The conditions compared in Theorem 5 are, in some senses, stable.
Recall that, for isomorphic Banach spaces X and Y, the Banach-Mazur
distance coefficient from X to 7, denoted d(X, 7), is defined to be the
infimum of \\U\\ lit/"1!!, the infimum being taken over all invertible
operators U from X onto Y.
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THEOREM 6. Let X be a Banach space with εo( X) < 1 and let γ > 1
satisfy γ(l — 8x(l/y)) = 1. // Y is a Banach space isomorphic to X and

Proof. Without loss of generality, let U be an isomorphism from X
onto Y such that Hi/"1 II = 1 and d(X, Y) < lit/II < γ. Choose norm-one
elements yx and j>2 *

n ^ such that \\yx — y2\\ >: | | ί/ | |/γ and define xx =
U~\yλ) and x2 = t / " 1 ^ ) . I ι i s immediate that IIJCJI < 1, IU2 | | < 1 and
llx,-x 2 l l > l / γ . Then, by the definition of δ^, ||(χ, + JC 2)/2| | <
1 -8x(\/y). Therefore

\\(yx + y2)/2\\ ^ \\u\\ \\(χx + χ2)/2\\

< 111/11(1 - M V Y ) ) <r(i - MVϊ)) = i-

This implies that δ y(l|[/| |/γ) > 1 - \\U\\(l - 8x(l/y)) > 0. Thus εo(Y)
^ llt/||/γ < 1 and the proof is complete.

Theorem 6 allows us to generalize some recent work of Bynum [2]. He
has shown that if X is uniformly rotund, then there exists β > 1 so that if
Y is a Banach space with d{X, Y) < β, closed, bounded, convex subsets
of Y have the fixed point property for nonexpansive mappings. The next
corollary follows immediately from Theorems 1 and 6.

COROLLARY 7. Let X be a Banach space with eo(X) < 1. Then there
exist constants γ > 1 and β > 1 such that if Y is a Banach space isomorphic
to X and d( X, Y) < /?, then closed, bounded, convex subsets of Y have the
fixed point property for uniformly k-lipschitzian mappings with k < γ.

Finally we show that these conditions are stable in a second sense.

THEOREM 8. // X is a Banach space with εo(X) < 1, μ an arbitrary
measure, and 1 <p < oo, then εo(Lp(μ, X)) < 1.

Theorem 8 follows immediately from Theorem 9 below. A discussion
of Lebesgue-Bochner function spaces may be found in [1] or [5]. If μ is
counting measure over some set, Lp(μ, X) is the Banach sequence space
lp(X). The next theorem demonstrates the relationship between the
characteristic of convexity of a Banach space X and the characteristic of
convexity of the corresponding Lebesgue-Bochner function space. The
proof is closely modelled on Day's proof [3] that Lp(μ, X) is uniformly
rotund if and only if X is uniformly rotund and 1 < p < oo.

THEOREM 9. Let X be a Banach space and μ a measure. Then
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Proof. Since both Xand Lp{μ) are isometric to subspaces of Lp(μ, X),
it is clear that

εo(Lp(μ, X)) > max{eo(L*(μ)), eo(X)} - max{εo(/*), eo(X)}.

It is then immediate that if p = 1, p — oo, or eo(X) — 2, the desired
equality is obtained with εo(Lp(μ, X)) = 2. Thus, for the remainder of
the proof, assume 1 <p < oo and εo(X) < 2. Since εo(lp) — 0 for 1 <p
< oo, it suffices to demonstrate that εo(Lp(μ, X)) < εo(X).

Assume further that μ is counting measure on the set of natural
numbers. Although this assumption appears quite restrictive, once the
theorem is verified for counting measure, the theorem follows quickly for
an arbitrary measure μ by defining an embedding of simple functions in
Lp(μ, X) into the space lp(X) as done by Day [3, p. 507]. Thus it suffices
to prove that εo(lp(X)) < εo(X) for Kp < oo and εo(X) < 2.

Let b = O;) and br - (x[) be elements of lp(X) and let 0 < η < 2.
First, consider the case \\b\\ = \\b'\\ = 1, ||fr - />ΊI > εo(X) + μ, and ||jcf||
— || -xr/II for all / G N. For convenience, let IUJI = βi and Hx,. — x || = %.
Then

\\b M = (Σiι*1 + *;i')1Λ«Σ[(i-«,β))A

Note that γ,. < 2^. for each i G N. Define J? = {/ G N: yi/βi >
2(εo(X) + η)/(2 + η)} and F = N \£. Then

W<ΞF

that is,

S vP

or

/ \VP ί \VP I 1 2 \p\x/p

Hence
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Thus,
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2(εo(X)+η)
2 ^ 1 1 - ^ 2 + η

VP

+1 -an

= 2 1 -

<2-U -

1 - 1-δ,
2(εo(X)+η)

2 + η

l - i - δ ,

Since 0 < η < 2 and 2(εo(J!f) + η)/(2 + η) > eo(X), if we set the right-
hand side equal to 2(1 - 80(ε0(X) + η)), then δo(εo(X) + η) > 0 for all
η > 0. Thus the first case is finished.

Now suppose ||fr|| = | |έ' | | = 1 and assume \\b + b'\\ > 2(1 - 8p(ξ))
where 8p is the modulus of convexity of lp and

- min{i,/4, iδo(εo(X) + η/2)} > 0.

Then

\/p

2(1 - Sp(ξ)) =

Since (\\xι,\\) and (IUJII) are norm-one elements in lp,

1//?

Let b" = (x't) where

ifx' =
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Note lUJI = lU ΊI for all i G N and \\V - b"\\ = (Σ | lU il - llxjl \p)ι/p

< £ < η/2. Thus,

\\b + b"\\ > \\b + b'\\ - 116' - b"\\ > 2(1 - δp(ξj) - ξ

- 4) ^ 2(l - I - I ) , rinoe

It now follows from the first case that || 6 - 6"II ^ εo( X) + η/2. Finally,

||6 - 6ΊI < 116 - b"\\ + 116" - 6ΊI < εo(X) + | + | - εo(X) + η.

Therefore, if | |6 | | = \\b'\\ = 1 and ||6 - b'\\ > εo(X) + η, then
||(6 + 6')/2|| < 1 - 8p(ξ). This impUes that 8ιP(X)(ε0(X) + η) > «,(£) >
0. Thus εo(lp(X)) < εo(X) + η. Since TJ > 0 was arbitrary, εo(lp(X)) <
εo( X) and the proof of Theorem 9 is complete.

Theorems 1 and 8 combine to yield the following fixed point theorem.

COROLLARY 10. Let X be a Banach space with εQ(X) < 1, μ a measure,
and 1 <p < oo. Then there exists a constant γ > 1 so that closed, bounded,
convex subsets of the Lebesgue-Bochner function space Lp(μ, X) have the
fixed-point property for uniformly k-lipschitzian mappings with k < γ.

Since X is uniformly rotund if and only if εo( X) — 0, Day's result
follows immediately from Theorem 9.

COROLLARY 11 (Day [3]). Let (Ω, Σ, μ) be a measure space. The
Lebesgue-Bochner function space Lp(μ, X) is uniformly rotund if and only if
1 < p < oo and X is uniformly rotund.

In a similar vein, Theorem 9 together with the characterization of
uniformly non-square spaces in terms of the characteristic of convexity
mentioned prior to Theorem 1 combine to prove the next corollary.

COROLLARY 12 (Smith-Turett [12, p. 116]). Let (Ω, Σ, μ) be a measure
space. The Lebesgue-Bochner function space Lp(μ, X) is uniformly non-
square if and only if 1 < p < oo and X is uniformly non-square.
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