NON-ARCHIMEDEAN GELFAND THEORY

JESUS M. DOMINGUEZ

In this paper we show that if X is a Banach algebra and X_0 is its Gelfand subalgebra, then the set X_0^* of the elements in X_0 with compact spectrum is a Gelfand algebra whose maximal ideal space is compact in the Gelfand topology. We also give a representation theorem for X_0^* , which we use to derive the Van der Put characterization of C-algebras.

Introduction. Throughout all this paper we denote by F a complete field with respect to a non-trivial rank one valuation. Also X will usually denote an algebra over F. All algebras will be understood to be commutative with identity. We shall use the notation of [3], but we shall identify the ground field F with a subset of the considered algebra. Also we shall put C(T), instead of F(T), to denote the algebra of all F-valued continuous functions on the topological space T.

A non-archimedean Banach algebra X is called a C-algebra if there exists a compact Hausdorff space T such that X is isometrically isomorphic to C(T). In [4] N. Shilkret introduces the Gelfand subalgebra; the concept of V*-algebra is defined in [3].

1. The subalgebras X_0 and X_0^* , and their maximal ideals. Let X be an algebra over F and let X_0 be its Gelfand subalgebra. X_0 has the following properties:

1. If $x \in X_0$, then x is invertible in X_0 if and only if it is so in X; therefore $\sigma(x) = \sigma_{X_0}(x)$.

2. If M is a maximal ideal of X, then $M \cap X_0$ is a Gelfand ideal of X_0 .

3. If F is not algebraically closed, then each maximal ideal of X_0 is of the form $M \cap X_0$, where M is a maximal ideal of X.

4. If X is a Banach algebra, then X_0 is a closed subalgebra of X.

The conditions 1, 2 and 4 are easy to check (cf. [3] or Shilkret [4]). To prove condition 3 it is enough to show that if *m* is a maximal ideal of X_0 and $x_1, \ldots, x_n \in m$ then there is a maximal ideal *M* of *X* containing all the x_i . Let $f(Z) = \lambda_0 + \lambda_1 Z + \cdots + \lambda_n Z^n$ be an irreducible polynomial with coefficients in *F*, of degree greater than one, and consider $a = \lambda_0 x_2^n + \lambda_1 x_1 x_2^{n-1} + \cdots + \lambda_n x_1^n$. Then *a* belongs to the subalgebra $F[x_1, x_2]$ generated by x_1, x_2 over *F*. Moreover the maximal ideals of *X* containing *a* are just those containing both x_1, x_2 . Arguing by induction on *n*, we find an element $c \in F[x_1, \ldots, x_n]$ such that the maximal ideals of *X* containing *c* are just those containing all the x_i . Now, $c \in m$ hence, by condition 1, there is a maximal ideal M of X containing c and, therefore, all the x_i belong to M. (A more detailed proof can be found in Gommers [1].)

REMARK. The assumption of F being a valued field is necessary only in condition 4.

DEFINITION. We define the algebra

 $X_0^* = \{x \in X_0 / \sigma(x) \text{ is precompact}\}.$

We see that X_0^* is a subalgebra of X_0 containing the identity element.

THEOREM 1. Let X be a Banach algebra. The subalgebra X_0^* has the following properties:

1. If $x \in X_0^*$, then x is invertible in X_0^* if and only if it is so in X; therefore $\sigma(x) = \sigma_{X_0^*}(x)$.

2. If M is a maximal ideal of X, then $M \cap X_0^*$ is a Gelfand ideal of X_0^* .

3. If F is not algebraically closed, then each maximal ideal of X_0^* is of the form $M \cap X_0^*$, where M is a maximal ideal of X.

4. X_0^* is a closed subalgebra of X.

Proof. The conditions 1 and 2 are easily checked. To prove 3 we just repeat the above argument replacing X_0 by X_0^* . The proof of 4 is just the following: Since X_0 is a closed subalgebra of X it is enough to show that given a sequence (x_n) in X_0^* with $x_n \to x$, then $\sigma(x)$ is precompact. To see this pick $\varepsilon > 0$. Since $x_n \to x$ there exists n_0 such that $||x - x_{n_0}|| < \varepsilon/2$. Now since $\sigma(x_{n_0})$ is precompact there exist $\mu_1, \ldots, \mu_r \in F$ such that $\sigma(x_{n_0}) \subset \bigcup_i B(\mu_i, \varepsilon/2)$. If $\lambda \in \sigma(x)$ then there is a maximal ideal M of X such that $\lambda = x(M)$. Hence $|\lambda - x_{n_0}(M)| \le ||x - x_{n_0}|| < \varepsilon/2$ and therefore $\sigma(x) \subset \bigcup_i B(\mu_i, \varepsilon)$.

REMARK. If X is a Banach algebra and F is locally compact, then $\sigma(x)$ is compact for all $x \in X_0$, and thus $X_0^* = X_0$.

EXAMPLES. Assume that the valuation of F is non-archimedean, and that T is a 0-dimensional Hausdorff space.

EXAMPLE 1. C(T) is a commutative algebra with an identity element. For all $f \in (C(T))_0$ one has that f(T) is compact, hence $(C(T))_0^* = (C(T))_0$.

EXAMPLE 2. Let BC(T) denote the algebra of all bounded continuous functions from T into F, and let PC(T) denote the subalgebra of all functions $f \in BC(T)$ for which f(T) is precompact. Then BC(T) is a

338

commutative Banach algebra with an identity element under the sup-norm, and $(BC(T))_0 = PC(T)$. Thus $(BC(T))_0^* = (BC(T))_0$.

EXAMPLE 3. Let $F\{Z\}$ denote the algebra of all formal power series, $\sum a_n Z^n$, in Z with coefficients in F for which $a_n \to 0$. Then $F\{Z\}$ is a commutative Banach algebra with an identity element under $||\sum a_n Z^n|| = \max |a_n|$.

(a) If F is algebraically closed, then $(F\{Z\})_0 = F\{Z\}$.

(b) If F is not algebraically closed, then $(F\{Z\})_0 = F$.

For all F, $(F{Z})_0^* = F$. (See [7, Th.(6.38) p. 233].)

In the sequel \mathfrak{M} will denote the set of maximal ideals M of X, \mathfrak{M}_0^* the set of maximal ideals m of X_0^* , and $(\mathfrak{M}_0^*)'$ the set of Gelfand ideals m' of X_0^* . For any $x \in X_0^*$ we consider the function $\hat{x}: (\mathfrak{M}_0^*)' \to F, m' \mapsto x(m')$ and we endow $(\mathfrak{M}_0^*)'$ with the weakest topology for which each of the functions \hat{x} is continuous.

THEOREM 2. If X is a Banach algebra, then $(\mathfrak{M}_0^*)'$ is a compact Hausdorff space. Furthermore, if the valuation of F is non-archimedean then $(\mathfrak{M}_0^*)'$ is a 0-dimensional space.

Proof. To prove the first part we just consider the map $(\mathfrak{M}_0^*)' \to \prod_{x \in X_0^*} \sigma(x), m' \mapsto (x(m'))_{x \in X_0^*}$ and we argue as in the case of complex Banach algebras. The second part is trivial.

THEOREM 3. If X is a Banach algebra, then X_0^* is a Gelfand algebra.

Proof. If F is locally compact the result follows from the Gelfand-Mazur theorem if F is algebraically closed, and from condition 3 in Theorem 1 if F is not algebraically closed. Now assume that F is not locally compact, and let m be a maximal ideal of X_0^* . If $x \in X_0^*$ let $Z(\hat{x})$ denote the set of points of $(\mathfrak{M}_0^*)'$ where \hat{x} vanishes. To see that m is a Gelfand ideal we must show that $\bigcap_{x \in m} Z(\hat{x}) \neq \emptyset$. Since $(\mathfrak{M}_0^*)'$ is compact it is enough to prove that the family $\{Z(\hat{x})/x \in m\}$ has the finite intersection property. We shall prove this in two steps:

(1) Let $x_1, x_2 \in m$ and let D_1 be the set of points in $(\mathfrak{M}_0^*)'$ where \hat{x}_1 does not vanish. If \hat{x}_2/\hat{x}_1 : $D_1 \to F$ is not surjective, then there exists $x \in m$ such that $Z(\hat{x}_1) \cap Z(\hat{x}_2) = Z(\hat{x})$.

Proof. Choose $x = x_2 - \lambda x_1$, where $\lambda \notin \text{Im } g(\hat{x}_2/\hat{x}_1)$.

(2) If $x_1, \ldots, x_n \in m$, then $\bigcap_i Z(\hat{x}_i) \neq \emptyset$.

Proof. By induction on *n*. The case n = 1 follows from the first two conditions of Theorem 1. Assume the result true for n - 1. If \hat{x}_2/\hat{x}_1 : $D_1 \to F$ is not surjective then we have just seen in (1) that there exists $x \in m$ such that $Z(\hat{x}_1) \cap Z(\hat{x}_2) = Z(\hat{x})$. The result follows from the induction hypothesis. Now assume that \hat{x}_2/\hat{x}_1 is surjective and $\bigcap_i Z(\hat{x}_i) = \emptyset$. Then the set $K = \{m' \in (\mathfrak{M}_0^*)' | \hat{x}_j(m') | \leq | \hat{x}_1(m') |$ for $2 \leq j \leq n\}$ is compact and it is contained in D_1 . Since F is not locally compact, to get a contradiction it is enough to show that $\hat{x}_2/\hat{x}_1(K) = \{\lambda \in F/|\lambda| \leq 1\}$. In fact take $\lambda \in F, |\lambda| \leq 1$, and consider the (n - 1) elements $x_2 - \lambda x_1$ and $x_j - x_1, 3 \leq j \leq n$. By the induction assumption there exists $m' \in Z(\hat{x}_2 - \lambda \hat{x}_1) \cap \bigcap_j Z(\hat{x}_j - \hat{x}_1)$. Since $\bigcap_i Z(\hat{x}_i) = \emptyset$, then m' must belong to D_1 . So $\hat{x}_2/\hat{x}_1(m') = \lambda$ and $\hat{x}_j(m') = \hat{x}_1(m')$ for $3 \leq j \leq n$. Thus $m' \in K$ and $\hat{x}_2/\hat{x}_1(m') = \lambda$. The converse is trivial.

COROLLARY. Let X be a Banach algebra. If the linear span of the idempotent elements is dense in X, then X is a Gelfand algebra and \mathfrak{M} is a compact Hausdorff space in the Gelfand topology.

2. Representation theorems. We assume through all this section that the valuation of F is non-archimedean and that X is a non-archimedean Banach algebra.

THEOREM 4. If X is a V*-algebra, then X_0^* is isometrically isomorphic to $C(\mathfrak{M}_0^*)$ under the Gelfand transformation $x \mapsto \hat{x}$.

Proof. All we need to prove is that the Gelfand transformation is an isometry $(r_{\sigma}(x) = ||x||)$. In this way, we further apply the Kaplansky-Stone-Weierstrass theorem to get the desired result. Now, by condition 2 in Theorem 1, X_0^* is a V^* -algebra, and by Theorems 2 and 3 above, we are in the situation of Corollary 2, page 165 of [3]. The result now follows.

DEFINITION. A family $(x_i)_{i \in I}$ of elements in X will be called an orthogonal family if $x_i x_j = 0$ for $i \neq j$.

Let E denote the idempotent elements of X having norm one.

LEMMA. If x belongs to the linear span of E, then $r_{\sigma}(x) = ||x||$.

Proof. (1) First suppose that there exists a finite orthogonal family e_1, \ldots, e_n in E and scalars $\lambda_1, \ldots, \lambda_n$ such that $x = \sum \lambda_i e_i$. We may assume $|\lambda_1| = \max |\lambda_i|$. If we show that $\lambda_1 \in \sigma(x)$, then the result will follow from: $\max |\lambda_i| = |\lambda_1| \le r_{\sigma}(x) \le ||x|| \le \max |\lambda_i|$.

Since e_1 is a nonzero idempotent there exists a maximal ideal M of X such that $e_1 \notin M$. But $e_1(1 - e_1) = 0$ and $e_1e_j = 0$ implies that

 $(1 - e_1) \in M$ and $e_j \in M$ for $2 \le j \le n$. Hence $x - \lambda_1 = -\lambda_1(1 - e_1) + \sum_{i=1}^{n} \lambda_i e_i$ belongs to M, and $\lambda_1 \in \sigma(x)$.

(2) Let $x = \sum_{i=1}^{r} \mu_{j} u_{j}$, where $u_{j} \in E$ and $\mu_{j} \in F$. Now it is enough to show that there exists a finite orthogonal family e_{1}, \ldots, e_{n} in E and scalars $\lambda_{1}, \ldots, \lambda_{n}$ such that $x = \sum \lambda_{i} e_{i}$. The proof runs by induction on r. For r = 1 the result is clear. Now assume the result true for r - 1. Then there exists a finite orthogonal family v_{1}, \ldots, v_{p} in E and scalars $\alpha_{1}, \ldots, \alpha_{p}$ such that $\sum_{i=1}^{r} \mu_{j} u_{j} = \sum_{i=1}^{p} \alpha_{k} v_{k}$. Thus $x = \mu_{1} u_{1} + \sum_{i=1}^{p} \alpha_{k} v_{k}$. But $v_{k} = v_{k}(1 - u_{1}) + v_{k} u_{1}$ and $u_{1} = u_{1} \prod_{i=1}^{p} (1 - v_{k}) + \sum_{i=1}^{p} u_{i} v_{k}$. Of course, $v_{k}(1 - u_{1}), v_{k} u_{1}$ and $u_{1} \prod_{i=1}^{p} (1 - v_{k})$ are idempotents for all $1 \le k \le p$, those different from zero belong to E, and x may be expressed as a linear combination of them.

THEOREM (Van der Put). A non-archimedean Banach algebra X is a C-algebra if and only if the linear span of E is dense in X.

Proof. First suppose that the linear span of E is dense in X. Then X is a Gelfand algebra and \mathfrak{M} is a compact Hausdorff space in the Gelfand topology. If $x \in X$, applying the lemma, we choose (x_n) in X such that $x_n \to x$ and $r_{\sigma}(x_n) = ||x_n||$. The continuity of the Gelfand transformation then implies $\hat{x}_n \to \hat{x}$ in $C(\mathfrak{M})$, and so $r_{\sigma}(x) = \lim r_{\sigma}(x_n) = \lim ||x_n|| = ||x||$. Thus X is isometrically isomorphic to $C(\mathfrak{M})$ under the Gelfand transformation. The converse is trivial.

(See Van der Put [6, Prop. (5.4), p. 417] or Van Rooij [7, Th. (6.12), p. 215], and see also [2] and [5].)

References

 T. Gommers, On maximal ideals of Banach algebras over a non-archimedean valued field, Report 7621, Mathematisch Instituut, Katholieke Universiteit, Nijmegen, (1976).
G. J. Murphy, Commutative non-archimedean C*-algebras, Pacific J. Math., 78 No. 2, (1978), 433-446.

3. L. Narici, E. Beckenstein, and G. Bachman, *Functional Analysis and Valuation Theory*, Marcel Dekker, New York (1971).

4. N. Shilkret, Non-Archimedean Gelfand Theory, Pacific J. Math., 32 (1970), 541-550.

5. ____, Non-Archimedean Banach algebras, Duke Math. J., 37 (1970), 315-322.

6. M. Van der Put, Algèbres de fonctions continues p-adiques, Indag. Math., 30 (1968), 401-420.

7. A. Van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker, Inc., New York, 1978.

Received February 25, 1981 and in revised form, October 5, 1981.

UNIVERSIDAD DE VALLADOLID DEPARTAMENTO DE ALGEBRA Y FUNDAMENTOS VALLADOLID, SPAIN