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ORTHOGONAL POLYNOMIALS ASSOCIATED

WITH THE ROGERS-RAMANUJAN

CONTINUED FRACTION

WALEED A. AL-SALAM AND MOURAD E. H. ISMAIL

We characterize the symmetric orthogonal polynomials {Pn(x)}
such that {Pn(qnx)} is also orthogonal. This leads to orthogonal poly-
nomials related to the denominator polynomials of the continued frac-
tions of Rogers, Ramanujan, and Carlitz. We establish the orthog-
onality relation for these polynomials and show that the function
ΣQ qn zn/(q; q)n that appear in the aforementioned continued fractions
have only real and simple zeros.

1. Introduction. In recent years we have seen tremendous and renewed
interest in orthogonal ^-polynomials both new and old. Among these are
the #-Krawtchouk, the ^-Meixner and the #-Laguerre (or what Chihara [4]
calls generalized Stieltjes-Wigert polynomials). These sets are all of the
form {Fn(qnx)}, they are all orthogonal although the polynomial sets
{Fn(x)} are not themselves orthogonal.

It is therefore natural to ask if there are other orthogonal polynomial
sets (OPS) {Pn(x)} such that the corresponding set {Pn(qnx)} is also an
OPS.

We consider this problem in §2 and give a complete answer in the
symmetric case obtaining a ^-analog of the Tchebicheff polynomials (see
formula (2.1)) and the polynomials studied by Geronimus [5].

The methods we use to obtain the measure with respect to which these
polynomials are orthogonal work for a much more general class of
polynomials. We thus introduce in §3 the polynomial set {Un(x, a, b)}
defined by means of (3.1). These polynomials include as special case not
only the ^-Tchebicheff (2.1) but also the #-Lommel [7]. We obtain for this
OPS a generating and explicit representation. In §4 we construct the
measure with respect to which these are orthogonal. Finally in §5 we
discuss briefly some related continued fractions of Rogers, Ramanujan,
and Carlitz. Our polynomials {Un(x; a, b)} are generated by

U0(x;a,b) = l9 Ux(x;a,b) = x(l+a)9

Un+l(x; a, b) = JC(1 + aq")Un(x; a, b) - bqΛ'ιUΛ^(x; a, 6), n > 0.

The most general symmetric polynomial solution to the above recurrence
is also investigated in §5. Observe that Un(x\ α, b) is a polynomial of
degree n in both x and a. We discuss only the orthogonality of Un(x; a, b)
as functions of x for fixed a, a > -1 . As functions of a the Un

ys are
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orthogonal on an unbounded interval and the analysis becomes much
more difficult. We hope to investigate this in a future work together with
Turan inequalities.

2. A characterization theorem. In this section we look for all symmet-
ric orthogonal polynomial sets (OPS) {Pn(x)} that have the property that
{Pn(qnx)} is also an OPS. We prove

THEOREM. A necessary and sufficient condition for a symmetric OPS
{Pn(x)} to be orthogonal and {Pn(qnx)} to be also an OPS is that {Pn(x)}
satisfies the recurrence

(2.1) Pn(x)=xPn_,(x)-λHPn.2(x) (n>2)

P0(x) = l, Pι(x) = cx (cΦO)

where λ2 is an arbitrary positive number and Xn — q2n~4 for n > 3.

To prove this theorem we note first that because {Pn(x)} were
assumed symmetric then, without loss of generality, we may assume that
they satisfy the recurrence

(2.2) Pn(x) = xPn-λ(x) ~ λnPn_2(x) (n > 2)

P0(x) = 1 and Pλ(x) = ex.

If the polynomial set Qn(x) = Pn{qnx) is to be also orthogonal then we
must have

(2.3) Pn{q»x) = q2n-χxPn-x(qn-χx) - AnPn_2(q^2x) (n > 2)

where An φ 0 (as we shall see we need not assume that An > 0) for
n = 2,3,4,....

Furthermore, symmetry implies that we can write

n

PM = Σ P("> n ~ 2k)x"~2k=p(n, n)xn - μnx"~2 +

so thatp(n, n) = c and μn = μn_x + cλn. It follows easily from (2.2) and
(2.3) that P2n(0) = (-l) w λ 2 λ 4 λ2 l l = (-1)"Λ2Λ4 - A2n so that we
have

(2.4) λ 2 n = Λ2 n (n > 1).
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Now equating coefficients of x"~2k in (2.2) and (2.3) we get, for
n>2, respectively

p(n, n - 2k) = p(n - 1, n - 1 - 2k) - λnp(n - 2, n - 2k)

P(n, n-2k) = q2kp(n -l,n-\-2k)

-Anq
4k'2"p{n -2,n- 2k)

from which we obtain for k = 1,2,... ,n; n > 1

(2.5) p(2n,2n-2k){\- q2k)

= ?2 f cλ2 n(l - q2k-*«)p(2n - 2,2« - 2k)

(2.6) />(2/ ! ,2n-2*)( l -$ 2 *)

= (λ 2 n + 1 - q4k-4"-2A2n+M2" " 1,2/1 + 1 - 2*)

(2.7) />(2n + l,2n + 1 - 2k)(l - tf2*)

= <72*(λ2n+. - 92^4""2Λ2 M + I)/'(2« - 1,2/I + 1 - 2k)

and

(2.8) />(2Λ - 1,2Λ - 1 - 2fc)(l - #2*)

- λ2M(l - q4k-*n)p(2n - 2,2n - 2k).

Now iterating (2.5) we get

(2.9) p(2n,2n ~ 2k) - e M ? ^ + 1 ) L ^ λ 2 n λ 2 π _ 2 - - • λ2/I_2,+2.
(9 '? )ik

Similarly (2.8) yields

(2.10) p(2n- l , 2 π - 1 - 2Λ)

2 2\
' 9 )

where ekn — \iίk — n and = c if A: < n.

Solving for Λ 2 n + 1 from (2.5) and (2.6) and also finding λ 2 n + 1 from
(2.7) and (2.8), in both cases with k — 1, and then eliminating Λ 2 n + 1 from
the resulting equation we get for n >: 2

(2.11) λ 2 n + 1tf 4»(l - <?2) + «4(1 - <7 4"- 2)λ 2 π = λ 2 n + 2 ( l - q4").
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Now k = 1 in (2.8) yields -μ2 l l_,(l - q2) - λ 2 n(l - q4~4")c so that

(2.12) μ2n = c\2nq
4^ * -f~2 .

jf

The case k = 1 of (2.6) and (2.12) gives

(2.13) Λ2 n + 1 - q4"-2λ2n+ι = X2n(\ - q4»~2)q2.

Next (2.6) with k — n gives

(2.14) p(2n,0)(l - q2") = ( λ 2 n + 1 - q-2λ2n+ι)p(^ ~ h «)•

But (2.9) and (2.10) imply

(2 15Ϊ P(2n,θ) _ λ2 n 1 - q2

Putting (2.15) in (2.14) and eliminating Λ 2 n + 1 with (2.13) we get (« > 2)

(2.16) (1 - q4-4)λ2n+ι = λ 2 .( l - ί 4 - 2 ) - ^ V - 4 ( l - 9

2 )

Now (2.16) and (2.11) determine λn completely if λ3, λ 4 are given. In fact
it is easy to see that (2.16) and (2.11) are satisfied by cλn = λ2q

2n~4 for
n > 4 .

We have from (2.12)

(2.17) cλ4 = μ3 ^ ^ 2 and ^ _ 4

If we put the computed expressions for P3(JC), P4(X) and P5(x) in (2.3)
and equate coefficients of like powers of x, we get

(2.18) c λ s = _ 2 l _ ( λ 3 + λ 4 ) .

Similarly we set n = 6 in (2.3) and after some calculations we get

(2.19) cλ6

and

(2.20) (λ 2 λ 4

Formulas (2.20) and (2.17) yield
o

(2.21) c λ 6 = _ 2 _ _
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On the other hand (2.19) and (2.21) give

But μ5 = μ3 + cλ4 + cλ5 = μ3(l + q4) implies cλ4 + cλ5 = μ3q
4 which

together with (2.18) and (2.17) establish

T7 =

Thus

(2.22) cλ3 = λ2q
2, cλ4 = λ2q

4 and cλ5 = λ2q
6.

Therefore we have proved that

(2.23) cλn = λ2q
2»-< (n > 3)

and λ 2 > 0 is arbitrary. This completes the proof of the characterization
theorem.

It is easy to write the explicit expression for Pn{x) and find a
generating function. However we shall consider a more general class of
polynomials in §3, when c = 1, and in §5 for general c, see (5.8). The only
difference is that in the above calculations b is replaced by bq~2 then q is
replaced by Jq so the recurrence relation (2.1) becomes

(2.24) Pn(χ) = xPn(x) - bqn-χPn_x{x), n>2, P0(x) = 1, Pλ(χ) = cs.

3. The polynomials Un(x; a, b). We define the sequence of polynomi-
als Un(x; a, b) recursively by

(3.1) £/Λ+1(x; a, b) = x(\ + aq")Un(x; a, b)

-bqn-χUn_λ{x\a,b), n > 0 ,

with 0 < q < 1, 0 < b, -1 < a and

(3.2) U0(x; a, b) - 1, Ux{x\ a, b) = x(l + a).

The polynomials of §2 when c = 1 correspond to the special case a — 0
and b = q. The #-Lommel polynomials [7] are Un(2/x; -qι\ qv). As q -» 1,
Un(x; a, b) reduces to the Tchebicheff polynomial of the second kind
provided that a does not tend to - 1 .

The polynomials of the second kind U£{x\ a, b), see Askey and
Ismail [2] or Pollaczek [9], satisfy (3.1) and the initial conditions

(3.3) ί/0*(jc; a, b) = 0 , U*(χ; a,b)=l+a.
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It is easy to see that

(3.4) Un*(x; a, b) = (1 + a)Un_λ(x; qa, qb)9 n>0.

THEOREM 3.1. The polynomials {Un(x; α, b)} have the generating
function

ί —
(3.5) 1 UΛ(x; a9 b)t" = 1 }*"

Proof. Denote the left side of (3.5) by U(x, t). Multiply (3.1) by
and add the resulting equalities for n— 1,2,... to get

(3.6) U(x, t) = y 4 ^ + t{fS^ U(x, qt),

which, when iterated, leads to

One way to justify the above formal steps is to observe that the right side
of (3.5) satisfies the ^-difference equation (3.6) and is an analytic function
of t in a neighborhood of / = 0. The coefficients of its Taylor series
expansion about t — 0 then will satisfy (3.1) and the initial conditions
(3.2). This identifies the Taylor series coefficients as Un(x\ a, b) and the
proof is complete.

Using the analogy with the g-Lommel polynomials [7] it is not
difficult to guess that

(3.7) l U x , . f »)_£__ 5 - ? __ i _ 5 __ i ,

which can be proved by showing that the right side of (3.7) satisfies (3.1)
and (3.2). Formula (3.7) can also be derived from the generating function
(3.5) and the ̂ -binomial Theorem, Slater [12, p. 92]

z ~
as follows. Start with

bt \ (bt

) U
(χt;q)

m + ι
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apply the ̂ -binomial Theorem (3.8) twice to the left side of (3.9), sub-
stitute the result in (3.5) then equate the coefficients of like powers of /.

We now determine the asymptotic behavior of Un(x\ a, b).

THEOREM 3.2. For fixed x and n-^oowe have

(3.10) UΛ(x; a, b) « x"(-a; q)^ ^ a),

where

(3.11) F(x; *) = Σ ^ x g*<*-0.

Proof. Let N -> oo in (3.7). The interchanging of the summation and
limit processes can be justified as in the Lommel polynomial case, see
Watson [14, p. 305].

Our next result says something about the nature of the corresponding
distribution function.

THEOREM 3.3. The polynomials {Un(x; α, b)} satisfy the orthogonality
relation

(3.12) Γ Um(x; a, b)Um(x; a, b) dμ(x) = ^ l l ^ g *

where dμ is a purely discrete positive measure with bounded support and is
normalized by / ^ dμ(t) = 1. The only limit point of the support of dμ is

Proof. The corresponding monic polynomials are

Pn(x):= {(-a;q)n}-lUn(x;a,b).

They satisfy the three term recurrence relation

Pn(x) = xpn-x(x) ~ KPn-\{*)> n>0>

with P0(x) = 1, P_λ(x) = 0 and λπ + 1 = ^ " " ^ ( l + aq»)(l + aqΛ"ι)}'\
The cn's in Chihara's notation [4, Theorem 4.4, pp. 21-22] are all zero,
and λn -> 0 as n -> oo. The orthogonality relation (3.12) now follows from
(1.2), p. 107 in [4] and the rest of the theorem follows from Theorem 3.5,
p. 117 in [4], see also the discussion in the beginning of §3, p. 113 in [4].

We now identify the Stieltjes transform of dμ.
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THEOREM 3.4. The Stieltjes transform of dμ is given by

(3.13) Γ ^ 4 τ = z'xF{qbz'2\ qa)/F(bz-2; a), z £ supp{Jμ},

where F(z; a) is defined by (3.11).

Proof. This follows from Markoffs theorem, Askey and Ismail [2],
Pollaczek [9], Szego [13, p. 57], since the left side of (3.11) is

limUn*(z;a,b)/Un(z;a,b),

which agrees with the right side upon using (3.10) and (3.4). This com-
pletes the proof.

It might be worth identifying the Un's as basic hypergeometric poly-
nomials. One can use (3.7) to prove the representations

(3.14) U2n(xι/2;a,b)

= q"
2-"(-b)n

 rφ3

q-»,-qι-"/a,-aq",qn+ι;q,q xa

(3.15)

4Φ3

xa
•T

4. The measure dμ(t). Before we can derive more precise information
about the measure dμ(t) we shall establish three lemmas needed in the
subsequence analysis.

LEMMA 4.1. The transcendental functions F(z; a) satisfy the q-
(geometric) difference equation

(4.1) (qz - a)F(zq2; a) + (a - q)F(zq; a) + qF(z; a) = 0

and the recurrence relation

(4.2) (1 + a)q{F(z; a) - F(z/q; a)} = zF(zq; aq).

Proof. Use (3.9) and straightforward manipulations.
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LEMMA 4.2. The functions F(z; a) and F(qz; qa) have no common zeros
provided that a Φ -qk, k = 0,1,

Proof. If £ were a common zero of F(z; a) and F(qz; aq) then (4.2)
would imply that £ is also a zero of F(z/q; a) which, by (4.1) would make
F(q& a) also vanish. We now use (4.1) to deduce that F(£qn\ a) - 0,
n = 1,2, This contradicts the identity theorem for analytic functions
because F(z; a) is an entire transcendental function. This completes the
proof.

LEMMA 4.3. All the zeros of F(z; a) are positive and simple when
a > -1. There are infinitely many of them.

Proof. We saw in Theorem 3.3. that μ in (3.13) is a step function. Let
tl9t2,... be the positive points of increase of μ(t) and let μ(t) have jump
Ajat t = tj > 0, j = 1,2, The polynomials Un(x; a, b) are symmetric
hence μ(t) must have a jump Λty at ί = -tj9 j — 1,2, The left side of
(3.13) reduces to

where A is the mass at / = 0. This establishes the Mittag-Leffler expansion

A °° ΊzA

(4.3) 4 + 2 - T - Λ = ̂ ( < ^ - 2 ; I*)/***-2; a).

Since F(qbz~2; qa) and F(bz~2; a) are entire transcendental functions with
no common zeros, Lemmas 4.1 and 4.2, we deduce from (4.3) that all the
zeros of F(bz; a) must be of the form tj1. Finally we prove that A must be
zero. From the theory of moments [11, pp. 42-46] we know that the jump
at t = 0 is 1/ΣJ wn

2(0)> {wn(
z)} being the orthonormal polynomials. Now

(3.12) and (3.1) imply

and

U2H+x(0; a, b) - 0, ί/2n(0; β, b) -

Hence w2

2

π(0) - #~V(1 + α) and Σ£ wrt

2(0) = oo. This shows that A, the
jump at zero, must vanish and the proof is complete.

Let {Zj(a)} be the zeros of F(z; a), a > -1, ordered by

0 < zx(a) < z2(z) < < zn(a) < zH+ι(a) < •
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THEOREM 4.4. When a> -1 we have
(i) The only cluster point of the sequence [zn(a)} is +oo.
(ii) F(qz; qa) has an odd number of zeros in (zn(a), z r t + 1 (α)).

Proof. The conclusion (i) follows from the fact that x = 0 is the only
limit point of the support of dμ(t), see the Theorem 3.3. Now recall that
the A in (4.3) is zero. Rewrite the Mittag-Leffler expansion (4.3) in the
form

oo \)A t~2

\)A t~

(4.4) 2 2 —fz~ = F(^ 4a)Mz; a),
i btj z

hence Zj(a) = btj2 and

(4.5) 2hAjZj(z) = -F(qz(a); qa)Γ{zj(a); a).

The sign of F'(z(a); a) is (- l ) y because the z/s are real and simple zeros.
The left side of (4.5) is positive, thus the sign of F(qzj(a); qa) is ( - 1 + 1

This proves the assertion (ii).

COROLLARY 4.5. The step function μ(t) has the jumps

at

(4.6) tj=±ft/zj(a).

In the rest of the present section we shall discuss the case a — q. This
seems to be the only case where the zeros {zj(a)} can be computed
explicitly. Clearly

0 0 (-zYnn(<n~λ)

(4.7) F(z; q) = Σ { / 9

o 2 2,
\q)

follows from Euler's theorem

Slater [11, p. 93]. The recursion (4.2) and (4.8) yield

(4.9) F(qz; q>) = &±°k { ( z ; q2)^ _ {z/q,
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The relationships (4.4), (4.6), (4.7) and (4.9) imply

279

In this case the basic hypergeometric representations (3.14) and (3.15)
reduce to

-In
t . n2

and

\-q 201 ' b
,3/2

These are the odd and even <jr-Jacobi polynomials and their orthogonality
follows from the orthogonality relation

for the q-Jacobi polynomials

5. Continued fractions and generalizations. Recall that the asymptotic
behaviour of Un{x\ α, b) was determined from the explicit formula (3.7). It
can also be determined from the generating function (3.5) by applying
Darboux' method, Olver [8, §8.9.2]. A comparison function is

2 -^

This implies

(5-1) Un{X; a,

00 ^ * ~ 2 ; 4



280 WALEED A. AL-SALAM AND MOURAD E. H. ISMAIL

Upon comparing the asymptotic formulas (3.10) and (5.1) we obtain the
identity

{b/Ξi3h (W n{n-\)

The identity (5.2) is known, but it is interesting that it follows from the
above asymptotic analysis.

The continued fraction associated with the polynomials {Un(z; a, b)}
is

1 + a I b I bq |

1(1 + aq)z |(1 + aq
2)z |(l + aqs)z

The above continued fraction is also equal to

Urn ί/*(z; a, b)/UH(a; a, b),
n-*oo

when the limit exists because Un and U* are the corresponding denomina-
tor and numerator polynomials, respectively. Note that the aforemen-
tioned limit can be evaluated via (3.10). Therefore the relationship

a * 1 + έg I b 1 bq 1
KDmό) 1(1 + aq)z |(1 + aq2)z l(l + aq3)z ,

= z-ιF(qbz-2; qa)/F(bz-2; a),

holds when b φ 0 and bz~2 is not a zero of F(z; a). When α > -1, b > 0,
the continued fraction (5.3) converges if and only if z ¥=0, z φ
— Jb/j(a). The case a — 1 and z = 1 gives the Ramanujan continued
fraction

see Andrews [1, p. 104]. There is no loss of generality in setting z — 1 in
(5.3), as can be seen by replacing b by bz~2 and consider the continued
fraction whose wth convergent is

The continued fraction (5.3), with z = 1, was stated in Ramanujan's
Notebooks [10, p. 196]. Upon applying (5.2) to (5.3), with z = 1, we
obtain a result of Carlitz [3].
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Hirschhorn [6] considered the continued fraction as a function of β

^ \l+a + β^\l+a + β q ^ \ ι + a + βq2^ '

The denominator polynomials are more general than our Un's as functions
of the variable a for fixed z. The support of the corresponding measure is
unbounded. The orthogonality relation for the Hirschhorn polynomials is
not known. The associated moment problem is indeterminate as can be
seen from Carleman's criterion, see [11, p. 59].

We now consider the most general symmetric solution to the recur-
sion (3.1). Let

(5.6) pH+ι(x; a, b) = x(l + aqn)pH(x; a, b) - bqn-χpn_λ{x', a, b).

There is no loss of generality in letting

(5.7) po(x) = l, px(x) = cx.

Clearly pn(x; a, b) reduces to Un(x; a, b) when c = a + 1. The recurrence
relation (5.6) has the fundamental system {Un(x; a, b), U*(x; a,b)}.
Hence

(5.8) pn(x; a, b) = Un(x; a, b) + * ( c ~°~ l ) Un*(x; a, b), n > 0,

a n d

(5.9) p;(x; a, b) = j j ^ Un*(x; a, b).

The proofs of the following results are similar to the proofs of the
corresponding results when c = 1 and will be omitted.

THEOREM 5.1 {Orthogonality Relation). When c > 0, b > 0, 1 + aq > 0,
we have

(5.10) Γpn(xi *> b)pm(x; a, b) </ψ(*)
- 0 0

bn n{n-\)/2

= Γ + a , <•- "••">0

where dμ is a purely discrete positive measure with bounded support and
normalized by / ^ d ψ = 1. The origin is the only limit point of the support of
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THEOREM 5.2. The Stieltjes transform ofdxp is

+ (c-a-l)F(bqz-2;qa)Y\

for z £ supp{ί/ψ}α > - 1 , c > 0, where F(z; a) is as in (3.11).

THEOREM 5.3. When a q > - 1 , c > 0, the transcendental function

φ(z) : = (1 + a)F(z; a) + (c - a - \)F(gz; qa)

has infinitely many zeros. The zeros are positive and simple. Furthermore
F(qz; qa) vanishes an odd number of times between two sucessive zeros of
φ(z). The only cluster point of zeros ofφ(z) is ±oo.

Note that Theorem 5.3 reduces to Lemma 4.3 and Theorem 4.4 when
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