
PACIFIC JOURNAL OF MATHEMATICS

Vol. 105, No. 1, 1983

LATTICE VERTEX POLYTOPES
WITH INTERIOR LATTICE POINTS

DOUGLAS HENSLEY

Consider a convex polytope with lattice vertices and at least one
interior lattice point. We prove that the number of boundary lattice
points is bounded above by a function of the dimension and the number
of interior lattice points. This extends to arbitrary dimension a result of
Scott for the two dimensional case.

Introduction. In real Euclidean space RD of dimension D there is the
lattice ZD of points with integer coordinates. Unless a different lattice is
specified, a lattice point will mean a point of Z D , and a lattice simplex or
lattice convex polytope will mean a simplex or convex polytope whose
vertices are integer points, that is, elements of ZD. The interior in RD of a
set S is denoted by S°; if the affine span of S has dimension less than D,
we denote the relative interior of S by S'.

Consider a lattice convex polytope P CRD with the number K =
#(P° Π ZD) of interior lattice points non-zero, and with a total of
J = $(P Π ZD) lattice points. Our principal result is that J is bounded
above by a function B(K, D) of K and D alone.

For the case of zero symmetric convex polytopes P there is no need to
assume that the vertices are lattice points. By Van der Corput's generaliza-
tion of Minkowski's theorem vol(P) < K-2D [4]40.f By a theorem of
Blichfeldt, if the lattice points of P span RD, / < D + D\ vol(P) [I] 5 5 .
Otherwise we can consider a subspace of RD and get the same inequality
/ < D + D\K- 2D. On the other hand if P need not be symmetric or have
lattice point vertices then even for D — 2 and K — 1, / can be arbitrarily
large. For instance, P might be the convex hull of (-«,0), (0,1 + \/n2),
(«,0). With the restriction to lattice point vertices and D — 2 we have
Scott's result that J < 3K + 7 (3K + 6 for K > 1), and of course when
D = 1 we have trivially / < K + 2. These three bounds are best possible.
Our results are far from best possible, but in any case the largest possible
/ grows rapidly with D, even for K — 1. Zaks, Perles and Wills have given
examples of lattice simplices in RD for which K = 1 and / > 22° ' [11].
There are some grounds for the belief that these examples are best
possible. (See §4.) The existence of B(K, D) will follow from some facts
about Diophantine approximation which we now establish.

fHere the number above the brackets gives the page number on which this result is found
in Lekkerkerker [7].

183



184 DOUGLAS HENSLEY

2. Number theory. We start with a well-known approximation
lemma.

LEMMA 2.1. Given a vector v — (vl9 v2 * * * vD) E RD and an integer

T > 0 there exist integers al9 a2- aD,b such that 1 < b < Γ D

I Zw, - αf | < l/Tfor 1 < / < D.

Consider the Γ D + 1 points &t?, 0 < A: < TD reduced modulo 1
in each coordinate. Partitioning the unit cube {x: 0 < xtr < 1 for 1 < / <
Z>} into Γ^ cubes of side 1/Γ, we conclude from the Dirichlet box
principle that some two of them, say kx and k2 with kλ > k2, lie in the
same small cube. Let b — kλ — k2 and let ai be the integer nearest bvi for
1 < i < D. D

LEMMA 2.2. Le/ w = (wl9 w2 wD) such that Σf w, = 1
, > 0, and let T> D. Then there exist integers Pl9 P2 PD, Q = Σf

Aαί 1 < β < Γ^" 1 , P^O for 1 < / < Z>, | β^ ! - P, | < D / Γ
I βw, - P, | < 1/Γ/or 2 < / < D.

Proof. We write w = ?j + Σf w^^ — e^). By Lemma 1 there exists Q,
\<Q<TD, and P 2 , P3 - - PD such that | βw - Py | < 1/Γ (2 < / < D).
Since each wt > 0, Qw. > 0 so P, > 0 for i > 2.

LetPj = β - Σ f P,.. Then I P! - Qwλ\ = \Σζ P, - β Σ f w / | < Z ) / Γ <
1 so that also ^ > 0. D

LEMMA 2.3. For each integer D >: 1 /Aere exists ε(D) > 0 swcΛ ίÂ Z //
α = (α 1 ? α 2 α^), each ai > 0 and 1 > Σf α, > 1 — ε(D) then there exist
integers Q> \ and Pl9 P2- PD>0 such that Σf Pt = Q and ( β + l)α, >
Pf. for each i9 1 < i < D.

For Z) = 1 thus just says that there is an integer Q such that
( β + l)a{ > β, so that we may take ε(l) = 1/2. Now suppose D > 1 and
the lemma holds for D — 1. Let a — (al9...9aD) and without loss of
generality assume aλ > a2 >: α^ > 0. We want to choose ε(D) in terms
of ε(Z> - 1) so that if 1 > Σf α, > 1 - ε(D) then the P l 9 . . . 9PD and β of
Lemma 2.3 exist. We choose it this way: Let

Γ=max{l +[4(ε i )_ 1Γ 1],4D2 + 4JD+ l}.

Let ε(D) (>0) be min{±ε(D - 1), (D - 1)Λ \Tχ-D). Let W|. =
α (l - ε)" 1 where ε = 1 - Σf at < ε(D).

By Lemma 2.2 there exist Pl9 P29... 9PD > 0 and β = Σf P, such that
1 < β < Γ^"1 and | βw, - ^ |< Z)/Γ, | βwf - Pf |< 1/Γ for 2 < i < Z).
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Now for 2 < / < D,

( β + 1)«. - p. = α . + βα, - P, = α,. + βα. - βw, +

> α, ~ βα,(l/(l - ε) - 1) - 1/Γ

- 2βε(Z>)) - 1/Γ=>αf.(l - 2TD~ιε(D)) -

If now α, >: ̂ ε(Z) — 1) this last is positive, from the definitions of Γ and
e(D). If α. < ±ε(D - 1) then αD < \ε{D - 1) so that Σ f ~ X > 1 - ε(D)
— \ε(D — 1) > 1 — ε(D - 1). In this case theP l 9...9PD-X 9 Q guaranteed
by Lemma 2.2 (assumed true for D — 1) can be extended with PD = 0.

The case / = 1 is a little different. Here we have aλ > l/(D + 1) since
ε < ε(D) < 1/(Z> + 1), and we need \ax{\ - 2TD~λε(D)) > D/T, which
follows from T>4D(D+ 1). D

We can determine the best constants ε(D) in Lemma 2.3 for D = 1,2
or 3. As noted, we can take ε(l) = 1/2. No larger choice is possible
because if aλ — 1/2, (Q + 1)^ > Q has no positive integer solution.

For D = 2 and aλ > α2 if «! > 1/2 we take Q = 1, ^ = 1 and
P2 = 0, while if α2 > 1/3, β = 2, ^ = P2 = 1. Thus we may take ε(2) =
1 — 1/2 — 1/3 = 1/6. For D = 3 we can prove by such considerations
that ε(3) can be taken = 1/42. For if aλ + a2 + a3 > 41/42 while α1 <
1/2 and a2 < 1/3 then α3 > 1/7. Now if 7(α1? α2, α3) >̂ (3,2,1) (coordi-
natewise), then either α1 < 3/7 or a2 < 2/7. Either way, α3 > 1/7 +
1/21 = 4/21. Eventually one arrives at α3 > 1/4, and then 4(α1? α2, α3)

> (1,1,1).
For i) = 1, 2 or 3 these ε(D) are best possible (consider ax = 1/2,

α2 = 1/3 and α3 = 1/7). For D > 4 this approach seems to break down.

In the next lemma we treat the case K > 1.

LEMMA 2.4. For integers K > 2, Z) > 1 ίΛere βxΰϋ ε(jSΓ, Z>) > 0
//I > Σfα,- > 1 — ε(K9 D) and each α > 0 then there exist integers

PvP2 PD>0 and β = Σ?P f 2> 1 swcΛ ίAέiί (ΛΓβ + l)αf

Proof. For Z) = 1 this says simply that if a < 1 is sufficiently large
then there exists Q > 1 such that ( # g + l)«i > KQ> a n <3 we take ε(AΓ, 1)
= \/{K + 1). We now prove Lemma 2.4 for fixed K by induction on D.
Suppose it holds for D — 1. Let a — (al9 a2 aD) with each at > 0 and
Σfα,- = 1 - ε, ε > 0. If aD < ε(K, D - 1) - ε then Σf - 1 αz > 1 -
ε(K, D — 1) so we can use P,, P2 PD-λ9 0 and Q as in Lemma 2.3.
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Otherwise we use Lemma 2.2. Let

Γ=max{l +[4K(ε(K, D- I))" 1], 4D2 + AD + l}.

Let

ε(K9 D) = min{l/4i)2, ±ε{K, D - 1), ε(l, D\ {4K)~xTχ-

For 2 < / < Z>,

(KQ + l)α, - KP. = α, + K{Qat - />) > αf.(l - 2^βε) - K/T,

with β < TD~\ This then is > \ε(K, D - 1)(1 - 2KTD~ιε(K, D))
-K/T. By the choice of ε(K, D\ (1 - 2KTD~ιε(K, D)) < 1/2,
and by the choice of T, $ε(K, D - 1) > J5Γ/T7.

For / = 1 we have aλ>(D+ I ) " 1 so we need \(D + \)~\\) >
KD/T, which still follows from T > 4D(D + 1). D

REMARK. The growth of (ε(D))~ι is about like 2 (Z) ! ). The example of
[11] has a simple variant with ε like 22°. So bound and example have
asymptotic log log log's.

3. Geometry. Suppose now that S is a simplex with vertices
0, Xl9 X2 XD G Z D and an interior lattice point Γ = Σf α, J!ζ-.

LEMMA 3.1. // Σf α, > 1 - ε(K, D) then there are at least K+ 1
integer lattice points in S°.

Proof. Apply Lemma 2.3 or 2.4. The points Zk = (kQ + 1 ) 7 -
/c ΣfLϊ î -X) are lattice points, distinct, and interior to S, for 0 < /c < AΓ.

By translation we can make any vertex of a simplex be zero. This,
with Lemma 3.1, gives

THEOREM 3.1. Suppose S is simplex in RD with integer lattice vertices
Xo, Xλ " - XD and exactly K interior lattice points YJ9 1 <y < K, Yj —
Σ?=oaιjX[ with atj > 0, Σ? = 1 α / y = 1. Then for each i and j , ε(K, D) <

\ D { K )

COROLLARY 3.2. Suppose F is a lattice convex poly tope in R^ of
spanning dimension D — 1, and lattice vertices Xl9 X2 — XM Let Xo be a
lattice point not in the span of F, and let P be the conical poly tope with Xo

the tip and F the opposite face. If $(P° C\ ZD) = K> \ then in any
barycentric representation Y = Σ ^ atXt of an interior point of P we have
α 0 > ε(K, D).
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Proof. By Caratheodory's theorem [3] there are E < D vertices of F9

say VX9 V2 VE such that Y is in the relative interior of the simplex S
with vertices Xo, Vx VE. Every lattice point in 5" is also in P° (proof
follows), so there are no more than K in S'. By Theorem 1, if Y = β0X0 +
Iffift then β0 > ε(K, D). But βQ = α0, since it is the ratio of the length
of YZ to X0Z9 where Z is the intersection of the line through Xo and Y
with F.

We now prove that S' QP°.

LEMMA 3.3. // C is a convex set in RD, Y G C° #«d Ŵ  WEform the
vertices of a simplex W in C, with E<D and Y G W, then Wf C C°.

Since 7 G C° there exists ε > 0 such that if \\ϋ\\ < 1 and
| 0 | < ε then F + ί ί / G C . Write 7 as Σ f α ^ , α,-> 0, Σfα f = 1. If
Z G r = ΣQ A Ŵ  w i t h A > ° a n d 2Q A = 1 then there exists δ > 0 such
that βt > δaέ for 0 < / < £. Now Z + βδl/ = Σf (j8,. - δa^ +
δ(Y + ΘU) is a convex positive combination of elements of C, so it is in
C. D

Until now it has been convenient to have the fixed lattice ZD in mind,
but all the results are equally true for any full lattice L in R ,̂ as there is a
nonsingular linear transformation Φ: RD -> RD which maps ZD onto L
while preserving barycentric coordinates, interiors and relative interiors,
etc. We use this device to give an upper bound for the volume of an
integer lattice simplex S with %ZD Π S°) = K> 1. Without loss of
generality take 0 as one vertex of S, and let Φ be a linear transformation
which takes S onto the "standard simplex" H with vertices Q9el9...,eD9

where ei is the ith unit coordinate vector in R .̂ Then Φ takes the lattice
ZD to a n e w lattice L , and t h e norm o f L , \ L \ i s | d e t Φ | , a n d
volίS) = \/D\\ det Φ"11 . Thus any lower bound for | L \ gives an upper
bound for vol(S). Suppose Yx G S° Π ZD, Yx = Σf^X^ Let Vx = ΦY{

= Σ?α |.ζ. Given U=2?uiei with μ ^ ^ , either Vλ + U G H° or
Kj - ί7 e i/°, since αt ±ui>0 and one of Σ ^ + M,.), Σf(αf - M, ) is
less than 1.

By Van der Corput's theorem the region {Vλ + U: \ uif |< α/9 1 < / <
Z)} contains at least (Πfα,) | det Φ"11 pairs of points Vx ± U <Ξ L. Of
each pair at least one is in H°. Thus K = #(5° Π ZD) = #(i/° Π L ) >
(Πfα,) I det Φ-11 , > (ε(K, D))D \ det Φ"11 by Theorem 3.1. So | det Φ |
>(e(K9D))Dirι. Since | det Φ | = vol H/vol 5, we have vol S <
(/)!)"'^(eί A:, Z)))"^ We summarize this in

THEOREM 3.4. Suppose S is α simplex in RD with vertices in ZD, and let
K=$(SO ΠZD).IfK> 1 then vol S < (D\)~ιK(ε(K, D))~D.
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REMARK. We could get a better lower bound for Ufa, by using the
fact that not only is each ai>ε(K, D), but (perhaps renaming some
vertices) Σfα,. » 1 yet Σf^ < 1 - e(K, E) for E < D. With such a weak
bound for ε(K, Z>), though, this seems pointless.

A theorem of Blichfeldt says that if a convex body P in RD has
J = jjf(ZD Π P) > D lattice points, spanning R ,̂ then vol(P) >
(/ - D)/D\ [1], or equivalently / < Z> + Z>! vol(P). Thus we get the

COROLLARY 3.5. Lfrύfer the hypotheses of Theorem 3.4, J(5 Π ZD) <
z) + A:(C(A ^

For a general convex polytope P with vertices in Z D and ίΓ> 1
lattice points in P°9 from Corollary 3.2 we have that the coeffi-
cient σ of asymmetry about any of the interior lattice points is
< (1 - ε(K9 D))/ε(K, D). When K = 1 we have by a theorem of Mahler
(Sawyer gives a little sharper version) [8, 9]4 5 that V(P) <(ε(D))~D. The
proof of Mahler's theorem given in [I]45 uses Blichfeldt's theorem [2]35

that a region of volume > 1 contains two points x9 y congruent modulo
ZD. Van der Corput[4]40 generalized this to say that a region of volume
> K contains K + 1 points congruent modulo ZD. If we use this in place
of Blichfeldt's result we get an analogous generalization of Mahler's
theorem. From it we conclude that for arbitrary K > 1,

This and a corollary complete the story.

THEOREM 3.6. Let P be a convex polytope in YiP with vertices in ZD and
with K = #(P° Π ZD) > 1. Then vol(P) <

COROLLARY 3.7. /// = #(P n ZD) then J<D + K(D\)(ε(K, D))~D.

4. Toward best possible results. Here we indicate some reasons for
our belief that the examples of [11] with K — 1 and D > 3 are best
possible. Suppose S is a lattice simplex with lone interior point Y —
ΣQ 0LtXi9 where XQ9... 9XD are the vertices of S and aλ > > α^ > α0.
We proved in §2 that for arbitrary D, ax + a2 < 5/6, and aλ + α2 + a3 <
41/42. For Z) = 4, if Σf α,. > 1805/1806 then α4 > 1/43. The minimum
of a{a2a3a4 subject to Σ?αz > 1805/1806, Σ?α,. < 41/42, Σf α, < 5/6 and
c*! < 1/2, 0 < a4 < α3 < α2 < αj is 1/1806, by elementary calculus. Since
Norm(L) > 1/1806 and vol(?1? e29 e39 e4, ΦΫ) {simplex} is ^(1 - Σf at)
>^Norm(L), Σfα z < 1805/1806. This proves that for D = 3, (4) the
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simplex with vertices 0, 2el9 3e2, 7?3, (43e4) has maximal coefficient σ of
asymmetry about Y. Unfortunately it does not show that for arbitrary Z),
Σ f α f < 1805/1806.

For any Z), the α must be rational. For let Λ' be the lattice generated
by {X — XQ, 1 < / < / ) } . If some at were irrational there would be
infinitely many points of Λ in a fundamental cell of Λ' since no two
n(Y — Xo), w > 1, would be congruent mod A'. But Λ is discrete so this is
impossible. So let at — vt/xt9 0 < / < Z>, with i5f., jcf > 0 and gcd(ϋf , xf ) =
1 for 0 < i < /)).

The numbers 2, 3, 7, 43 in the simplex examples for D = 3 or 4 are
the start of a well-known sequence given recursively by yx — 2, yn+x —
y% — yn+ 1 for n > 1. The j / s are pairwise relatively prime, and Σf y~λ

= 1 — (yD+] — l)~ι < \. Thus the lattice simplex SD with vertices 0 and
yt£n 1 < / < 2) has the single interior lattice point 1^ = Σ f ζ . This
example (here slightly modified) is first given in [11] and has at least 2lDλ

boundary lattice points. We believe it to be best possible in the sense that
the coefficient σD of asymmetry for SD about YD^σ for any other lattice
simplex S with lone interior lattice Y, about Y.

Let 5* be such a simplex, and Y = ΣQ atXt = Σo(vι/xι)Xi as before,
with aγ > a2 > > α^ > α 0 > 0. With the additional assumption that
(xl9 JC2,. .. 9xD) are pairwise relatively prime we can prove this conjecture,
or what is the same, the following theorem.

THEOREM 4.1. Suppose (xl9 x2,. .,xD) are pairwise relatively prime.

Conjecture. This holds whether or not the JC/S are pairwise relatively
prime. (We have seen so for 1 < D < 4.)

We begin the proof of Theorem 4.1 with an old Egyptian fractions
result.

L E M M A 4 . 1 . (Curtis [5], Erdδs [6].) Let x l 9 x 2 - — x D be positive integers.

If Σf(lAf.) < 1 then lf(l/xέ) < Σf (l/yf) = 1 - Πf^Γ1 = 1 ~
- I ) " 1 .

, = ( Λ + 1 - I)" 1 .

LEMMA 4.2. For every K, D > 1 if (vt, x{), I < i < D are D pairs of
relatively prime positive integers, and if \ — εD±κ_x < Σf (tVX ) < 1 then
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Proof. (I. Borosh, private communication.) If each vi/xι is replaced
with vι copies of l/χ. there are then at least D + K Egyptian fractions in
the sum, by Lemma 4.1.

LEMMA 4.3. Let D > 2, K, vι vD, xλ — xD be positive integers such
that gcd(υp xt) — 1 for \ < i < D and gcd(x/? Xj) = 1 for 1 < / <j < Zλ

suppose gcd(AD, M) < gcd(^4p M), 1 < / < A or equivalently xD > xt.
θ2, θ3 -θκbeany K - 1 rational numbers 0 <θι<\.If

then there exist positive integers al9 a2 aD, m such that
(i) ajm < ajor 1 < / < D

(ii) maD — aDΦ θjfor 2 <y < 7Γ, β^J w α ΰ — aDΦ aD, and
(iii) Σf(m^ί. - Mai)<M.

REMARK. For Theorem 4.1 we only need the case K = 1.

Proo/. By Lemma 4.2, 2^(vi - \) ^ K. Since gcd(AD, M) <
ί/? M) for / ΦD,xD> x. for / ̂  i). Since Π ^ l / x J < 1 - Σf ^ / J C ,

ζ_v x% > (εD+κ_ι)~ι and x^ > AT + 1. For it is readily seen that
ε,"1 >: 22'"1 for / > 1, and D - log2 D > 1, AT - (log log)2 ί: > 2 so that
D + K-2>\ + log2 Z) + (log log) 2 K and 22D+*~2 > iΓ 2 z ) > 7̂  + 1 for
i^ > 1, while for K — 1, we have directly ε^1 > 2 since already ε2

ι = 6.
Now by the Chinese remainder theorem, for each integer r, 1 < r < J^ + 1
there exists an m > 1 such that mυ, = 1 mod x̂  for 1 < z < D and mϋ^ =
rmod xD. (This is why we had to assume the x relatively prime). Since
xD > K + 1 these AT + 1 possibilities are distinct. Choose r so that r/xD

φ aD, Θ2,θ3- — Θκ. Let at —(mvi— \)/xι for 1 < / < Z>, and β ΰ =
(mt;^ — r)/xD. These are integers because of the congruence conditions,
and clearly (i) and (ii) are satisfied. Now since xD > xz for 1 < / < Z), and

>,. > 2) + # ,

D - l Z)

(x+i)/xD+ 2
z = l

implies that

V l/v L + r / x <
^ J / i f / D

1 J

which is equivalent to (iii).
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Suppose 0, Xx - - XD are the vertices of S, and are in ZD. If
γ v γ i ' " γ κ a r e lattice points of S° and Yx = ΣfaiXi with relatively
prime χ.9 and if Σf α, > 1 — εD+κ-\ then let ΘJ9 2<j <K be the XD co-
efficient of Yj. Apply Lemma 4.3 and let Yκ+λ — mYx — Σf a^. Then
Yκ+X G S° and different from Yx Ύκby Lemma 4.3. The case K = 1
of these conclusions is Theorem 4.1.

REMARK. The estimate due to Borosh is not best possible. It would be
interesting to know the maximum value of Σf vi/xi subject to 0 < uf./xf,
Σf υjx, < 1 and Σf vέf = D + K - 1.
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