LATTICE VERTEX POLYTOPES WITH INTERIOR LATTICE POINTS

Douglas Hensley

Abstract

Consider a convex polytope with lattice vertices and at least one interior lattice point. We prove that the number of boundary lattice points is bounded above by a function of the dimension and the number of interior lattice points. This extends to arbitrary dimension a result of Scott for the two dimensional case.

Introduction. In real Euclidean space \mathbf{R}^{D} of dimension D there is the lattice \mathbf{Z}^{D} of points with integer coordinates. Unless a different lattice is specified, a lattice point will mean a point of \mathbf{Z}^{D}, and a lattice simplex or lattice convex polytope will mean a simplex or convex polytope whose vertices are integer points, that is, elements of \mathbf{Z}^{D}. The interior in \mathbf{R}^{D} of a set S is denoted by S°; if the affine span of S has dimension less than D, we denote the relative interior of S by S^{\prime}.

Consider a lattice convex polytope $P \subseteq \mathbf{R}^{D}$ with the number $K=$ $\#\left(P^{\circ} \cap \mathbf{Z}^{D}\right)$ of interior lattice points non-zero, and with a total of $J=\#\left(P \cap \mathbf{Z}^{D}\right)$ lattice points. Our principal result is that J is bounded above by a function $B(K, D)$ of K and D alone.

For the case of zero symmetric convex polytopes P there is no need to assume that the vertices are lattice points. By Van der Corput's generalization of Minkowski's theorem $\operatorname{vol}(P) \leq K \cdot 2^{D}[4]^{40} \cdot \dagger$ By a theorem of Blichfeldt, if the lattice points of P span $\mathbf{R}^{D}, J \leq D+D!\operatorname{vol}(P)[\mathbf{1}]^{55}$. Otherwise we can consider a subspace of \mathbf{R}^{D} and get the same inequality $J \leq D+D!K \cdot 2^{D}$. On the other hand if P need not be symmetric or have lattice point vertices then even for $D=2$ and $K=1, J$ can be arbitrarily large. For instance, P might be the convex hull of $(-n, 0),\left(0,1+1 / n^{2}\right)$, $(n, 0)$. With the restriction to lattice point vertices and $D=2$ we have Scott's result that $J \leq 3 K+7(3 K+6$ for $K>1)$, and of course when $D=1$ we have trivially $J \leq K+2$. These three bounds are best possible. Our results are far from best possible, but in any case the largest possible J grows rapidly with D, even for $K=1$. Zaks, Perles and Wills have given examples of lattice simplices in \mathbf{R}^{D} for which $K=1$ and $J>2^{2^{D-1}}$ [11]. There are some grounds for the belief that these examples are best possible. (See §4.) The existence of $B(K, D)$ will follow from some facts about Diophantine approximation which we now establish.

[^0]2. Number theory. We start with a well-known approximation lemma.

Lemma 2.1. Given a vector $\vec{v}=\left(v_{1}, v_{2} \cdots v_{D}\right) \in \mathbf{R}^{D}$ and an integer $T>0$ there exist integers $a_{1}, a_{2} \cdots a_{D}, b$ such that $1 \leq b \leq T^{D}$ and $\left|b v_{i}-a_{i}\right| \leq 1 / T$ for $1 \leq i \leq D$.

Proof. Consider the $T^{D}+1$ points $k \vec{v}, 0 \leq k \leq T^{D}$ reduced modulo 1 in each coordinate. Partitioning the unit cube $\left\{\vec{x}: 0 \leq x_{i} \leq 1\right.$ for $1 \leq i \leq$ $D\}$ into T^{D} cubes of side $1 / T$, we conclude from the Dirichlet box principle that some two of them, say k_{1} and k_{2} with $k_{1}>k_{2}$, lie in the same small cube. Let $b=k_{1}-k_{2}$ and let a_{i} be the integer nearest $b v_{i}$ for $1 \leq i \leq D$.

Lemma 2.2. Let $\vec{w}=\left(w_{1}, w_{2} \cdots w_{D}\right)$ such that $\Sigma_{1}^{D} w_{t}=1$ and each $w_{i}>0$, and let $T>D$. Then there exist integers $P_{1}, P_{2} \cdots P_{D}, Q=\Sigma_{1}^{D} P_{t}$ such that $1 \leq Q \leq T^{D-1}, P_{i} \geq 0$ for $1 \leq i \leq D,\left|Q w_{1}-P_{1}\right| \leq D / T$ and $\left|Q w_{l}-P_{\imath}\right| \leq 1 / T$ for $2 \leq i \leq D$.

Proof. We write $\vec{w}=\vec{e}_{1}+\sum_{2}^{D} w_{i}\left(\vec{e}_{i}-\vec{e}_{1}\right)$. By Lemma 1 there exists Q, $1 \leq Q \leq T^{D}$, and $P_{2}, P_{3} \cdots P_{D}$ such that $\left|Q w_{i}-P_{i}\right| \leq 1 / T(2 \leq i \leq D)$. Since each $w_{i}>0, Q w_{i}>0$ so $P_{i} \geq 0$ for $i \geq 2$.

Let $P_{1}=Q-\Sigma_{2}^{D} P_{i}$. Then $\left|P_{1}-Q w_{1}\right|=\left|\Sigma_{2}^{D} P_{t}-Q \Sigma_{2}^{D} w_{i}\right|<D / T<$ 1 so that also $P_{1} \geq 0$.

Lemma 2.3. For each integer $D \geq 1$ there exists $\varepsilon(D)>0$ such that if $\vec{\alpha}=\left(\alpha_{1}, \alpha_{2} \cdots \alpha_{D}\right)$, each $\alpha_{i}>0$ and $1>\Sigma_{1}^{D} \alpha_{t}>1-\varepsilon(D)$ then there exist integers $Q \geq 1$ and $P_{1}, P_{2} \cdots P_{D} \geq 0$ such that $\sum_{1}^{D} P_{i}=Q$ and $(Q+1) \alpha_{i}>$ P_{i} for each $i, 1 \leq i \leq D$.

Proof. For $D=1$ thus just says that there is an integer Q such that $(Q+1) \alpha_{1}>Q$, so that we may take $\varepsilon(1)=1 / 2$. Now suppose $D>1$ and the lemma holds for $D-1$. Let $\vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{D}\right)$ and without loss of generality assume $\alpha_{1} \geq \alpha_{2} \cdots \geq \alpha_{D}>0$. We want to choose $\varepsilon(D)$ in terms of $\varepsilon(D-1)$ so that if $1>\Sigma_{1}^{D} \alpha_{i}>1-\varepsilon(D)$ then the P_{1}, \ldots, P_{D} and Q of Lemma 2.3 exist. We choose it this way: Let

$$
T=\max \left\{1+\left[4\left(\varepsilon_{D-1}\right)^{-1}\right], 4 D^{2}+4 D+1\right\}
$$

Let $\varepsilon(D)(>0)$ be $\min \left\{\frac{1}{2} \varepsilon(D-1),(D-1)^{-1}, \frac{1}{4} T^{1-D}\right\}$. Let $w_{i}=$ $\alpha_{i}(1-\varepsilon)^{-1}$ where $\varepsilon=1-\sum_{1}^{D} \alpha_{i}<\varepsilon(D)$.

By Lemma 2.2 there exist $P_{1}, P_{2}, \ldots, P_{D} \geq 0$ and $Q=\Sigma_{1}^{D} P_{i}$ such that $1 \leq Q \leq T^{D-1}$ and $\left|Q w_{1}-P_{1}\right| \leq D / T,\left|Q w_{i}-P_{i}\right| \leq 1 / T$ for $2 \leq i \leq D$.

Now for $2 \leq i \leq D$,

$$
\begin{aligned}
(Q+1) \alpha_{i} & P_{i}=\alpha_{i}+Q \alpha_{i}-P_{i}=\alpha_{i}+Q \alpha_{i}-Q w_{i}+Q w_{i}-P_{i} \\
& \geq \alpha_{i}-Q \alpha_{i}(1 /(1-\varepsilon)-1)-1 / T \\
& >\alpha_{i}-Q \alpha_{i}(1 /(1-\varepsilon(D))-1)-1 / T \\
& \geq \alpha_{i}(1-2 Q \varepsilon(D))-1 / T \geq \alpha_{i}\left(1-2 T^{D-1} \varepsilon(D)\right)-1 / T
\end{aligned}
$$

If now $\alpha_{i} \geq \frac{1}{2} \varepsilon(D-1)$ this last is positive, from the definitions of T and $\varepsilon(D)$. If $\alpha_{i}<\frac{1}{2} \varepsilon(D-1)$ then $\alpha_{D}<\frac{1}{2} \varepsilon(D-1)$ so that $\Sigma_{1}^{D-1} \alpha_{i}>1-\varepsilon(D)$ $-\frac{1}{2} \varepsilon(D-1) \geq 1-\varepsilon(D-1)$. In this case the $P_{1}, \ldots, P_{D-1}, Q$ guaranteed by Lemma 2.2 (assumed true for $D-1$) can be extended with $P_{D}=0$.

The case $i=1$ is a little different. Here we have $\alpha_{1} \geq 1 /(D+1)$ since $\varepsilon<\varepsilon(D) \leq 1 /(D+1)$, and we need $\frac{1}{2} \alpha_{1}\left(1-2 T^{D-1} \varepsilon(D)\right)>D / T$, which follows from $T>4 D(D+1)$.

We can determine the best constants $\varepsilon(D)$ in Lemma 2.3 for $D=1,2$ or 3. As noted, we can take $\varepsilon(1)=1 / 2$. No larger choice is possible because if $\alpha_{1}=1 / 2,(Q+1) \alpha_{1}>Q$ has no positive integer solution.

For $D=2$ and $\alpha_{1} \geq \alpha_{2}$ if $\alpha_{1}>1 / 2$ we take $Q=1, P_{1}=1$ and $P_{2}=0$, while if $\alpha_{2}>1 / 3, Q=2, P_{1}=P_{2}=1$. Thus we may take $\varepsilon(2)=$ $1-1 / 2-1 / 3=1 / 6$. For $D=3$ we can prove by such considerations that $\varepsilon(3)$ can be taken $=1 / 42$. For if $\alpha_{1}+\alpha_{2}+\alpha_{3}>41 / 42$ while $\alpha_{1} \leq$ $1 / 2$ and $\alpha_{2} \leq 1 / 3$ then $\alpha_{3}>1 / 7$. Now if $7\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \ngtr(3,2,1)$ (coordinatewise), then either $\alpha_{1} \leq 3 / 7$ or $\alpha_{2} \leq 2 / 7$. Either way, $\alpha_{3}>1 / 7+$ $1 / 21=4 / 21$. Eventually one arrives at $\alpha_{3}>1 / 4$, and then $4\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ $>(1,1,1)$.

For $D=1,2$ or 3 these $\varepsilon(D)$ are best possible (consider $\alpha_{1}=1 / 2$, $\alpha_{2}=1 / 3$ and $\alpha_{3}=1 / 7$). For $D \geq 4$ this approach seems to break down.

In the next lemma we treat the case $K>1$.
Lemma 2.4. For integers $K \geq 2, D \geq 1$ there exists $\varepsilon(K, D)>0$ such that if $1>\sum_{1}^{D} \alpha_{i}>1-\varepsilon(K, D)$ and each $\alpha_{i}>0$ then there exist integers $P_{1}, P_{2} \cdots P_{D} \geq 0$ and $Q=\sum_{1}^{D} P_{i} \geq 1$ such that $(K Q+1) \alpha_{i}>K P_{i}$ for $1 \leq$ $i \leq D$.

Proof. For $D=1$ this says simply that if $\alpha<1$ is sufficiently large then there exists $Q \geq 1$ such that $(K Q+1) \alpha_{1}>K Q$, and we take $\varepsilon(K, 1)$ $=1 /(K+1)$. We now prove Lemma 2.4 for fixed K by induction on D. Suppose it holds for $D-1$. Let $\vec{\alpha}=\left(\alpha_{1}, \alpha_{2} \cdots \alpha_{D}\right)$ with each $\alpha_{i}>0$ and $\sum_{1}^{D} \alpha_{i}=1-\varepsilon, \varepsilon>0$. If $\alpha_{D}<\varepsilon(K, D-1)-\varepsilon$ then $\sum_{1}^{D-1} \alpha_{t}>1-$ $\varepsilon(K, D-1)$ so we can use $P_{1}, P_{2} \cdots P_{D-1}, 0$ and Q as in Lemma 2.3.

Otherwise we use Lemma 2.2. Let

$$
T=\max \left\{1+\left[4 K(\varepsilon(K, D-1))^{-1}\right], 4 D^{2}+4 D+1\right\}
$$

Let

$$
\varepsilon(K, D)=\min \left\{1 / 4 D^{2}, \frac{1}{4} \varepsilon(K, D-1), \varepsilon(1, D),(4 K)^{-1} T^{1-D}\right\}
$$

For $2 \leq i \leq D$,

$$
(K Q+1) \alpha_{i}-K P_{i}=\alpha_{t}+K\left(Q \alpha_{i}-P_{i}\right) \geq \alpha_{i}(1-2 K Q \varepsilon)-K / T
$$

with $Q \leq T^{D-1}$. This then is $>\frac{1}{2} \varepsilon(K, D-1)\left(1-2 K T^{D-1} \varepsilon(K, D)\right)$ $-K / T$. By the choice of $\varepsilon(K, D),\left(1-2 K T^{D-1} \varepsilon(K, D)\right)<1 / 2$, and by the choice of $T, \frac{1}{4} \varepsilon(K, D-1)>K / T$.

For $i=1$ we have $\alpha_{1} \geq(D+1)^{-1}$ so we need $\frac{1}{2}(D+1)^{-1}\left(\frac{1}{2}\right)>$ $K D / T$, which still follows from $T>4 D(D+1)$.

Remark. The growth of $(\varepsilon(D))^{-1}$ is about like $2^{(D!)}$. The example of [11] has a simple variant with ε like $2^{2^{D}}$. So bound and example have asymptotic $\log \log$ log's.
3. Geometry. Suppose now that S is a simplex with vertices $0, X_{1}, X_{2} \cdots X_{D} \in \mathbf{Z}^{D}$ and an interior lattice point $Y=\Sigma_{1}^{D} \alpha_{l} X_{i}$.

Lemma 3.1. If $\Sigma_{1}^{D} \alpha_{i}>1-\varepsilon(K, D)$ then there are at least $K+1$ integer lattice points in S°.

Proof. Apply Lemma 2.3 or 2.4. The points $Z_{k}=(k Q+1) Y-$ $k \sum_{l=1}^{D} P_{l} X_{i}$ are lattice points, distinct, and interior to S, for $0 \leq k \leq K$.

By translation we can make any vertex of a simplex be zero. This, with Lemma 3.1, gives

Theorem 3.1. Suppose S is simplex in \mathbf{R}^{D} with integer lattice vertices $X_{0}, X_{1} \cdots X_{D}$ and exactly K interior lattice points $Y_{j}, 1 \leq j \leq K, Y_{j}=$ $\sum_{i=0}^{D} \alpha_{i j} X_{\imath}$ with $\alpha_{i j}>0, \sum_{i=1}^{D} \alpha_{i j}=1$. Then for each i and $j, \varepsilon(K, D) \leq$ $\alpha_{\imath j} \leq 1-D \varepsilon(K, D)$.

Corollary 3.2. Suppose F is a lattice convex polytope in \mathbf{R}^{D} of spanning dimension $D-1$, and lattice vertices $X_{1}, X_{2} \cdots X_{M}$. Let X_{0} be a lattice point not in the span of F, and let P be the conical polytope with X_{0} the tip and F the opposite face. If $\#\left(P^{\circ} \cap \mathbf{Z}^{D}\right)=K \geq 1$ then in any barycentric representation $Y=\sum_{0}^{M} \alpha_{i} X_{i}$ of an interior point of P we have $\alpha_{0} \geq \varepsilon(K, D)$.

Proof. By Caratheodory's theorem [3] there are $E \leq D$ vertices of F, say $V_{1}, V_{2} \cdots V_{E}$ such that Y is in the relative interior of the simplex S with vertices $X_{0}, V_{1} \cdots V_{E}$. Every lattice point in S^{\prime} is also in P° (proof follows), so there are no more than K in S^{\prime}. By Theorem 1, if $Y=\beta_{0} X_{0}+$ $\Sigma_{1}^{E} \underline{\beta_{i} V_{i}}$ then $\beta_{0} \geq \varepsilon(K, D)$. But $\beta_{0}=\alpha_{0}$, since it is the ratio of the length of $\overline{Y Z}$ to $\overline{X_{0} Z}$, where Z is the intersection of the line through X_{0} and Y with F.

We now prove that $S^{\prime} \subseteq P^{\circ}$.
Lemma 3.3. If C is a convex set in $\mathbf{R}^{D}, Y \in C^{\circ}$ and $W_{0} \cdots W_{E}$ form the vertices of a simplex W in C, with $E \leq D$ and $Y \in W$, then $W^{\prime} \subseteq C^{\circ}$.

Proof. Since $Y \in C^{\circ}$ there exists $\varepsilon>0$ such that if $\|\vec{U}\| \leq 1$ and $|\theta| \leq \varepsilon$ then $Y+\theta U \in C$. Write Y as $\Sigma_{0}^{E} \alpha_{i} W_{i}, \alpha_{i}>0, \Sigma_{0}^{E} \alpha_{i}=1$. If $Z \in W^{\prime}=\Sigma_{0}^{E} \beta_{i} W_{i}$ with $\beta_{i}>0$ and $\Sigma_{0}^{E} \beta_{i}=1$ then there exists $\delta>0$ such that $\beta_{i}>\delta \alpha_{i}$ for $0 \leq i \leq E$. Now $Z+\theta \delta U=\Sigma_{0}^{E}\left(\beta_{i}-\delta \alpha_{i}\right) W_{i}+$ $\delta(Y+\theta U)$ is a convex positive combination of elements of C, so it is in C.

Until now it has been convenient to have the fixed lattice \mathbf{Z}^{D} in mind, but all the results are equally true for any full lattice L in \mathbf{R}^{D}, as there is a nonsingular linear transformation $\Phi: \mathbf{R}^{D} \rightarrow \mathbf{R}^{D}$ which maps \mathbf{Z}^{D} onto L while preserving barycentric coordinates, interiors and relative interiors, etc. We use this device to give an upper bound for the volume of an integer lattice simplex S with $\#\left(\mathbf{Z}^{D} \cap S^{\circ}\right)=K \geq 1$. Without loss of generality take 0 as one vertex of S, and let Φ be a linear transformation which takes S onto the "standard simplex" H with vertices $0, \vec{e}_{1}, \ldots, \vec{e}_{D}$, where \vec{e}_{i} is the i th unit coordinate vector in \mathbf{R}^{D}. Then Φ takes the lattice \mathbf{Z}^{D} to a new lattice L, and the norm of $L,|L|$ is $|\operatorname{det} \Phi|$, and $\operatorname{vol}(S)=1 / D!\left|\operatorname{det} \Phi^{-1}\right|$. Thus any lower bound for $|L|$ gives an upper bound for $\operatorname{vol}(S)$. Suppose $Y_{1} \in S^{\circ} \cap \mathbf{Z}^{D}, Y_{1}=\Sigma_{1}^{D} \alpha_{i} X_{i}$. Let $V_{1}=\Phi Y_{1}$ $=\sum_{1}^{D} \alpha_{i} \vec{e}_{i}$. Given $U=\sum_{1}^{D} u_{i} \vec{e}_{i}$ with $\left|u_{i}\right|<\alpha_{i}$, either $V_{1}+U \in H^{\circ}$ or $V_{1}-U \in H^{\circ}$, since $\alpha_{i} \pm u_{i}>0$ and one of $\Sigma_{1}^{D}\left(\alpha_{i}+u_{i}\right), \Sigma_{1}^{D}\left(\alpha_{i}-u_{i}\right)$ is less than 1.

By Van der Corput's theorem the region $\left\{V_{1}+U:\left|u_{i}\right|<\alpha_{i}, 1 \leq i \leq\right.$ $D\}$ contains at least $\left(\Pi_{1}^{D} \alpha_{t}\right)\left|\operatorname{det} \Phi^{-1}\right|$ pairs of points $V_{1} \pm U \in L$. Of each pair at least one is in H°. Thus $K=\#\left(S^{\circ} \cap \mathbf{Z}^{D}\right)=\#\left(H^{\circ} \cap L\right) \geq$ $\left(\Pi_{1}^{D} \alpha_{t}\right)\left|\operatorname{det} \Phi^{-1}\right|, \geq(\varepsilon(K, D))^{D}\left|\operatorname{det} \Phi^{-1}\right|$ by Theorem 3.1. So $|\operatorname{det} \Phi|$ $\geq(\varepsilon(K, D))^{D} K^{-1}$. Since $|\operatorname{det} \Phi|=\operatorname{vol} H / \operatorname{vol} S$, we have $\operatorname{vol} S \leq$ $(D!)^{-t} K(\varepsilon(K, D))^{-D}$. We summarize this in

Theorem 3.4. Suppose S is a simplex in \mathbf{R}^{D} with vertices in \mathbf{Z}^{D}, and let $K=\#\left(S^{\circ} \cap \mathbf{Z}^{D}\right)$. If $K \geq 1$ then $\operatorname{vol} S \leq(D!)^{-1} K(\varepsilon(K, D))^{-D}$.

Remark. We could get a better lower bound for $\Pi_{1}^{D} \alpha_{i}$ by using the fact that not only is each $\alpha_{i} \geq \varepsilon(K, D)$, but (perhaps renaming some vertices) $\sum_{1}^{D} \alpha_{i} \approx 1$ yet $\sum_{1}^{E} \alpha_{i} \leq 1-\varepsilon(K, E)$ for $E<D$. With such a weak bound for $\varepsilon(K, D)$, though, this seems pointless.

A theorem of Blichfeldt says that if a convex body P in \mathbf{R}^{D} has $J=\#\left(\mathbf{Z}^{D} \cap P\right)>D$ lattice points, spanning \mathbf{R}^{D}, then $\operatorname{vol}(P) \geq$ $(J-D) / D![1]$, or equivalently $J \leq D+D!\operatorname{vol}(P)$. Thus we get the

Corollary 3.5. Under the hypotheses of Theorem 3.4, \#($\left.S \cap \mathbf{Z}^{D}\right) \leq$ $D+K(\varepsilon(K, D))^{-D}$.

For a general convex polytope P with vertices in \mathbf{Z}^{D} and $K \geq 1$ lattice points in P°, from Corollary 3.2 we have that the coefficient σ of asymmetry about any of the interior lattice points is $\leq(1-\varepsilon(K, D)) / \varepsilon(K, D)$. When $K=1$ we have by a theorem of Mahler (Sawyer gives a little sharper version) $[\mathbf{8}, 9]^{45}$ that $V(P) \leq(\varepsilon(D))^{-D}$. The proof of Mahler's theorem given in [7] ${ }^{45}$ uses Blichfeldt's theorem [2] ${ }^{35}$ that a region of volume >1 contains two points x, y congruent modulo \mathbf{Z}^{D}. Van der Corput $[4]^{40}$ generalized this to say that a region of volume $>K$ contains $K+1$ points congruent modulo \mathbf{Z}^{D}. If we use this in place of Blichfeldt's result we get an analogous generalization of Mahler's theorem. From it we conclude that for arbitrary $K \geq 1$,

$$
\operatorname{vol}(P) \leq K(\varepsilon(K, D))^{-D}
$$

This and a corollary complete the story.
Theorem 3.6. Let P be a convex polytope in \mathbf{R}^{D} with vertices in \mathbf{Z}^{D} and with $K=\#\left(P^{\circ} \cap \mathbf{Z}^{D}\right) \geq 1$. Then $\operatorname{vol}(P) \leq K(\varepsilon(K, D))^{-D}$.

Corollary 3.7. If $J=\#\left(P \cap \mathbf{Z}^{D}\right)$ then $J \leq D+K(D!)(\varepsilon(K, D))^{-D}$.
4. Toward best possible results. Here we indicate some reasons for our belief that the examples of [11] with $K=1$ and $D \geq 3$ are best possible. Suppose S is a lattice simplex with lone interior point $Y=$ $\Sigma_{0}^{D} \alpha_{1} X_{i}$, where X_{0}, \ldots, X_{D} are the vertices of S and $\alpha_{1} \geq \cdots \geq \alpha_{D} \geq \alpha_{0}$. We proved in $\S 2$ that for arbitrary $D, \alpha_{1}+\alpha_{2} \leq 5 / 6$, and $\alpha_{1}+\alpha_{2}+\alpha_{3} \leq$ 41/42. For $D=4$, if $\Sigma_{1}^{4} \alpha_{i}>1805 / 1806$ then $\alpha_{4}>1 / 43$. The minimum of $\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}$ subject to $\Sigma_{1}^{4} \alpha_{i} \geq 1805 / 1806, \Sigma_{1}^{3} \alpha_{i} \leq 41 / 42, \Sigma_{1}^{2} \alpha_{l} \leq 5 / 6$ and $\alpha_{1} \leq 1 / 2,0<\alpha_{4} \leq \alpha_{3} \leq \alpha_{2} \leq \alpha_{1}$ is $1 / 1806$, by elementary calculus. Since $\operatorname{Norm}(L) \geq 1 / 1806$ and $\operatorname{vol}\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}, \vec{e}_{4}, \Phi \vec{Y}\right)\{$ simplex $\}$ is $\frac{1}{4!}\left(1-\sum_{1}^{4} \alpha_{i}\right)$ $\geq \frac{1}{4!} \operatorname{Norm}(L), \Sigma_{1}^{4} \alpha_{i} \leq 1805 / 1806$. This proves that for $D=3$, (4) the
simplex with vertices $0,2 \vec{e}_{1}, 3 \vec{e}_{2}, 7 \vec{e}_{3},\left(43 \vec{e}_{4}\right)$ has maximal coefficient σ of asymmetry about Y. Unfortunately it does not show that for arbitrary D, $\Sigma_{1}^{4} \alpha_{i} \leq 1805 / 1806$.

For any D, the α_{i} must be rational. For let Λ^{\prime} be the lattice generated by $\left\{X_{i}-X_{0}, 1 \leq i \leq D\right\}$. If some α_{i} were irrational there would be infinitely many points of Λ in a fundamental cell of Λ^{\prime} since no two $n\left(Y-X_{0}\right), n \geq 1$, would be congruent $\bmod \Lambda^{\prime}$. But Λ is discrete so this is impossible. So let $\alpha_{i}=v_{t} / x_{i}, 0 \leq i \leq D$, with $v_{i}, x_{i}>0$ and $\operatorname{gcd}\left(v_{i}, x_{i}\right)=$ 1 for $0 \leq i \leq D$).

The numbers $2,3,7,43$ in the simplex examples for $D=3$ or 4 are the start of a well-known sequence given recursively by $y_{1}=2, y_{n+1}=$ $y_{n}^{2}-y_{n}+1$ for $n \geq 1$. The $y_{i}{ }^{\prime}$ s are pairwise relatively prime, and $\Sigma_{1}^{D} y_{l}^{-1}$ $=1-\left(y_{D+1}-1\right)^{-1}<1$. Thus the lattice simplex S_{D} with vertices 0 and $y_{i} \vec{e}_{i}, \quad 1 \leq i \leq D$ has the single interior lattice point $Y_{D}=\sum_{1}^{D} \vec{e}_{i}$. This example (here slightly modified) is first given in [11] and has at least $2^{2^{D-1}}$ boundary lattice points. We believe it to be best possible in the sense that the coefficient σ_{D} of asymmetry for S_{D} about $Y_{D} \geq \sigma$ for any other lattice simplex S with lone interior lattice Y, about Y.

Let S be such a simplex, and $Y=\Sigma_{0}^{D} \alpha_{i} X_{i}=\Sigma_{0}^{D}\left(v_{t} / x_{t}\right) X_{i}$ as before, with $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{D} \geq \alpha_{0}>0$. With the additional assumption that $\left(x_{1}, x_{2}, \ldots, x_{D}\right)$ are pairwise relatively prime we can prove this conjecture, or what is the same, the following theorem.

Theorem 4.1. Suppose $\left(x_{1}, x_{2}, \ldots, x_{D}\right)$ are pairwise relatively prime. Then $\Sigma_{1}^{D} v_{i} / x_{t} \leq \Sigma_{1}^{D} 1 / y_{i}$.

Conjecture. This holds whether or not the x_{i} 's are pairwise relatively prime. (We have seen so for $1 \leq D \leq 4$.)

We begin the proof of Theorem 4.1 with an old Egyptian fractions result.

Lemma 4.1. (Curtis [5], Erdös [6].) Let $x_{1}, x_{2} \cdots x_{D}$ be positive integers. If $\Sigma_{1}^{D}\left(1 / x_{i}\right)<1$ then $\Sigma_{1}^{D}\left(1 / x_{i}\right) \leq \Sigma_{1}^{D}\left(1 / y_{i}\right)=1-\Pi_{1}^{D} y_{i}^{-1}=1-$ $\left(y_{D+1}-1\right)^{-1}$.

Let $\varepsilon_{k}=\left(y_{k+1}-1\right)^{-1}$.
Lemma 4.2. For every $K, D \geq 1$ if $\left(v_{1}, x_{t}\right), 1 \leq i \leq D$ are D pairs of relatively prime positive integers, and if $1-\varepsilon_{D+K-1}<\Sigma_{1}^{D}\left(v_{i} / x_{i}\right)<1$ then $\Sigma_{1}^{D} v_{i} \geq D+K$.

Proof. (I. Borosh, private communication.) If each v_{i} / x_{t} is replaced with v_{l} copies of $1 / x_{i}$ there are then at least $D+K$ Egyptian fractions in the sum, by Lemma 4.1.

Lemma 4.3. Let $D \geq 2, K, v_{1} \cdots v_{D}, x_{1} \cdots x_{D}$ be positive integers such that $\operatorname{gcd}\left(v_{i}, x_{i}\right)=1$ for $1 \leq i \leq D$ and $\operatorname{gcd}\left(x_{i}, x_{j}\right)=1$ for $1 \leq i<j \leq D$. Let $M=\Pi_{1}^{D} x_{i}$ and $A_{t}=M v_{i} / x_{i}, 1 \leq i \leq D$. Let $\alpha_{i}=v_{i} / x_{i}=A_{i} / M$ and suppose $\operatorname{gcd}\left(A_{D}, M\right) \leq \operatorname{gcd}\left(A_{i}, M\right), 1 \leq i<D$, or equivalently $x_{D} \geq x_{i}$. Let $\theta_{2}, \theta_{3} \cdots \theta_{K}$ be any $K-1$ rational numbers $0<\theta_{t}<1$. If

$$
1-\varepsilon_{D+K-1}<\sum_{1}^{D} \alpha_{i}<1
$$

then there exist positive integers $a_{1}, a_{2} \cdots a_{D}$, m such that
(i) $a_{i} / m<\alpha_{i}$ for $1 \leq i \leq D$
(ii) $m \alpha_{D}-a_{D} \neq \theta_{j}$ for $2 \leq j \leq K$, and $m \alpha_{D}-a_{D} \neq \alpha_{D}$, and
(iii) $\Sigma_{1}^{D}\left(m A_{i}-M a_{i}\right)<M$.

Remark. For Theorem 4.1 we only need the case $K=1$.
Proof. By Lemma 4.2, $\quad \Sigma_{1}^{D}\left(v_{i}-1\right) \geq K$. Since $\operatorname{gcd}\left(A_{D}, M\right) \leq$ $\operatorname{gcd}\left(A_{i}, M\right)$ for $i \neq D, x_{D} \geq x_{i}$ for $i \neq D$. Since $\Pi_{1}^{D}\left(1 / x_{\imath}\right) \leq 1-\Sigma_{1}^{D} v_{\imath} / x_{t}$ $<\varepsilon_{D+K-1}, x_{D}^{D} \geq\left(\varepsilon_{D+K-1}\right)^{-1}$ and $x_{D}>K+1$. For it is readily seen that $\varepsilon_{t}^{-1} \geq 2^{2^{1-1}}$ for $i \geq 1$, and $D-\log _{2} D \geq 1, K-(\log \log)_{2} K \geq 2$ so that $D+K-2 \geq 1+\log _{2} D+(\log \log)_{2} K$ and $2^{2^{D+K-2}} \geq K^{2 D}>K+1$ for $K>1$, while for $K=1$, we have directly $\varepsilon_{D}^{-1}>2$ since already $\varepsilon_{2}^{-1}=6$. Now by the Chinese remainder theorem, for each integer $r, 1 \leq r \leq K+1$ there exists an $m>1$ such that $m v_{i} \equiv 1 \bmod x_{i}$ for $1 \leq i<D$ and $m v_{D} \equiv$ $r \bmod x_{D}$. (This is why we had to assume the x_{i} relatively prime). Since $x_{D}>K+1$ these $K+1$ possibilities are distinct. Choose r so that r / x_{D} $\neq \alpha_{D}, \theta_{2}, \theta_{3} \cdots \theta_{K}$. Let $a_{i}=\left(m v_{i}-1\right) / x_{\imath}$ for $1 \leq i<D$, and $a_{D}=$ $\left(m v_{D}-r\right) / x_{D}$. These are integers because of the congruence conditions, and clearly (i) and (ii) are satisfied. Now since $x_{D} \geq x_{i}$ for $1 \leq i<D$, and since $\sum_{1}^{D} v_{i} \geq D+K$,

$$
(K+1) / x_{D}+\sum_{i=1}^{D-1}\left(1 / x_{t}\right) \leq \sum_{1}^{D}\left(v_{i} / x_{i}\right)<1
$$

implies that

$$
\sum_{1}^{D}\left(m v_{t} x_{t}^{-1}-a_{i}\right)=\left\{\sum_{1}^{D-1} 1 / x_{i}\right\}+r / x_{D}<1
$$

which is equivalent to (iii).

Suppose $0, X_{1} \cdots X_{D}$ are the vertices of S, and are in \mathbf{Z}^{D}. If $Y_{1}, Y_{2} \cdots Y_{K}$ are lattice points of S° and $Y_{1}=\Sigma_{1}^{D} \alpha_{i} X_{i}$ with relatively prime x_{i}, and if $\Sigma_{1}^{D} \alpha_{i}>1-\varepsilon_{D+K-1}$ then let $\theta_{j}, 2 \leq j \leq K$ be the X_{D} coefficient of Y_{j}. Apply Lemma 4.3 and let $Y_{K+1}=m Y_{1}-\sum_{1}^{D} a_{i} X_{i}$. Then $Y_{K+1} \in S^{\circ}$ and different from $Y_{1} \cdots Y_{K}$ by Lemma 4.3. The case $K=1$ of these conclusions is Theorem 4.1.

Remark. The estimate due to Borosh is not best possible. It would be interesting to know the maximum value of $\Sigma_{1}^{D} v_{i} / x_{i}$ subject to $0<v_{i} / x_{i}$, $\sum_{1}^{D} v_{i} / x_{i}<1$ and $\Sigma_{1}^{D} v_{i}=D+K-1$.

References

1. H. F. Blichfeldt, A new principle in the geometry of numbers, with some applications, Trans. Amer. Math. Soc., 15 (1914), 227-235.
2. , Notes on geometry of numbers, Bull. Amer. Math. Soc., 27 (1921), 150-153.
3. C. Caratheodory. (See H. G. Eggleston, Convexity, Cambridge University Press (1958), p. 35.)
4. J. G. van der Corput, Verallgemeinerung einer Mordellschen Beweismethode in der Geometrie der Zahlen II, Acta Arith., 2 (1936), 145-146.
5. Curtis, On Kellogg's Diophantine Problem, Amer. Math. Monthly, 29 (1922), 380-387.
6. P. Erdös, $A z \frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}=\frac{a}{b}$ egyenletegész számú megoldásairól, Math. Lapok, (1950), 192-210.
7. C. G. Lekkerkerker, Geometry of Numbers, p. 35, 40, 45, and 55, Wolters-Noordhoff, Groningen, 1969.
8. K. Mahler, Ein Übertragungsprinzip für konvexe Körper, Časopis Pěst. Mat. Fyz., 68 (1939), 93-102.
9. D. B. Sawyer, The lattice determinants of asymmetric convex regions, J. London Math. Soc., 29 (1954), 251-254.
10. P. R. Scott, On convex lattice polygons, Bull. Austral. Math. Soc., 15 (1976), 395-399.
11. J. Zaks, M. A. Perles and J. M. Wills, On the lattice polytopes having interior lattice points, Elemente der Math., 37, No. 2 (1982), 44-46.

Received May 28, 1981 and in revised form November 2, 1981.

Texas A \& M University
College Station, TX 77843

[^0]: \dagger Here the number above the brackets gives the page number on which this result is found in Lekkerkerker [7].

