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INDICATOR FUNCTIONS WITH
LARGE FOURIER TRANSFORMS

GAVIN BROWN, IRVING GLICKSBERG AND EDWIN HEWITT

We consider the question of when the function

/»-> t\F(t)

is bounded, where 1F is the indicator function of a compact set F in R
and " " denotes the Fourier transform.

We are concerned in this note with a question of P. R. Masani about
the rate of decrease of certain Fourier transforms on the real line R.
Throughout, all unexplained notation is as in [1]. For/ E S}(R), we write

(1) /(/) = (2ir)-ι/2Γf(x)exp(itx) dx (t E R)
- 0 0

(It is convenient to use exp(itx) in the integral in (1) in place of the
equally common exp( — itx).)

Masani has asked whether or not there exist compact subsets F of R
with Lebesgue measure λ(F) > 0 such that the function

(2) t^t\F{t)

is unbounded. By the Cantor-Bendixson theorem, we may suppose that F
is perfect. For a bounded closed interval [a, b] C R, the function t\[ah](t)
is

(3) - i(2ίτ)~I/2(exp(i&0 - exp(iYtf)),

which is trivially bounded. For a = inf F and b — sup F, write U =
[α, b] \ F a n d get

(4) ΛF(t) + tϊυ(t) = -i(2τry

so that the function (2) is bounded if and only if the function

(5) t»tlu(t) = hu(t)

is bounded. Thus Masani's problem is equivalent to the problem of
finding bounded open subsets U of R whose complements contain no
isolated points and for which the function hυ is unbounded.

We note a simple case in which hu is bounded. Suppose that

(6) λ([inf [/, supί/]\ί/) = 0,
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as happens for example if U is the union of the complementary intervals
in [0,1] of Cantor's ternary set. Then (4) and (6) give

(7) / 0 + t\v{t) = -/(2π)~1 / 2(exp(/(supt/)0 - exp(/(inf U)t)).

The same holds if U is the union of a finite family of open sets for each of
which (6) holds.

We have no complete classification of the open subsets U of R for
which the function hυ is bounded. However, there is one special case
where the answer is clear, as a consequence of a theorem of L. H. Loomis
[3].

Given a closed subset F of R, let P(F) be the set of all condensation
points x of F (every neighborhood of x contains an uncountable subset of
F). As is well known, P(F) is perfect or void and F\P{F) is countable.

THEOREM A. Suppose that the bounded open subset UofR is the union
of a countably infinite family of non-abutting open intervals (]α7, bJ[}JLι and
that the boundary W = U~ \U has an accumulation point outside of the
perfect set P(dU).1 Then the function hυ is unbounded.

Proof. For convenience we will use @, the usual space of rapidly
decreasing complex-valued C°° functions on R. The Fourier transforma-
tion (1) maps @ onto the corresponding space of functions on the dual
line. The identity

(8) (g'ΪU) =-itg(t) (ge@)

is standard.
We now assume that hυ is bounded. We will ultimately obtain a

contradiction. For all real-valued g G @, (8) and ParsevaPs identity give

(9) ihυ * g(0) = i(2*rι

2

-

-oo

(2π)-ι/2Γ\u(x)g'(x)dx
- 0 0

00
rbj \ —V 2 V

7 = 1 "«, 7 = 1

1 Note that P(dU) is void if and only if dU is countable. In this case any accumulation
point of dU will serve our purpose.
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Let / be any real-valued function in @ and let 5 b e a fixed real number.

Replace g in (9) by the function

t-^f*g(s + t).

The identity (9) becomes

(10) ihυ*f*g(s)

= (2ττΓ1 / 2 1

Now consider a point of accumulation x0 oΐ dU that does not lie in
P(dU). There is a real valued function/in @ such that/(x0) = 1 and/
vanishes in an open neighborhood Fof the set P(dU). We choose and fix
such a function /. Let g be a real-valued function in @ that vanishes on
dU\V. For such a function g, the function fg vanishes at all of the points
ύj and bj, as a moment's thought shows. Thus the identity (10) shows that

hυ* / * g = 0.

For each x not in 9f/\ K, we can define the real-valued function g in @ so
that g(x) = 1 and so that g vanishes on 9t/\ F. Therefore the spectrum of
the function hυ * /is contained in the countable closed set 9C/\ V, which
is contained in dU\P(dU). Loomis ([3], Theorem 4) has shown that a
bounded measurable function on a locally compact Abelian group G
whose spectrum is compact and contains no nonvoid perfect subset is
almost periodic. (For the present case, G = R, these are exactly the
functions in S^R) with bounded countable spectrum.) Therefore the
function hv * /is continuous and almost periodic for all functions/of the
form described above.

Now let

k=\

be a trigonometric polynomial on R such that

Computing a convolution at 0, we use (11) and (10) to infer that

(12) \hl

ϊ [M)g(6,)-/(α>(α7)]- Σ
j=\ k=\
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Since f(x0) = 1, there is an open neighborhood W of x0 with compact
closure such that \f(x) |> f for all x G W. Plainly J^~ and P(dU) are
disjoint. Since W Π (317) is (countably) infinite and disjoint from P(dU),
it contains a point JC, of dU that is isolated in dU and is different from all
of the points c,, c 2,... ,cn. Note that xx cannot be x0 and that the only
possible isolated points of dU are endpoints aj and bj of the component
intervals of U.

Suppose that we have a real-valued function g in @ such that
g(xj) = 1, g vanishes in a neighborhood of the compact s e t ^ t / x ^ } ) U
{cl9c2,...9cn}9 and \\g\\{ = 1. Put this g into formula (12). Since /
vanishes on P(dU) and g vanishes on 3Ϊ7 except at xl9 the only surviving
term in the second line of (12) is ±f(xι)g(xλ). Since [/(jc^l^f by
construction, (12) yields

(13) i* | / (* ,)*(* i ) |M|s(* ,) | = *,

a contradiction. Therefore the function hυ is unbounded.
To finish the proof, we need only to find a function with the

properties ascribed to g in the preceding paragraph. This is standard save
for the requirement that g be in @. Imitating the standard construction,
we suppose first that JC, = 0. Let δ be any positive real number, and take ψ
to be an even nonnegative C°° function with support [— \8, \8] for which

Define g as the convolution ψ * ψ. Plainly g is in @ and has support
[ —δ, δ]. Since ψ is real-valued, we have

g(0) = (2ττΓ1/2 Γψ(x)ψ(-x) Λc = 1
- 0 0

and

11*11, - (2ir)-]/2fg(t)dί = ( 2 f f ) - l β °
^ - o o

For Λj 7̂  0, use the translated function x -> g(—JCJ + JC), whose support is
[xj — δ, xx + δ] and whose Fourier transform at t is &φ{ixλi)g(t). D

REMARKS. Let (yy )£=i be any bounded sequence of complex numbers
such that (| γy |)JL i is bounded away from zero. Consider the function

7 = 1
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where the open set U = U°°=1 \a^ bj[ satisfies the hypotheses of Theorem
A. The proof of Theorem A can be repeated with an obvious modification
in (11) to prove that the function

t^tφ(t)

is unbounded. If/is a continuous function on R such that/ ' exists except
possibly at a countable set of points and if b o t h / a n d / ' are in £,(R), then
/is absolutely continuous and

for all t e R. Thus the function

t - tf{t)

is not only bounded but is o{\). Adding to such / any function φ of the
form (14), we get more functions g in Cj(R) for which the function

t-tg(t)

is unbounded.

EXAMPLE A. Let []aj9 bj[}JLx be a countably infinite family of non-
void, non-abutting open intervals in R and as above write U for the set
U°?=1 ]αy, bj[. Suppose that U is bounded. It is easy to see that dU is the
closure of the countable set AT = {aλ, a2,.. . ,#„, . . . } U {bu Z>2,.. .,/?„,...}.
If H~ is countable, then the open set U satisfies the hypotheses of
Theorem A, since the perfect set P(dU) = P(H~) is void. A continuum
of such open sets exist and can be constructed ad libitum. Thus open sets
U for which hυ is unbounded exist in profusion.

EXAMPLE B. We now present a construction that is roughly the
antithesis of Example A, in that the set H consists solely of isolated
points, while the set P(H~) is equal to H~ \ H and is homeomorphic to
Cantor's ternary set. At the same time the function hυ is unbounded for
this set U. Thus we will show that the hypotheses of Theorem A are not
necessary in order for the function hυ to be unbounded.

For every positive integer «, let En be the set of all sequences
ε = (ε l 9 ε 2 , . . . ,ε n ) where each entry εy is either 1 or — 1 . Let Cn be the
subset of En consisting of all ε with εx = 1. For each ε in En, let /(«, ε) be
the open interval

(15) l i*/-'-**- 1 - 1 , Σ*y4-' + i4-"-
Jy-i y-i

Let U be the union of all of the intervals I(n, ε) as ε runs through all of
the 2" elements of En and n runs through the set of all positive integers.
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We find that

(16) I(n,e) Π I(n\ ε') = 0

unless n — nr and ε = ε'. As in Example A, write H for the set of all
endpoints of all of the intervals /(«, ε). Let D be the set of all numbers of
the form

Σ βj4-J>
7 = 1

where each βy is either 1 or — 1. We find that

(17) D = H~\H=dU.

The details of proving (16) and (17) are simple enough but are also
somewhat tedious, and we omit them. Note that

(18) s u p l / = i , inf £ / = - } , and λ(l/) = ±.

We now compute the function hu.
Given an interval ]c — γ, c + γ[ (c e R, γ > 0), we have

(19) exp(/(c + y)t) - exp(/(c - y)t) = 2/ sin(γθexp(/cί).

For every positive integer n, (3) and (19) show that

(20) 2 ' W 0 = Σ 2an(i4—
\ \y=l

exp ί

I Π [exp(ί4-r0 + exp(-ι4~Γ/)]

Add (20) over all positive integers n to obtain

(21) M 0 = 1 2"+1sin(μ-"-V)
n=\ r=\

For a given positive integer p, let us compute (21) for / = 2774̂ . For
n — 1,2,...,/?— 1, we have

(22) s i n ^ - " - ^ ^ ) = sin(τr4^-n-1) = 0.
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For n = p, we have

(23) άa(±4-p-χ2ir4p) = sin(^τr) = 2"1/2.

Also for n — p, we have

P P

(24) Π cos(4~r2τ74^) = Π cos(2ττ4^-r) = 1.
r=\ r=l

For Λ > /? + 1, we have

(25) Π cos(2ir4*""r) = 0,

since

cos(2ττ4/7~/7~1) = cos(^ττ) = 0.

Combining (21)—(25), we see that

(26) *£ /(2ir4*) = 2* + 1 / 2 ,

so that hυ(t) is unbounded.

It is of some interest to examine the rate of growth of the function
hv{t) for £/'s as in Theorem A.

EXAMPLE C. Let φ be any continuous nondecreasing function on
[1, oo[ such that Hm^^φit) = oo. We can find a bounded open set U
such that hυ(t) is unbounded and

hu(t) = 0(Ψ(\t\)).

To find such a set U9 let ψ = ψ(w) be the function defined on [φ(l)> oo[
such that: if φ assumes the value u at exactly one point t, then ψ(w) = ί; if
φ assumes the value u exactly in an interval [a, b] with a < b, then
ψ(w) = b. That is, ψ is as close to the inverse function of φ as one can get.
It is plain that limM^00 ψ(w) = oo and that ψ is strictly increasing.

It is easy to construct an infinite series Σ™= λ rn of positive terms such
that

( 2 7 ) . ! , ' • = iϊFΠ)
for all positive integers N. Let {]an, bn[}™=λ be a set of open intervals with
the following properties for all n:

an<bn> bn"an = rn'y bn+\<an>

and

lim an — 0.
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It is plain that P(dU) — 0 , and so by Theorem A the function hv(t) is
unbounded. For every positive integer N, we have

(28)
N

Σ (exp(/V) -

Given a real number / of absolute value at least 1, let N be the integer
such that

N<φ(\t\)<N

This gives us

By our definition of ψ, we have

Thus the function hυ(t) can go to infinity arbitrarily slowly.
Finally we compute the exact rate of growth of the function ha(t) for

the open set U of Example B. The equality (26) shows that

(29) \ha{t)\ >Ctχ/2

for arbitrarily large positive values of t. On the other hand, consider all of
the intervals I(n,ε) for n<N,N being an arbitrary positive integer.
There are exactly 2N+ x — 1 such intervals. The sum of the measures of all
of the intervals I(n, ε) forn>N+ 1 is 2~N~2. Accordingly, (28) shows
that

(30)

For a given / of absolute value at least 4, define N by

From (30) we get
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so that

(31) M 0 l = θ ( M 1 / 2 ) -
The estimates (29) and (31) show that | hυ(t) \ = O(\ t \a) for a = \ but for

no smaller exponent a.

We are indebted to Professor Masani for the following remarks on the
origin of his problem.

Question. Let 96 be a complex Banach space, and let {(U(t): t E R)
be a strongly continuous group of linear isometries of 96 onto 96 with
infinitesimal generator A. For what bounded Borel subsets S of R is it the
case that

(32) Range ί U(t) dt C Dom A?
Js

This question arises naturally in the theory of 96-valued stationary mea-
sures over R. See [4], page 303, Theorem 3.6. The inclusion (32) holds
provided that S is a closed interval. This is proved in [2], §10.3, page 307.
Thus (32) holds if S is a union of finitely many closed intervals.

Now suppose that 96 is a Hubert space. The problem of the inclusion
(32) reduces to the problem of Masani stated in the second paragraph of
this note. To see this, write

U(t) = f &φ(itx)d(E(x))9 so that A = ( ixd(E(x)).

It is then easy to see that

Ju(t)dt = Jls(x)d(E(x))

and that

(33) A (U(t) dt C ίixls{x) d(E(x)).
JS JR

Now (32) holds if and only if the operator on the left side of (33) is
continuous on 96, that is, if and only if the function XH>X\S(X) is
^-essentially bounded on R. It is also easy to see that a bounded Borel set
S satisfies (32) for all U( ) if and only if the function x\-+x\s(x) is
bounded on R. Thus finding the bounded Borel sets satisfying (32) yields
the problem stated in the second paragraph of this note.

Finally we remark that Masani [4], page 304, Proposition 3.8, has
proved a special case of Example A.
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