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ON THE TRANSFORMATION OF
FOURIER COEFFICIENTS OF CERTAIN

CLASSES OF FUNCTIONS II

KENNETH F. ANDERSEN

If {a y}f is the sequence of Fourier cosine coefficients of a function
in the space Lp, 1 </? < oo, a Theorem of Hardy states that the
sequence of averages {(Σ*= I cij)/v}f arise as Fourier cosine coefficients
of a function also in Lp. Analogous results for the sequence {2°?=,, a,-//}?
were obtained by Bellman. In this paper, sufficient conditions on the
non-negative weight function ω(x) are given in order that the weighted
Lebesgue space Lp(ω(x) dx) may replace the spaces Lp in the Theo-
rems of Hardy and Bellman.

1. Introduction and statement of results. Let {a,,}™ denote the
sequence of Fourier cosine coefficients of the integrable function f(x),
that is,

av-—\ f(x)cosvxdx, y = 0,1,2,. . . ,

and let Ao — A'o = a0,

1 V 00

y = l j = v

G. H. Hardy [4] has shown that if f(x) belongs to Lp(09 TΓ) for some
/?, 1 < p < oo, then {̂ 4,,}̂  is the sequence of Fourier cosine coefficients of
a function F(x), also in Lp(0, TΓ); R. Bellman [3] proved the analogous
statement for {A'v}™, except that now/? satisfies 1 <p < oo. These results
have been generalized by several authors in various directions. In particu-
lar, we [1] have recently characterized those function spaces Lσ(0, TΓ),
given by a rearrangement invariant metric σ, that may replace the Lp(09 TΓ)
spaces in the Theorems of Hardy and Bellman.

In this paper, we consider a generalization in a direction complemen-
tary to that of the rearrangement invariant spaces. We shall consider here
weighted spaces of functions Lp(ω) = {/: /o

ff \f(x) \pω(x) dx= \\f ||£ ω <
oo}, giving conditions on the non-negative weight function ω(x) which
ensure that Lp(ω) may replace the (unweighted) spaces Lp in the Theo-
rems of Hardy and Bellman. We suppose throughout, when required, that
functions / and weights ω defined initially on (0, TΓ) are defined on
(-oo, oo) by the requirements of evenness on (-TΓ, TΓ) and 2τr-periodicity.
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Since we shall be concerned with the Fourier cosine coefficients of an
/in Lp(ω) we shall have to have Lp(ω) C l 1 . Holder's inequality

ff\f(x)\dx

(x) \pω(x) dx\ I / ω(x) dx\ if 1 < p < oo,

( Γ\f(x)\ω(x) dx)i ess-sap \Mx)) iίp=l,
\ *0 ' ^ (0,7Γ)

and its converse show that this is equivalent to the requirement that

Γω(xylAp~l)dx< oo if l < / 7 < oo,

ess-sup l/ω(x) < oo iίp = 1.
(O,τr)

Further, since we wish Lp(ω) to contain the constant functions, we
assume that J£ ω(x) dx < oo. Thus, θ(u) given by

θ(u)=θ{ω,p;u)

suplf+Uω(x) dxY *(f+Uω(xyl/(p~l) dx\ '* if 1 <^<oo,

sup / ω(x) dxU ess -sup \/ω(x)\ iίp = 1,

is finite for all u > 0, and we assume throughout that ω satisfies the
additional mild condition /o

δ θ(u) du/u < oo for some δ > 0. The restric-
tions we have placed on ω thus far may then be summarized by the
equivalent, single requirement that

(1.1) ( ( , p ; ) ^
Q U

For example, ω(x) = | sin x |α satisfies (1.1) if and only if

-I <a<p - I i f l < / 7 < o o

-1 <a < 0 iίp = 1.

More generally, the well known and important Muckenhoupt class Ap of
weights, defined by the requirement that θ(u) < Cw, satisfy (1.1). Of
course, a weight satisfying (1.1) need not satisfy the Ap condition; for
example, with/? = 2, ω(x) = x~\log(π/x))~2 satisfies (1.1) but not the
A 2 condition.

We can now state our results.
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THEOREM 1. Let p — 1. Suppose ω satisfies (1.1) and there is a constant
C such that for almost all t,0 < t < m,

(1.2) Γω(x)dx<Ctω(t).

If {av}™ is the sequence of Fourier cosine coefficients of an f E L\ω) then
{̂ 4̂ }̂  is the sequence of Fourier cosine coefficients of a function F also in
Lι(ω); moreover, there is a constant c independent of f such that \\F\\X ω <

cll/ll,,..

Since ω clearly satisfies (1.2) if ω satisfies the Aλ condition, we have
the following result.

COROLLARY \. If ω is an AX weight then the conclusion of Theorem 1
holds.

THEOREM 2. Let 1 <p < oo. Suppose ω satisfies (1.1) and that there is
a constant C such that for some ε > 0

holds for all 0 < r <π. If{av}™ is the sequence of Fourier cosine coefficients
ofan fEz Lp(ω) then {Av}% is the sequence of Fourier cosine coefficients of
a function F also in Lp(ω); moreover, there is a constant c independent of f
such that \\F\\Piω<c\\f\\p^

If ω satisfies the Ap condition, then as we shall show, (1.3) is satisfied
so that we have the following corollary.

COROLLARY 2. // 1 < p < oo and ω satisfies the Ap condition then the
conclusion of Theorem 2 holds.

Concerning the sequences {A'p} we have the following results.

THEOREM 3. Let p = 1. Suppose ω satisfies (1.1) and there is a constant
C such that for almost allt,0 <t < π,

If {av}™ is the sequence of Fourier cosine coefficients of an f E L\ω) then
{A'v}™ is the sequence of Fourier cosine coefficients of a function F also in
Lι(ω); moreover, there is a constant c independent of f such that \\F\\X ω <

ll/ll
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THEOREM 4. Let 1 <p < oo. Suppose ω satisfies (1.1) and that
a constant C such that for some ε > 0

(1.5)

holds for allO < r <π. If {av}™ is the sequence of Fourier cosine coefficients
of an f E Lp(ω) then {A^}^ is the sequence of Fourier cosine coefficients of
a function F also in Lp(ω); moreover, there is a constant c independent of f
such that \\F\\p^<c\\f\\p^

As Bellman [3] pointed out, there is a certain 'duality9 between the
Theorems for {Av} and {A'v}. His duality Theorem may be generalized as
follows. For a sequence {bv}$ let BQ = b0 and B'v = 2j=vbj/j for v =
1,2,....

THEOREM 5. Let 1 <p < oo. Suppose ω satisfies (1.1) and that there is
a constant C such that for some ε > 0

(1.6)

holds for 0 < r < π. If {av}™ and {bv}™ are the sequences of Fourier cosine
coefficients of functions f E: Lp(ω) and g E Lp'(ω~λ/(<p~λ)) respectively,
then {Av}™ and {B'v}™ are the sequences of Fourier cosine coefficients of
functions F E Lp(ω) and G E Lp'(ω~ι/(p~l)) respectively which satisfy the
identity

(1.7) f{f(x)G(x)-F(x)g(x)}dx = O.
0

The proofs will depend on the following Lemma which is of interest
in its own right.

LEMMA. Let 1 <p < oo and suppose ω satisfies (1.1). If {av}™ is the

sequence of Fourier cosine coefficients of a function f E Lp(ω), then {cv}™

given by c0 = 0, cv — av/v, v — 1,2,... is the sequence of Fourier cosine

coefficients of a function H also in Lp(ω); moreover, there is a constant c

independent of f such that \\H\\Pttύ < c\\f\\P9ω.

2. Proof of the lemma. According to [8, p. 180] the function H is
given by

1 dt, 0<x<π.
2 I sin(//2) I
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We shall carry out the proof assuming that 1 < p < oo the required
modifications for the case p — 1 will be self-evident.

Consider first Hx(x) where H(x) = Hλ(x) + H2(x) with

ί)log
1

dt.

From Holder's inequality and the periodic property of / and ω it follows
that

' ) I *

X

and hence

(2.1)

Now to treat H2(x), observe first that for fixed u, 0 < u < 1, we have

(2.2) fω(x) f |/(x + ί)
^0 [J\t\<πu/2

dt
<πu/2

dx

To see this, choose the integer N so that Nu > 2, and let, for convenience,
α = Ίΐu/2. Then the left side of (2.2) is bounded above by

N

dx.
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Enlarging the inner integral and applying Holder's inequality shows this is
further bounded by

k=χJ{k-\)a [J{k-2)a

k=lJ(k-\)a [J(k-2)a

{k~2)a

N

\p Σ
k=\J(k-2)a

where to obtain the last inequality we have used the definition of θ.
Finally, since the intervals ((k — 2)a,(k + \)a) have limited overlap, we
obtain (2.2).

Returning to H2(x) we have

!/( )I (/
-ττ/3 \J2\sin(t/2)\ U

I I
t\<ττu/2

by an appeal to Fubini's Theorem. Minkowski's inequality for integrals
followed by (2.2) then yields

U Ή \\/P

JH2(x)fo,(x)dx)

A change of variable in the first integral on the right shows, in view of
(1.1), that

lf\ H2(x) | M * ) dx)'* c(f\f(ή M O dt)
W o / V 'O '

This, together with (2.1), completes the proof of the lemma.

VP
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3. Proof of Theorem 1. Assume first that a0 = 0. Then as Hardy
[4] has shown, F is given by F(x) = [Fx(x) + H(x)]/2 where H is the
function of the Lemma and Fx(x) = \* f(t)cot(t/2) dt. Thus it suffices to
prove that || Fx II 1?ω < c\\ f II l ω . To see this, observe that cot(ί/2) < 2/t so
that

ω(x) dx < 2 fω(x)l f\f(t) \ ^) dx

<2cΓ\f(t)\ω(t)dt

by Fubini's Theorem and the hypothesis (1.2).
If now a0 7̂  0, the above argument shows that there is a function

F(x) with Fourier cosine coefficients { ĵ,}^ and which satisfies
\\F- ao/2\\lω < c | | / — ao/2\\lω. Now the triangle inequality and the
observation

π

shows that ll-FΊI^ω ^ c | | / | | l f W for some constant c. This completes the
proof of Theorem 1.

4. Proof of Theorem 2 and Corollary 2. We prove the Theorem
first. Just as in the proof of Theorem 1, we may assume that a0 = 0 for
the general case follows easily from this, and it therefore suffices to prove
that

(4.1) fω(x) ff(t) £ P

 dx < c f\f(t) γω{t) dt

for some constant c. According to [6] (or [2]) a sufficient (and necessary)
condition for (4.1) to hold is that

ω(x)dxj ^χ-P'ω
v-l/(/?-l)

dx

for all 0 < r < π. Since Lemma 2 of [2] shows that (4.2) and (1.3) are
equivalent, the proof is complete.
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To prove the Corollary, we shall show that (1.3) holds if θ(u) < Cu.
To see this, note that the definition of θ(t) yields

for 0 < r < ί < 7Γ. Multiplying this by (r/t)Bt~p'~λ and integrating the
result over r < t < π leads by Fubini's Theorem to

Transposing the negative term on the left side and dominating it in terms
of Θ(ΊT) shows that (1.3) holds. This proves the Corollary.

5. Proof of Theorem 3. Observe first that (1.4) and Fubini's Theo-
rem shows that

(5.1) (\{x)\ff{t)dtdx^f\f{t)\dtf^f-dx

<cf\f{t)\φ)dt.

Hence, if/G Lι(ω),

(5.2) f\f(t) |log(V0 dt =f\f(t) I ( Γ v ) Λ

J0 J0 \Jt x i

= f[-χf\f{t)\dt\dx

^ ( Γ « W ( τ Γ\f(t) \dt)dx) I ess -sup l/ω(x))

^ cl Γ\f(t) I ω(t) dt) ( ess sup \/ω(x))
\J0 ^ V (O,τr) 7

< 00.

Now, if a0 = 0, Loo [5, pp. 272-274] has shown that (5.2) ensures that
F(x) is given by

(5.3) F(x) = (cot(x/2)jΓ/(0 dt + H(x)}/2

where H{x) is given by the Lemma. Hence (5.1) and the inequality
cot(x/2) < π/x show that F E. Lλ(ω). This proves the Theorem for the
case a0 = 0, and as before, the general case follows easily from this.
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6. Proof of Theorem 4. According to [6] and Lemma 2 of [2], the
hypothesis (1.5) ensures that

(6.i) ί » ( 4 τ / V ω i dtYdx < cf\f(t) M O dt.

Hence, Fubini's Theorem and Holder's inequality shows that

f\f(t)\log(v/t)dt = f[l-f\f{t)\dt)dx

VP'

O f™ / \ ί fπ / \~ι/(p~i) \

0 i ^ *§ '

< 00

whenever / G Lp(ω). Hence, if Λ0 = 0, F(x) is again given by (5.3) and
(6.1) shows that F E Lp(ω). The general case follows easily from this.

7. Proof of Theorem 5. The hypothesis and Theorem 2 show that
there is F G Lp(ω) with Fourier cosine coefficients {^4^ satisfying

(7.1) Γ\ F(x) |M*) dx < c Γ\f(x) fω(x) dx.

Further, since θ(ω~ι/(p~]\ pf\ u) — θ(ω, p\ u), the hypothesis and Theo-
rem 4 yields a G E Lp\ω~ι/{p~l)) with Fourier cosine coefficients {B^
satisfying

(7.2) f\ G(x) f'ω(xΓmp-l) dx < c Γ\ g(x) Y'ω{x)'mp-χ) dx.

If the left side of (1.7) is denoted by L(/, g), Holder's inequality followed
by (7.1) and (7.2) then shows that L is a bilinear functional on Lp(ω) X
Lp\ω~ VC -̂D) satisfying

(7.3) |L(/,g)|<c||/||^JIgl|/,>-.A,-i).

A direct computation (or an appeal to Bellman's Theorem [3]) shows
that L(/, g) = 0 whenever / and g belong to the class P̂ of finite linear
combinations of {cos vx}%. Choose fn, gn^^? with \\fn ~f\\p,ω^0 and
II 8n ~ gll^.c-v^-i) -> 0 as * -» oo (see [7, p. 89]). Then

, g) - [L(/, g) - L(f, gj] + [L(Λ Sn) ~

= L(/,g-gJ+L(/-/ l l,gJ
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so that (7.3) yields

[L(/, g) |< c{\\f\\pJ\g - gJl^ω-i/(,-υ + ll/-/JUfJlgΛll^ω-i/(^i)}

and since the right side tends to zero as n -» oo, it follows that L( /, g) = 0
and the Theorem is proved.
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