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NON-LINEAR REPRESENTATIONS OF
POINCARE GROUP AND GLOBAL SOLUTIONS
OF RELATIVISTIC WAVE EQUATIONS

JacqQues C. H. SIMON

Non-linear massive representations of the Poincaré group are proved
to be equivalent, on certain sectors, to massive linear representations
with an energy of definite sign. As a consequence (for small initial data
in these sectors), the existence of global solutions for massive wave
equations is proved.

1. Introduction. The aim of this article is to study a family of
non-linear representations of the Poincaré group P = SL(2,C)-T,, the
universal covering of the inhomogeneous Lorentz group. By non-linear
representation of a real Lie group one means a non-linear local action, in
a vector space, which has a fixed point (say the origin).

Non-linear representations of the Poincaré group appear in a natural
way in the study of relativistic wave equations, where the one parameter
group of evolution is imbedded in a non-linear representation of the
Poincaré group.

A formal study of this aspect of relativistic wave equations can be
found in references [2-5]. The main results, there, are that the evolution of
a massless wave equation is intertwined by a formal power series with the
evolution of the corresponding free wave equation, and that this is also
true for the evolution of a massive equation in some sectors of the space
of initial conditions.

One now proves that, for massive fields, this intertwining series is
convergent in some domains which will be explicated later. The proof
steps will seem natural to those who are familiar with linearization,
without small denominators, of vector fields [9]:

1. Check that there is no cohomological obstruction (no resonance
condition on the eigenvalues of the linear part, in the language of vector
fields) in order to prove the existence of the intertwining formal power
series.

In the present situation this is obtained by extending the calculus to
the enveloping algebra of P where the existence of a resolvent for the mass
operator in a tensor product of representations permits to trivialize the
cohomology. The study of the resolvent of the mass operator is done in
part 3 and the construction of the formal intertwining in part 4.
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2. Prove the convergence of the intertwining series. For vector fields
this is easily obtained if there are no small denominators. In the present
situation, the analogous condition is a bound for the norm of resolvent of
the mass operator in a tensor product of representations. Convergence of
the intertwining series is proved in part 5.

The intertwining power series between the time evolution of the
non-linear wave equation and the evolution of the corresponding free field
can be viewed as an abstract wave operator the existence of which, in
some sectors, implies the existence of global solutions.

The wave equation O + m?p = J(¢), J analytic around the origin
and J(0) = J’(0) = 0, is given in part 6 as an example of a wave equation
with (non-zero) global solutions for small initial data in some sectors.
Though the formulation is given in a four-dimensional space-time, the
results are not sensitive to space-time dimension.

The author wishes to thank Professor M. Flato for interesting discus-
sions and valuable information, and Dr. D. Sternheimer for careful
reading of the manuscript.

2. Notations. Suppose given a Lorentz basis ( X;, X, X;, X;), with
X, time-like, in the dual space Ty of T,. If p € T}, p = Z)_, p*X, one
uses the notation p = ( p°, p) withp = 33_, p’X,.

If m = 0 and ¢ = *1 one defines the surface

3
M(m,¢) = {P =3 pX,[(p) = (p°) = |F|? = m>, ep® > O}'
n=0

One denotes by d»(p) = dp/|p°| the invariant measure on M(m, ¢).
Given a unitary representation (¥, Z) of the stabilizer H of a point
p € M(m, ¢) in a Hilbert space =, one denotes by U™* the representation
of P induced by V on the space E(M(m, €)) = L3, (M(m, ¢), Z). In what
follows ¢ = 1 or 2. On T, the representation writes

(Ur<f)(p) = =P f(p) and (dUf)(p)=i(x,p)f(p),

where f € E(M(m, ¢)), p € M(m, ¢), g € T,, x € t, (the Lie algebra of
7,). U™* is norm preserving on E( M(m, ¢)). One denotes by E_( M(m, ¢))
(resp. E(M(m, ¢))) the space of C* vectors of U™* (resp. U™*| r,).
Given a compact set K C M(m, ¢), one denotes by E(K) the space of
functions in LY, (M(m, ¢), 2) with support included in K; obviously
E(K) C E(M(m, ¢)). Denote by E(M(m, €)) = UKE(K) the union being

taken over all K, compact, in M(m, ¢).

Suppose that m > 0 and p € M(m, ¢); one denotes by A( p) the set
of the Lorentz bases for which p'= 0; if K is compact in M(m, ), define
A(K) U,cx A(p) which can be identified with a compact subset of
SO(1, 3).
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Suppose that m;, > 0 and m, = 0; K, (resp. K,) being a compact
subset of M(m,, €) (resp. M,(m,, €)), define

= inf 0
o(Ki Ky)= _ inf ()

and

= inf °—1pl).
d(K,, K,) pEK2,l{lEA(K,)(ep |p|)

Given two topological vector spaces Y, Z, one denotes by {,(Y, Z) the
space of continuous n-linear symmetric mappings from Y” to Z and by
&(Y, Z) the space of formal power series from Y to Z of the form
=21 f"€ (Y, Z). When Y and Z are Banach spaces and A > 0,
9(Y, Z) is the Banach space of formal power series f € (Y, Z) such
that [ fIl =2, NIl /"Il < + 0.

Given two topological vector spaces Y, Z, 4 € §(Y, Z), and B €
&(Y,Y), one defines 4 * B € F(Y, Z) by

A*Bzz( 2 AP( 2 I,®Bvrtler. . ,)o)

n=1 \ l=p=n 0=¢g=p—1

where I, is the identity mapping on X A®,, .-+ ®, X (g times) and ¢, is the
symmetrization operator on X ®,, - - - ®, X (n times):

Un(‘Pl ®‘Pn 2 %(1) T ®(Po(n)’

! 0ES,

&, being the group of permutations of » elements. Whenever Y = Z one
defines [4, B], = A * B — B * A. Given two Banach spaces X and Y, the
norm on X ®,Y is defined by llzll =infZ, ;|a;;|, the infimum being
taken over all the ways of writing z = 3, ;a,,x,y, "with lx M =yl =1
In general we denote by X ®, Y the completed projective tensor product
of two locally convex topologlcal vector spaces X and Y.

3. Resolvent of the mass operator. Denote by (U, X) the linear
representation of the Poincaré group defined on the Banach space x=
E(M(m,, €)) ®, --- ®, E(M(m,, e)) by U= U™ &, ---&, U=
Choose a Lorentz ba81s L =(X,, X, X,, X;) of t,. The mass operator
Q(my,...,m,, ) is defined on the space D, = E (M(m,, ¢)) ®,

&, £ (M(m,, o) by

3
Q(ml’ <My, 8) == (dUX0)2 + .21 (dUX,)2
j=
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D, is a space of C* functions from II_, M(m,, ¢) to 2, &, --®, 2,
Therefore if f € Dy, we have

(Q(ml""’mn’ e)f)(pl""’pn) = (pl + o +pn)2f(pl""’pn)
where p; € M(m, ¢). The operator Q(my,,...,m,, €) is obviously indepen-
dent of the choice of the Lorentz basis.

ProPOSITION 3.1. Suppose that 1 <k=n, m, #0,...,m, #0,
m,., = ---=0. Given K,, compact, in M(m,, €) (r=1,...,n), define
E (K,) = E(K,) N E (M(m,, ¢)). The restriction Q'(m,...,m,, &) of
Q(m,,...,m,, €) to Dy = E (K,) ®, --- &, E_(K,) is closable and has a
resolvent R, = (Q'(m,,...,m,, &) — A)~'in the Banach space

E(K,) &, - , E(K,)
orn<2( T ak,K))( 3

1=i<k k+1<j=n

(K, K,)) +(m, + - +m,)%.
Moreover

S dk,K))| 3 ek,K)

1=i=k k+1<j<n

(3.0) IR, < (2(

—1
+(ml+~--+m,,)2—}\)

Proof. Suppose, say, that ¢ = +1. Write for short Q' =

Q'(my,...,m,, &).
(a) Suppose that E(M(m,,¢)) = L, (M(m, ¢), Z,). Take p, € K,
(r=1,...,n). Then (p, +--- +p,) > = AN=23,_;p,-p; + Z}_ ym} — \.
Since p;-p; = m;m; we have

(p|+°--+pn)2—>\22( ) p,-)( ) Pj)

1=i=k k+1<j=<n
+(m + - +m,) — A
If m; = 0, expressing the vectors in a Lorentz basis in A(K), we have
pi-p = (P = |7 1)p) Zd(K,, K,)e(Ky, K)).

Therefore

(oot +n ) -2=2( 2 dK,K))( T e(K,K)

I<i<k k+1=<j<n

+ (m +---+m,)" — A
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Denote by Z = E(K,) ®, - -- ®, E(K,). It is known [6, §2] that Z is
isomorphic to LYK, X --- XK,, Z, ®, - ®, 2,) (the measure on
K, X --- XK, being the tensor product measure).

If one defines R, on Z by

(Raf)(Prseeespn) = ((pr + - 45, = A) " f(Prse o),

inequality (3.1) is satisfied.

Take ¢ € D,,;; we have R,(Q’ — A) g = ¢. Take a sequence ¢, € D,
converging to 0 and such that (Q" — A)g, converges to a limit ¢ in Z.
Then, ¢, = R,(Q’ — A)@, converges to R,y. Therefore R,y = 0 andy = 0.
This means that Q” — A is closable and so is Q.

Take now any ¢ € Z and ¢ = R,y and choose a sequence y, € D,,
which converges to . The sequence R,y, converges to ¢; the relation
Y; = (Q" — MR,y, implies that ¢ is in the domain of Q' and that
(0" — MR, = 1d,.

(b) Suppose that E(M(m,, €)) = L% (M(m,, ), Z,). The mapping R,
defined above is continuous from Y = Y?to Z = Y, with

Y =L19(K,,2) &, - ®,L(K,,Z,).

In order to prove that R, is continuous from Y to itself one has to write
the function p( py,...,p,) = ((p, + --- +p,)* — A) ™' as a series of prod-
ucts of functions of one variable and then evaluate the norm in Y. Write
o =37_,m} —\; then p(p,,...,p,) = (o +22,_;p,p)”". Choose a
Lorentz basis L € A(K)), then

(32) w(pys-.-sp,)

m —1
== pyse o) = E(prs 2 )V(Prse0P0)
1

where

-1
(3.3) vi(Prseopy) = (°+2m1 2P;Q+2 2 Pi'Pj)

j>1 1<i<j
and
m,
(3.4) §.(p1se.up,) = 1=—— (°+2 2 Pi‘Pj)
P 1<i<j
ﬁ) —

P j=1
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Noticing that | £;( py,...,p,) |< (?( Py,---,P,)) "', we can write
(3.5) p(pyse.spy) = 2 p‘k,L(p]""’pn)

k=1
with

(36) mer(Preopa) = 2 (E(pr ) T (i Prre 2"

Define

(3.7) p=2 2 dk, K))(

I=i<k

S c(k.K))

k+1=j=n
+(m +---+m,) = A

If m, #0 we define m; =m, and if m, =0 we define m; =

inf,cx ek, (P°)- Define then

o =2 3 ak,K)) I ek, K)|+ I (m) —
I=i=k k+1<sj=<n i=1
and
p’=2( > d(K,,K,.))( > c(K,,Kj))+(m;+-~+m;,)2—}\.
I=isk k+1<j<n
Now,
m’ ...m; -1
(3.8) v(Preby) = g5 (1= 1( Py, 5P,)
p'Py Py
where

(3.9) 7,(p2s---sPn)

Ao (- ) + @ =) T

- 0
[ 2R 2 i>1 i>1 i>1

+2m, 3 m}p})( IIe-1 m?)

Jj>1 i#=l,j i#1,j

+2 S mmptp?( 1 o= T mi)

1<i<j 1#1,i,j 1#1,i,j

+2mh - oml D 17,]3;}

1<i<j
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Moreover 7,( p,,- . -,P,) < 1. We can therefore write (3.8) as a series

/

(3.10)  »(py,.. ,p,.)”‘0 2 5 (1 Dar. )

2 : Pn k=0

Introduce the variables

m,' I‘ I.
szl_p—é, y =1+ and z =2 ZP,P,
J

I
0°’ 7.0
J pp;- pn I<i<j

1]

cients in the variables x, ,...,x;, y; ,...,y, . Therefore, it results from (3.9)
that

Note that 1 —m; ---m] /p) ---p, is a polynomial with positive coeffi-

T (PaseosPy) = QX505 eesXps Varenns Vs Z)

{2 being a polynomial with positive coefficients in the variables x,,...,x

VasewosVns 2-
Before proceeding further one needs the following lemma.

no

LEMMA 3.2. Suppose given m, =0,...,m, =0, positive integers
(k,)1<i<j=r K; compact in M(m,, ¢), and f, € L3 (K, Z;) (i = 1,...,r).
Define

h(p..op)= 1 (5-5)"

1=si<j=sr

and

W(py...op)= 11 (BB

1<i<j<r

Then, in the Banach space L*(K,, 2,) ®, - - - 8, L¥(K,, Z,), we have
Wh-fi® - - ®flI<|h-f;® - BFIl.

Proof. Suppose that r = 2; write k = k,.

1,2
lh-f, ®fll < (f | P p‘:kfl(p,)lzdv(pl))

.....

1,2
X (fK |p3' - -p5fo(p2) |2 dV(Pz)) .
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Therefore
3 1,2
Nh-f; ® [ < 2 | Pt '”Pll"kfl(p])lzdy(pl))
1 a,..., o =1
3 1/2
X 2 IP?' "'Plzx"fz(Pz)Ide(Pz)
Ky a,...,0,=1
We get by induction
Wh-f, ®---Qf |l

3 1/2
= I (fK 2_] Ipf’""'P."*vﬁ(pi)lzdv(pi))

I=si<j=r \ "% o,..., &, =
3 1/2
X 2 lppeeepraf(p) Pdv(p)
J Qysenny oy =1

So,

lh-f,®---®fll = H (f llﬁilk"ﬁ(Pi)lz d"(l’z’))l/2

I=si<j=r '

) 1/2
<[ 15 Fsf avta)
(f,(jl|p,| 5(p)| dv(p)

Note that the right-hand side of the last inequality is equal to
Hh'f, ®--- ®fIl. O

Coming back to the proof of Proposition 2.1, one introduces the
following quantities

—1
v (Dase-sDy) = (o +2m 3 p°+2 3 (pPp) — Iﬁllﬁjl))

j>1 1<i<j

and 7;( p,,...,p,) defined as 7,(p,,...,p,) in expression (3.9) with p;-p;
replaced by | p; || p;| . We have 7/( p,,...,p,) < 1. Therefore

1

my---m, ) -
— s (1= 7i(pse-opa))

(B.11)  v(pas-eap) = =5
PPy Py
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Choose n > 0. There exist finite partitions (V3 )gep of K, i = 1,...,n,
by measurable subsets such that:

1. For every B € B there exists Ly € A(K;) such that, expressing
p = (p° p) in the basis Ly, we have |p|<n and 1 — m,/p® < for any
pEV.

2.

(3.12) QXyse- Xy Fase s 2) =(1+1m)  sup 7 (P ipa)s

2
VX - X,

where
X, =supx,;,y, =supy;,, and
Vs, Ve,
_ ml2 .o m, N .
z=  swp | ——% 2 |55

’ 0 0
VEX o xyg \ PPy Py oi<i<)

for any B,,...,8, € B.
3.

(3.13) (1+m)  inf 1 (pr.p) = sup 1 (ps..py)

Vﬁzx“'xﬁn VBZZXXVI?':.

for any B,,...,8, € B.
4.

(3.14) (1 + n)inf p? = sup p?
7 Vi

for B,,...,B, € B and any basis L € A(K).

Denote by xj the characteristic function of Vj. Take f; € Li,(K,, £)),
J = 1,...,n. Taking into account (3.6), (3.10), (3.11), and Lemma 3.2, we
have

(315) “p’k,LﬂlX}?lfl ®--- ®X73,,f;1”
= C(k, Bl"‘ ,Bn)nxplflll cte ”Xan;,”’

where

C(k, By,....B,)

= k-l

co+2 Y ((supp,o)(szpp;’)

I<i<j K, g

k—1
(szp lp,l)(szp IP,I) +2,§1 i Ip,l) (K(By>---.8,)) )
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and

K(Bi,--.,B,) =

’ ’

mn . 9ty n’y""’yn’z))'
pli,inty, (pf) 200 2

Take now (q,,...,q,) € VB? X -+ X Vgl it results from (3.12), (3.13) and
(3.14) that

(14 )"y, , ,
= 70 : 0 ) ((1 + 77)27L,,l(‘12,---’qn)) .
Pqy 4y, 120

K(Bys---,B,)

So, if 1 is chosen small enough

()" my e m, , &
K(B,,....B,) < (1= (L + )1 (a5 09,))
Pq; -4,
Define
R= sup |6+2 Y ((supp?)(suppj‘-))
(Lg)gesn 1<i<j K, K,
+(suplﬁ|)(supll7,|)+22 suplﬁjl))-
K; K, > K,
We have

(3.16) C(k,B,,...,B,)

n—1 m’z...m,

< (Rn)k_]((l +n) ;q-o—f_l%
) 2 n

X(1-(1+ n)z'rL’ﬁ'(qz,...,qn))_]>k,

Choose 7 > 0. If n > 0 is small enough one has:

Ro(1+n)""'mj - m, : Ty
(3.17) —— (1= 0+ (g 0q,))  =n
P'g g
and
(1+n)""'my--m, , -
(3.18) L2 (L — (14 1)1 (45 04,)

Pq; gy
=(1+ n’)v,iﬂl(qz,...,qn)
independently of 8,,...,8, and (g,,...,q,) € Vg X -+ XV}
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From (3.5), (3.15), (3.17) and (3.18) one gets the inequality
lp-xpfy ® - ®xp 1l

<1+ Wi ()1 T2 s Al - XA

Since v (43,-..,q,) = p~ !, we finally have

lp-xp /iy ® -~ ®xp 1l

<@+ n')p—'(l T ,)ux;;lf,n SNTNTAL

Since the functions {xj f }B <p are orthogonal for each i € {1,...,n} and
since f; = 24 < 5 X} f> we have

lnf,®---®f Il < (1 +n)p~'(1+ )uf,u AL

Since 1’ is arbitrarily small

lp-fi @ f I <p A --- Il £

which proves that R, maps Y to itself and that its norm, as an operator on
Y, is smaller than p~'.

The proof that Q’ is closable in Y and that R, is its resolvent is the
same as in part (a). This completes the proof of Proposition 3.1.

PROPOSITION 3.3. Suppose that m, #0,...,m,+ 0 and that A\ <
(m; + -~ +m,)> The operator Q(m,,...,m,, ¢) is closable in X and has a
resolvent R, = (Q(m,,...,m,, €) — X\)~'. Moreover
—1

(3.19) IR\ < ((my + -+ +m,)* = A)

Proof The norm of the operator R, defined in Proposition 3.1 on
E(K,) ®, & - E(K,) satisfies inequality (3.19). Functions with com-
pact support form a dense set in E(M(m,, ¢)). Therefore R, has a unique
extension (denoted again by R,) to X, as a continuous linear mapping,
satisfying (3.19). One then proves as in part (a) of Proposition 3.1 that Q
is closable in X and that R, = (Q —A)~ . O

The Fréchet space E ( M(m, ¢)) is the set of functions f from M(m, ¢)
to 2 such that the function p — | p* ["f(p), n = 0,1,2,3, n € N, belongs to
LY M(m, ¢), 2).

On D, the operators Q and P/ (defined by P'f(py,...,p,) =
pH(pys---,p,), i = 1,...,n) commute.
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Therefore, from the definition of the topology on E (M(m,, ¢)) ®,
-Q,E (M(m,, £)), Q has a unique continuous extension (denoted
again by Q) to this space and, using Proposition 3.3, we have:

PROPOSITION 3.4. Suppose that m1 #0,...,m,7#0 and that A <
(my+ -+ +m,)% On E(M(m,, ¢)) 8, --- &, E (M(m €)) the operator
Q(m,, ..,m,, €) — X has a continuous inverse

= (Q(my,...,m,,€) —A) .

4. Formal properties of some non linear representations. Suppose
given integers n, =0, n, =0, n; =0 and n,=0; put n =n, + n, +
n, + n,. Suppose also given a continuous linear representation (U, E) of
the Poincaré group, U = @/L, U™"* on E = @]_, E(M(m,, ¢,)) such that

l.m;,>0ande, = —1ifi=1,...,n,

22m;>0ande, = +1ifi=n, +1,...,n, +n,,
3.m,=0ande; = —1ifi=n, +n,+1,...,n, + n, + n,,
4 m;=0ande, = +1ifi=n +n,+n;+1,...,n

Denote by E~ (resp. E) the space @, E(m,, &) (resp.
GBI"‘;“I”;I E(m,¢,)), and by P~ (resp. P*, resp. P™»%) the projector on

(resp. ET, resp. E(M(m,, g))). One labels with a subscript the
correspondlng projectors (P, , P+ and P"»%) restricted to E,.

Define E, = @ E( M(m,, €;))- As a topological vector space,
E(M(m,, ¢,)) = limind E(K), where K C M(m,, ¢,) is compact.

Given a topological vector space Y, denote by t(E,, Y) the set of
power series f € J(E,, Y) of the form f = 3, ., f*, f* € Q(E,, Y), such
that f%(P/ven ® - - - X P™Mietu) = O whenever at least one of the following
conditions is satisfied

) Es--.s€ arenot all equal, or

(C,) there exists j € {i},...,i;} such that m; = 0.

For short one writes € ,(X) = L,(X, X), &(X) = &F(X, X) (X being a
topological vector space).

PROPOSITION 4.1. Suppose that G is either P or T, and that (S, E) is a
smooth representation of G in E (for this notion see |1, Definition 6]),
S, = 2,215;, Sy € &,(E), such that

(H St = U lG-

(2) For any i, j such that mm; # 0, then m; + m; > m, for any k;
i, j,k€{l,...,n}.

Then, there exists a unique A € t(E,, E.) such that:

(4.1) ((I+4)S) —S,(I+4))P"=0.
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Proof. One denotes by E_, the space of differentiable vectors of U |.
(S, E) being smooth, the mapping g — S}.S; is C* from G to &,(E) and
Sy € Q,(E,) for any g € G. Since T, is an invariant subgroup of G, and
SiS‘(p = 8,8,-1,:9, x € T, g € G, the mapping x — §,S,¢ is C* from T,

to 15 whenever ¢ € E_. Therefore, S; € ,(E,) for any g € G. Using the

relation S, S, = S,S,-1,,¢ one sees by induction that S; € £ ,(E,) for
any g € G. Take / = 2 and suppose that there exists a unique polynomial
A,_,=A*>+--- +A4"" ' €1(E,, E,) such that

k =+
(4.2) (I+4,)S)=S,(1+4,))P =0
for1 <k <1[—1.Then,
[ [ [
(Sgg’(I + Al—l)) P‘r_ = (SgSg’(I + Al—l)) P‘r* = Sgl(Sg’(I + AI—])) PT

l

I
> S;)Sg,(z + A,_,)) P*.

n=2
Now, from (4.2), one has
! ]
(= sz)spr+a,0) p2= ([ £ 57)a+ asy) 2.
n=2 n=2

Consequently, defining R; = S;(2,-, S7-(1 + 4,_,))'P;", we have
(4.3) Ry, =R;+ SR, S;1.
This means that R* is a 1-cocycle on G with coefficients in &,(E,), the
action of G being defined by g — S,;ZS,-, Z € 8 /(E,).

Consider now the cocycle dR*, on the Lie algebra t, of 7,, defined
by

-+ d -+
dR3 9= (Ropux®),.y XEt,@EE,

Then dR € ,(E,). By [8, Lemma 6.3], dR, has a linear extension (again
denoted by dR ™) to the universal enveloping algebra 11(t,) of t, such that
dR%y = dSydR5 + dR% * dSy, X,Y e u(t,)

(because dRy * dSL = dR; d(®}8") ).
Given a Lorentz basis { X, X}, X,, X;} in t,, we have the central
element Q = 23:0 nMX‘f, where n, = —1, 1, = 1, = ; = 1. Therefore

3
dR3= 3 m,(dSk dR} + dR% «dSk).
pn=0
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If X €t,, we have

(4.9) dR%o = dSydR; + dR3 d(®'S"),,

(4.5) dRy = dS5dR% + dR} + dSk.

Equalities X0 = QX, (4.4), (4.5) and P»%dSy = m?P["»% imply (for
g = -+ =¢g =&= *x1, R* meaning R™ or R™ according to the sign of
¢) that

(4.6) Pmo(dRy(m? — Q(m,,..., (dSydRs, — dRS, * dS}))

ml/’ 8)) -
X (P7m1|18i| [+ I ®me1p51/) = 0.
Whenm; #0,...,m; #0ande¢ = --- =¢ = &= *1, we shall define

(47) A[(P,rm'l’ell R® ... ®P,rm'l’s'1)
= .21 Pmre d]{eQ(;nj2 — Q(mi," . ’m,'/, £))“IP‘rmll,e,l Q.. ®P,rm"/’€'1
J:

and take A/(P" v ® -+ ®P"r*u) =0 if ¢, ,...,¢, are not all equal or if
there exists j € {iy,...,i;} such that m; = 0. We have
(4.8) dR% = dSyA'P: — (A'P?) + dSy, x Et,,
which means that dR® is the coboundary of A'P¢ on t,. Consequently
R: = SN A'Pf)S)- — A'P:,  xET,.

Define R = R; — SN AP )S}- — A'P, g € G. We have R; = 0 for
x €T,. R” is a l-cocycle on G with coefficients in 8,(E,). Writing
R;j—nxg =0, x € T,, one gets

(4.9) SIR; S} = —SIR;.S}-, x€T,g€eq.
The right-hand side of (4.9) being independent of X one obtains
dSYR;— R; »dSy=0, XE€Et,.

Therefore

3

2 - -+ A =+
S m,((dsy ) R; — ((Ry «dsy) «dsy)) =0
=0

which implies that

Pm/‘ejRZ: (mjz _ Q(m, ersy s ei,))(me”,e” Q... ®mei1’5!l) = 0.
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Proposition 3.4 implies then that ﬁ; = 0. Going back to the definition of
R ';‘ , this means that

l
s;(( 3 Sg"-.)(l + A,_l)) Pr=SIAPZSl — APZ,

n=2

which can be rewritten with 4, = 4,_, + 4’
(4.10) (I+A)SP——(S(1+A))

One then defines 4 = 3., A'. There remains to prove the uniqueness of
A" € t(E,, E,). Suppose that there exists a second one, 4'. Equality (4.10)
implies that

Si(4'—A4")—(4—-4AYsl=0, xeT,.
Therefore
asi(A'—A') — (4'—=A4")+dSy =0, XEt,.
The same calculation as above proves then that 4’ = A4'. a

ReMARK 4.2. Consider the series A € t(E,, E,) satisfying the conclu-
sions of Proposition 4.1. The formal power series I + A has an inverse in
&(E,). Consider, on E_, the formal representation (for this notion see [1,
Definition 1) S, = (J ¥ A)7'S(I + A). It satisfies (S} — S,)P," = 0.

5. Convergence of the intertwining power series. Given two topo-
logical vector spaces X and Y, one denotes by &( X, Y) the subspace of
(X, Y) of the series f = ., f", f" € & (X, Y). If X and Y are Banach
spaces and r > 0 one defines $ (X Y)=9(X,Y)N %(X Y). We shall
write §(E) = §(E, E), 9(E) =9 (E, E) and $ (E) = § (E, E), and
keep the hypotheses of part 4.

A linear operator W in @(E,, E) can be defined by:

(1) W(f5(Pmven ® - - - ® PMwen)) = 0 if condition (C, or C,) of part
4 is satisfied.

(2) If condition (C, or C,) is not satisfied:

W( (e ® - @ Pmces)
n —_
= 3 preapt((mi = O(m, - mype,))

XPTmllvEJI ® .. ®P‘rmlk!elk) .
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Obviously W(f) € t(E,, E). Moreover, it results from Proposition 3.3
that there exists a constant C such that

-1

(5.1) I(m?=Q(m,,....m,,e)) Il <Ck™2

Consequently, given compact sets K, C M(m,, ¢;), i = 1,...,n, Wis con-
tinuous from $ (DL, E(K,), E) to itself.

LEMMA 5.1. Suppose that G is either P or T, and that (S, E) is a smooth
representation of G in E satisfying the hypotheses of Proposition 4.1. Given
K; compact in M(m,, €;) (i = 1,...,n) there exists r > 0 such that the series
A € {(E,, E,) defined by Proposition 4.1 belongs to $ (®", E(K,), E).

Proof. We shall write equality 4.1 in a form which will be more
convenient to prove the convergence of 4.
Take x € t,; equality (4.1) implies, by differentiation, that

(5.2) ((I+ A) *dS} — dSy(I+ 4))P==0.
Let Ty = Z,-, dS%. Equality (5.2) now writes
(5.3) dSy(AP7) — (AP ) + dSy = —Ty(I + A)P~

which in turn implies that
dsydsy(APz) — (AP ) » dSk) + dS)
= — (dSy Ty(I + A) + (Tx(I + A)) * dS})P=.
Therefore, if g =--=¢g = *landm;, #0,... ,m, * 0, we have

ij,ejAk(mj? — Q(m . ,mik, Si‘))me"’e"' ®... ®P‘rmw8,k

IR

= —P"%

3
S n,(dSy Ty (1 + A4) + (Ty (I + 4)) = dS}, )
r=0

XPTmipsi‘ ® e ®melk’£lk

which is equivalent to

(54) A= -—W( % n,(dS} Ty (I + 4) + (T, (1 + 4)) * dS,‘(“)).

Now, using the fact that A4 satisfies equality (5.3) one has
dSi Ty (1+ AP = ([dSy, Ty |o(1 + 4) — (T + T, (1 + 4)

+ (T (1+4)) = dsy) P>
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Consequently, since 4 € t(E,, E,), one gets (from (5.4)) the equation:
(5.5) A4 =N(4)
with

(56) N(4)= ——W( § n,([dSk, Tg] o1 + 4) = (Ty » Ty )(1 + 4)

+2(Ty (I+ 4)) » dS}) .

Notice that the term of degree k in N(A) depends only on 42,..., 4%,
Therefore equation (5.5) has one and only one solution in @(Ec, E).
Since, as was just proved, the solution of (4.1) is solution of (5.5), it is
sufficient to solve (5.5) in § ( DL, E(K,), E) for some r > 0.

(S, E) being a smooth representation, there exists A, > 0 such that
(g, 8)~ Sg‘,g-.Sgg,-, is C* from a neighbourhood of the identity in
G X Gto9,(E) Writingg = exp sX and g’ = exp s'X, X € t,, one gets

32 .
Toas (Ses 1 Seg 1) mymg = dSx Tx@ — Ty * dSxg withg € E,.
Therefore
32
[dSk, Ty]s9 = Py = ( Sk 1See1) o @ + Ty Ty,

Thus [dSy, Tx]lx € 9, (E) for some A, > 0. Take now
f= 2 f*€9\E), b= 2 hf and

k=2 k=2
= S K in@x(GBE(K,»),E)
k=2 i=1
with 0 < 4N’ < A. We have
(5.7) IAT+ Rl < 3 NI + TRy ly)*
k=2

and
d
AU+ hy) = (1 + 1) = [ T flals)) ds
with a(s) =1+ h, + s(h, — h,). Since

d
ds fla(s)) = X kf¥(a(s),...,a(s), h, — h,),

k=2
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we have

L S S plsll

d
(a(s))
ds k=1 2=<p=<k

« ( S lan(s)l --- llair(s)l 1Y ~h;pn)
i+

e =k
s( > pna(s)||f,-'nfpn)nh2 “ ol
p=2

Now, if || 4,1y, <\ and || 4, 1l,, = X’ then |la(s)ll,, = 4N, and there exists
a constant C()x ) such that lim,,_ o C(A") = 0 and

(5.8) | f(I+ hy)—f(I+h)l < CN)hy — Ryl

It results from (5.7), (5.8), and from the fact that W is continuous from
ONDL, E(K,), E) to itself for any A > 0, that for r > 0 small enough the

mapping

A-fi(I+A)

3
= —W( S n([dsh, T )o (1 + 4)) = (T« T, ) (1 + 4)
p=0
maps the closed ball of radius r to the ball of radius r/2 in
‘@r(@in:lE(Ki)’ E) and
o
||f1(I+A1) —fI(I+A2)”rS5“A1 —A2||,,

with § < 1, and 4,, 4, in the closed ball of radius r.

Now, using the fact that dS; is bounded on E(K;), from inequality
(5.1) and again from (5.7) and (5. ﬁ) one sees that, for » > 0 small enough,
the mapping

3
A-f(I+A4)= —2W 2 (Ty (1 + 4)) = dSy,
maps the closed ball of radius r to the ball of radius r/2 in

S (D", E(K,), E) and,

1A+ 4) = I+ ), <2114, = 4,11,

for A,, A, in the closed ball of radius r.
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REMARK 5.2. This was the point where inequality (5.1) is unportant
In fact inequalities of the type llm? — Q(m,,...,m, e 7' < Ck™'
would be sufficient to be still in the 31tuat10n of no small denominators”.
Going back to the proof of Proposition 5.1, the mapping

A->N(A4)=fHT+A4)+/L(T+4)

sends the closed ball of radius r in 85,( @, E(K)), E) to itself and
IN(A,) — N(A,)ll, =8ll4, — 4,l,, for A,, A, in the ball of radius r. By
the contraction mapping theorem, there exists A4, unique in
$,(®" | E(K,), E), which is solution of equation (5.5). O

THEOREM 5.3. Suppose that G is either P or T, and that (S, E) is an
analytic representation of G in E ( for this notion see [1, Definition 2)),
S, = 2,155, S; € &,(E), such that

1. SI =Ulg-

2. For any i, j such that m; # 0 and m; # 0, then m; + m; > m,, for
any k, i, j, k € {1,...,n}.

Then there exists a unique A € t(E,, E) such that

(5.9) (I +4)s) —s,(1+4))P"=

and, given K; C M(m,, ;) compact (i = 1,...,n) there exists r >0 such
that A € $ (€B  E(K), E).

Proof. From [1, Proposition 5], there exists B =3, ., B"in §,(E), for
some A > 0, such that ¥V, = (I + B)"Sg(I + B) is a smooth representa-
tion of Gin E.

By Proposition 5.1, there exists C = 2., C" in t(E,, E,) such that

((1+C)s})Ps=V,(I+ C)P}

and there exists A > 0 such that C € (D", E(K,), E). Define (I + D)
= (I + B)(I+ C). Obviously (I+ D)S!P*= S(1 + D)P,*. Define
now A* € ,(E,, E) by

AkP,rm'l‘s’l ... ®me,k,e,k
= D*PIwvea @ - P ifmy #0,...,m;, #0

and g, = -+ =g, and by A*P+* @ - -« @ Pwt = 0 otherwise. Then
A€ t(E,, E ) and ‘Satisfies equahty (5. 9)

Suppose now that there exists a second series A satisfying the conclu-
sion of Theorem 5.3. One gets

(A —A)SIP>=(S,(1+4)— S+ A)P”.

Identif~ying degree by degree in this equality, one gets inductively
(A — A)P = 0 and therefore, since 4, 4 € t(E., E), A = A. O
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6. Application to a family of wave equations. We shall now give an
example describing a spinless field of mass m > 0. One denotes by f — f
the Fourier transform in the space $(R®) of tempered distributions on R®.
Choose a Lorentz basis ( X;, X;, X,, X;) in t,. One introduces the follow-
ing spaces.

(1) H, is the space of tempered distributions, the Fourier transform of
which are elements of L\(R®). If f € H,, define Il Il = | | gy

(2) H, is the space of tempered distributions f € & (R3), the Fourier
transform of which, £, is a function such that 7’ - (m? + | p|*) " V/*/( p) is
in L'(R®). If f € H, define

170 = [ (m>+15F)"1/(5) | 4.

(3) H is the Fréchet space of functions f such that the function
7= (m*+ | pP)"f(p)is in L'(R®) for any n = 0.

Suppose now given an analytic mappingJ € $ O (r>0).1fp € Hy,
define (J(@))(%) = J(e(X)) and J(f) =J(f). Since L\(R?) is a convolu-
tion algebra, J can be considered as an element of & AHp).

Consider now the wave equation (where J(0) = J’(0) = 0 by defini-
tion)

(6.1) Og, + m’e, = J(¢,)

Write ¢, = d/dt ¢,. One wishes to solve (6.1) for ¢, € H, ¢, € H, (i.e. one
takes H, © H, as space of initial conditions). Define

12,
af (p) =@, +i(m* +|p) "¢, and
- 1/2 . .
a, (P) (P,"‘l( 2+I |) P, (12:_1)-
Equation (6.1) is then equivalent to the system

dat

) o\1/2 _
L= 1(m2 + |p|2) af + G(a},a;),
(6.2) dd’_
2= —i(m? +|5R)a; + Gy(a] ,ar ),
dt
with

G(a” a7) = Gyla® ,a™) = I~ 5 (m+|5P) (@ ).
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Put G = (G,, G,). The functions p > (m* + | p|*)”/?a;" ( p) belong to
L'(R®), therefore G € $ AHy X HO) One now defines E(M(m, ¢)) =
L., (M(m, €)). We can consider a;" as an element of E(M(m, =1)) by the
identification a™ (p) = a™(p) ifp = (P, P) € M(m, £1). We now de-
note S' = U™ ' ® U™ ™! the representation of the Poincaré group P on
E = E(M(m, —1)) ® E(M(m, +1)). The system (6.2) becomes

2y, = dSid, + G(4)

where y, = (a, , a/).
If X =3_,a"*X,, one defines

Oy = dSyy + a°G(Y)

which is an analytic representation of t, in E, compatible with S' (for this
notion see [1, Definition 8]). By [1, Proposition 10], there exists a unique
analytic representation (S, E) of T, in E such that dS = 6. It results from
Theorem 5.3 that there exists 4 € §(E,, E) such that given K_ (resp.
K ) compact in M(m, —1) (resp. M(m, +1)),

A€ $,(E(K_)®E(K,),E) forsomeh>0,
and such that
(I+A4)S}PF=S,(I+A)P".

Take h € E(K_) U E(K, ) with ||h]| <A. Define ¢, = (I + A)S,,, ,X
Since S, ! is norm preserving and S (1 + Ah=(I+ A)S h, the mappmg
t =i 1s C* from R to E and we have d/dey, = Oy,

Coming back to equation (6.1) one gets in particular:

PROPOSITION 6.1. There exists A € §(H X H, Hy, X H,) with the fol-
lowing properties:

(1) Given any compact K in R® there exists A >0 for which A €
$\(Hy X Hy, Hy X H,), Hy being the space of such functions in H,, the
Fourier transform of whzch vanish in the complement of K.

() If hy € Hy, kol <A/2 and hy(5) = =i(m* + |F )"/ %y p),
equation (6. 1) has a solution @, for all t, with initial condition (@,, ¢,) =
(I+ A)(ho, hy).

The approach followed in this article can be applied to systems of
relativistic evolution equations with arbitrary spin with an analytic inter-
action (provided that the masses satisfy the inequalities given at point 2 of
Theorem 5.3.) to get global solutions for small data in some sectors.
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Let us now compare the example given above with previous results.
The problem of existence of global solutions for relativistic wave equa-
tions, seen from an abstract point of view, was initiated by 1. Segal [11].
An example which has been studied extensively is the equation

(6.3) O + m?p = Ap? (p EN)

for which global solutions exist for small initial data (in a suitable Sobolev
space) [10, Theorem 21], when p = 3. Furthermore, (6.3) has global weak
solutions for any initial data, with the restriction A < 0, p odd [12].
Concerning the equation Oo + m?p = J(¢p) with ¢ real, J being a
continuous real valued function satisfying @J(¢) <0, W. Strauss [13]
proved that there exist real global weak solutions for any real initial data.
Global solutions which are C* in space and time for equations of the

type
(6.4) D¢ = G(0,9, 8i8j<p),

(where G(§,,7,,) is a C* function in §, and 7;; and vanishing for £ = 0
and n = 0, and where the space of initial data is the space of C* functions
on R? d = 6) have been proved to exist by S. Klainerman [7] if the initial
data is small enough (i.e. the L' and L? norms of the initial data and a
certain number of its derrivatives are small enough).

The problem of the existence of global solutions for relativistic wave
equations for initial data in some sectors is discussed in a review work of
M. Reed [10].
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