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NON-LINEAR REPRESENTATIONS OF
POINCARE GROUP AND GLOBAL SOLUTIONS

OF RELATIVISTIC WAVE EQUATIONS

JACQUES C. H. SIMON

Non-linear massive representations of the Poincare group are proved
to be equivalent, on certain sectors, to massive linear representations
with an energy of definite sign. As a consequence (for small initial data
in these sectors), the existence of global solutions for massive wave
equations is proved.

1. Introduction. The aim of this article is to study a family of
non-linear representations of the Poincare group P = SL(2, C) T4, the
universal covering of the inhomogeneous Lorentz group. By non-linear
representation of a real Lie group one means a non-linear local action, in
a vector space, which has a fixed point (say the origin).

Non-linear representations of the Poincare group appear in a natural
way in the study of relativistic wave equations, where the one parameter
group of evolution is imbedded in a non-linear representation of the
Poincare group.

A formal study of this aspect of relativistic wave equations can be
found in references [2-5]. The main results, there, are that the evolution of
a massless wave equation is intertwined by a formal power series with the
evolution of the corresponding free wave equation, and that this is also
true for the evolution of a massive equation in some sectors of the space
of initial conditions.

One now proves that, for massive fields, this intertwining series is
convergent in some domains which will be explicated later. The proof
steps will seem natural to those who are familiar with linearization,
without small denominators, of vector fields [9]:

1. Check that there is no cohomological obstruction (no resonance
condition on the eigenvalues of the linear part, in the language of vector
fields) in order to prove the existence of the intertwining formal power
series.

In the present situation this is obtained by extending the calculus to
the enveloping algebra of P where the existence of a resolvent for the mass
operator in a tensor product of representations permits to trivialize the
cohomology. The study of the resolvent of the mass operator is done in
part 3 and the construction of the formal intertwining in part 4.
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2. Prove the convergence of the intertwining series. For vector fields
this is easily obtained if there are no small denominators. In the present
situation, the analogous condition is a bound for the norm of resolvent of
the mass operator in a tensor product of representations. Convergence of
the intertwining series is proved in part 5.

The intertwining power series between the time evolution of the
non-linear wave equation and the evolution of the corresponding free field
can be viewed as an abstract wave operator the existence of which, in
some sectors, implies the existence of global solutions.

The wave equation Dφ + m2φ = /(φ), / analytic around the origin
and J(0) = /'(0) = 0, is given in part 6 as an example of a wave equation
with (non-zero) global solutions for small initial data in some sectors.
Though the formulation is given in a four-dimensional space-time, the
results are not sensitive to space-time dimension.

The author wishes to thank Professor M. Flato for interesting discus-
sions and valuable information, and Dr. D. Sternheimer for careful
reading of the manuscript.

2. Notations. Suppose given a Lorentz basis (Xo, Xl9 X29 X3)9 with
Xo time-like, in the dual space T* of Γ4. If p E Γ4*, p = Σ3

μ=op
μXμ one

uses the notation/? = (/?°, p) with/ = Σ3

J=ιPJXj.
If m > 0 and ε — rb 1 one defines the surface

One denotes by dv(p) -dp/\p°\ the invariant measure on M(m, ε).
Given a unitary representation (V9Σ) of the stabilizer H of a point
p G M(m, ε) in a Hubert space Σ, one denotes by ί7 m ε the representation
of P induced by V on the space E(M(m9 ε)) = Lq

dv{M{m, ε), Σ). In what
follows q — 1 or 2. On Γ4 the representation writes

{Ug

m'*f)(p) = ei<*-P>f(p) and {dUf-*f)(p) = i(x, p) f(p),

where / E E(M(m9 ε)), p E M(m9 ε), g E Γ4, x E t 4 (the Lie algebra of
T4). Um'ε is norm preserving on E(M(m, ε)). One denotes by E^(M(rn, ε))
(resp. Eτ(M(m, ε))) the space of C00 vectors of J7w'ε (resp. Um^\Ά).
Given a compact set K C M(m, ε), one denotes by E{K) the space of
functions in Lq

dv{M{rn, ε), Σ) with support included in K; obviously
E(K) C Eτ(M(m, ε)). Denote by Ec(M(m9 ε)) = [_j E{K) the union being

taken over all K, compact, in M(m, ε).
Suppose that m > 0 and p E M(m, ε); one denotes by Λ(/7) the set

of the Lorentz bases for which p = 0; if # is compact in M(m, ε), define
Λ ( ^ ) u

/ ) e ^ Λ ( / 7 ) which can be identified with a compact subset of
SO(193).
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Suppose that m, > 0 and m2 > 0; Kλ (resp. K2) being a compact
subset of M(ml9 ε) (resp. M2{m2, ε)), define

<:(*„*, ) = _ _ i n f _ > / > 0 )

and

d(ΛΓ,,Λ:2) =

Given two topological vector spaces 7, Z, one denotes by SM(7, Z) the
space of continuous w-linear symmetric mappings from 7" to Z and by
%(Y, Z) the space of formal power series from 7 to Z of the form
/ = ΣMΞ>, /" ,/ n €%n(Y, Z). When 7and Z are Banach spaces and λ > 0,
φ λ( Y, Z) is the Banach space of formal power series / G g(7, Z) such
that | | /1 | = Σ n 2 ί l λ Ί I / Ί I < + o o .

Given two topological vector spaces 7, Z, v4 e 8(7, Z), and B G
g(7, 7), one defines ,4 * J? G 8(7, Z) by

where Iq is the identity mapping on X ®^ ®π X(q times) and on is the
symmetrization operator on X ®w ®w ̂ ( « times):

®φJ=-JΓ 2 9

@Λ being the group of permutations of « elements. Whenever Y = Z one
defines [̂ 4, 5]^ = ^ 4 * 5 — 5*^4. Given two Banach spaces X and 7, the
norm on X ® W 7 is defined by | |z | | = mHlij\aij\ , the infimum being
taken OVQT all the ways of writing z — Σjja^x^j with Wx^l = \\yj\\ = 1.
In general we denote by X ®w 7 the completed projective tensor product
of two locally convex topological vector spaces X and 7.

3. Resolvent of the mass operator. Denote by (U,di) the linear
representation of the Poincare group defined on the Banach space 36 =
E(M(mλ, e)) <§>,•••<§>* £(M(m M , e)) by l / = ί7 w " € <§>*•••<§>, t/ w - β .
Choose a Lorentz basis L = (ZQ, Z 1 ? X29 X3) of t 4 . The mass operator
Q(ml9... ,mM, ε) is defined on the space DQ = EJ^M{mλ, ε)) &w

Θ ^ J M ί ^ b

2
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DQ is a space of C°° functions from Πy=1 M(mp ε) to Σx ®w <§>„ Σn.
Therefore if / E DQ, we have

(Q(ml9...9rnn9e)f)(pl9...9pn) = ( ^ + . . . +pnf f{px>.. .,pn)

where/^ E M(mJ9 ε). The operator Q(mx,... ,mr t, ε) is obviously indepen-
dent of the choice of the Lorentz basis.

PROPOSITION 3.1. Suppose that 1 < A: < «, m, ̂ 0 , . . . ,mΛ T^ 0,
m^ + 1 = = 0. Given Kn compact, in M{mn ε) (r = 1,...,«), <fe/i/iέ
^ J ^ ) - £(Jf r) Π EJiM(mn ε)). The restriction Q'(ml9...9mn9 e) of
Q(ml9... ,/ftn, B)to DQ, = ^ ( A : , ) ®W - ti^JK,,) is closable and has a
resolventRλ = (Q\mv...,mM, ε) — λ) * IΛ /ΛeBanach space

for\<l[

(3.1)

/. Suppose, say, that ε = + 1 . Write for short Q' =
Q'(ml9...9mn9 ε).

(a) Suppose that E(λf(mi9 ε)) = Lι

dp(M(mi9 ε), Σ,.). Take /ιr E Λ
(r - l , . . . , n ) . Then (/>, + ••• + Λ ) 2 - λ = 21i<:jPrPj + Σ?=1#fi? - λ.

Since^ ^ > m^my we have

J2-λ^2( 2 P,

If nij — 0, expressing the vectors in a Lorentz basis in A(KX)9 we have

PI'PJ*(P? - \?t\)PΪ*d(Klt Kt)c{Kχt Kj).

Therefore
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Denote by Z = E(Kλ) ®* <8>nE(Kn). It is^known [6, §2] that Z is
isomorphic to L\KX X XKn, Σ, ®w <§>„ ΣΛ) (the measure on
KXX - XKn being the tensor product measure).

If one defines Rλ on Z by

inequality (3.1) is satisfied.
Take φ E DQ,\ we have Rλ(Q' ~ λ)φ = φ. Take a sequence φk E DQ,

converging to 0 and such that (Q' — λ)φk converges to a limit ψ in Z.
Then, φz = Rλ(Q' — λ)φi converges to i?λψ. Therefore i?λψ = 0 and ψ = 0.
This means that β ' — λ is closable and so is β'.

Take now any \p E Z and φ = i?λψ and choose a sequence ψ̂  E DQ,
which converges to ψ. The sequence Rλψk converges to φ; Jhe relation
ψi = ( β ' — λ)Rλψi implies that φ is in the domain of Q' and that
( β ' - λ)Rλ = Id z .

(b) Suppose that E(M{mi, ε)) = L%v(M(mi9 ε), Σf ). The mapping i?λ

defined above is continuous from Ύ — Y2 to Z — y ι, with

^ = L 2 , ( ^ , Σ,) <§>,-•• ®nL%{Kn, Σ J .

In order to prove that i?λ is continuous from y to itself one has to write
the function μ(pl9... ,/?„) = ((/?, + +/?n)

2 — λ ) " 1 as a series of prod-
ucts of functions of one variable and then evaluate the norm in Y. Write
σ = Σ"=i mf — λ; then μ(px,... ,pn) = (σ + 2Σ I </ /̂ J /JJ/ )"'1- Choose a
Lorentz basis L E Λ(A'1), then

( 3 . 2 ) μ ( P \ 9 . . . 9 p n )
in — i

where

- 1

and

(3.4) € t ( / » , , . . . , A ) = ( l - ^ ) ( σ + 2 2 Λ /»y)

P\
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Noticing that | ξL(pl9... ,/>„) | < (vL(p2,... 9pn))"\ we can write

with

(3.6) μh9L(pl9...,pn) =-i
P\

Define

(3.7) p =

+ (m, + +w w ) ~~ λ.

If mi Φ 0 we define m̂  = mz and if mi = 0 we define m

^ 0 ) - D e f i n e t h e n

and

Now,

(3.8) vL(ρ29...9ρn) = — ^ ^ — ^

where

(3.9) τL(/>2,...,A,)

Π Λ°- Π K

+ 2 2 mίm /Wί Π Z'?- Π m'\
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Moreover τL(p2,... ,ρn) < 1. We can therefore write (3.8) as a series

(3.10) PL(Pl:-PnnΪK"m'
P Pi " Pn k>0

Introduce the variables

Pj Pj P Pi Pn \<i<j

Note that 1 — m\χ m'ik/p*χ •/>? is a polynomial with positive coeffi-
cients in the variables xZ],... ,xik, y^9... 9yik. Therefore, it results from (3.9)
that

Ω being a polynomial with positive coefficients in the variables x29...9xn9

Before proceeding further one needs the following lemma.

LEMMA 3.2. Suppose given m, > 0,... ,mr >: 0, positive integers
j*r, Kt compact in M{mt, ε), and ft G L^K^ Σ,.) (i = l , . . . , r ) .

h(Pλ,...,pr)=

* W . , A ) = Π ( I Λ
I</<7</

m ίΛe 5αnαcΛ ίpαce £2(ϋΓ,, Σ,) ®π • ®πL
2(Kr, Σ r ) , we

Proof. Suppose that r = 2; write & = fc12.

3 / , \ I / 2
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/ 3 \ »/2

HA •/, ®/2|| < N 2 I/7?1 K*/i(/Ί) I2 <M/»i)
\ ^ l α , , . . . , α A = l /

X / 2 W PΪ'fiMfdvM
\ J Iζ !

We get by induction

1/2

* π

X

3

2
1/2

1/2

Σ \P? •••??'fj(Pj)\2dr(Pj)\
J

So,

I I Λ • \\P,M(P,)\2

1/2

Note that the right-hand side of the last inequality is equal to

IIA7i® ®/rll. π

Coming back to the proof of Proposition 2.1, one introduces the
following quantities

»y0 + 2 Σ {p?P}-\P,\\Pj\))
Ki<j

- 1

and τ[(p2,... ,/>„) defined as τL(p2,... ,/?rt) in expression (3.9) with
replaced by | px\ \ pj \ . We have τ[( p2,... ,pn) < 1. Therefore

(3.11) 7 0
P Pi ' ' 'P

±(l-rL(Pl,...,pH))-\
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Choose η > 0. There exist finite partitions (Vβ')β(ΞB of Kt, i — \,...,n,
by measurable subsets such that:

1. For every β G B there exists Lβ E A(KX) such that, expressing
P — (p°> P) in the basis Lβ, we have \p\^η and 1 — m,//>° < η for any
P e Vβ\

2.

( 3 . 1 2 ) Ω(x2,...,xn,y2,...,yn,z)<(l + η

where

x, = sup X;, yi - sup yi, and

sup
xvβ"n

z — sup
m'

rjn !</</
\Pt\\Pj\

ΐoτ<myβι,...,βneB.
3.

(3 .13) ( 1 + η ) inf τ^(p2,...,pn)> sup r'(p2,...,pn)

foranyj8,,...,i8ΛEA
4.

(3.14) (l

for ^ 2 , . . . ,yβn G B and any basis L e Λ( AT,).

Denote by χ^ the characteristic function of Vβ'. Take fj G L2

dy(Kj, Σ y ),
j = 1,...,«. Taking into account (3.6), (3.10), (3.11), and Lemma 3.2, we
have

(3-15) Hμ*.

where

C{k,βx,...,βn)

•••HχA/JI.

+ 2 2 ((supA»)(suPi>»)

sup
j>\

k— 1

(κ(β,,...jjy



458 JACQUES C. H. SIMON

and

Take now (# 2,... ,qn) ε F ^ X XK it results from (3.12), (3.13) and
(3.14) that

P 9i '-<Γn

So, if η is chosen small enough

P Hi ' ' ' H

Define

* = sup σ + 2 2
\ i<ί<y

+ ( sup \p, l) ( sup \p I) + 2 2 sup

We have

(3.16) C(k,βi,...,βn)

_, m; m;v / ι - 1 ^ 2

P'q°2 • • • £

- A A:
X (1 -

Choose η' > 0. If η > 0 is small enough one has:

and

. . u

independently of /?„ . . . ,β , and (<?2,... ,qn) G ^ X X V^.
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From (3.5), (3.15), (3.17) and (3.18) one gets the inequality

Since v'Lβ(q2, • An) — P-1> w e finally have

< ( i + 7 , ' ) p - ( i +-1-^)11x1,,/,II •••llxUH

Since the functions {χ^ f}βeB are orthogonal for each i G {1,...,«} and
since^ = Σ f t e B χ^ /, we have

( Γ z ^ ) / , l l •••II/JI

Since η' is arbitrarily small

llμ./.Θ . Θ/JI-sp-'ll/ill •••II/JI

which proves that Rλ maps 7 to itself and that its norm, as an operator on
Y, is smaller than p" 1 .

The proof that Q' is closable in Y and that Rλ is its resolvent is the
same as in part (a). This completes the proof of Proposition 3.1.

PROPOSITION 3.3. Suppose that m, Φ 0,...,mn Φ 0 and that λ <
(m, + +mn)\ The operator Q{mλ,... ,mn, e) is closable in 36 and has a
resolventRλ = (g(m l 9 . . .,mrt, ε) — λ)" 1 . Moreover

(3.19) IIΛJ^fK + . +w^-λ)"1.

Proof. The norm of the operator i?λ defined in Proposition 3.1 on
E(Kx)®w'- ®mE{Kn) satisfies inequality (3.19). Functions with com-
pact support form a dense set in E(M(mi9 ε)). Therefore Rλ has a unique
extension (denoted again by Rλ) to 3E, as a continuous linear mapping,
satisfying (3.19). One then proves as in part (a) of Proposition 3.1 that Q
is closable in 36 and that Rλ = (Q -λ)~ι. D

The Frechet space Er(M(m, ε)) is the set of functions/from M(m, ε)
to Σ such that the function/? -*\pμ \nf{p), μ = 0,1,2,3, w G N, belongs to
L«(M(m,ε),Σ).

On Z>£ the operators β and Pf" (defined by PffiPn -.,pn) =
commute.
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Therefore, from the definition of the topology on Eτ(M(rn{, ε)) <%>„
- ®wET(M(mn9ε))9 Q has a unique continuous extension (denoted
again by Q) to this space and, using Proposition 3.3, we have:

PROPOSITION 3.4. Suppose that mλ¥=0,...,mnΦ0 and that λ <
(mλ + +mn)

2. On Er(M(mχ, ε)) ®ff ®^Eτ(M(mn, ε)) the operator
Q(mv... ,mn, ε) — λ ftαs α continuous inverse

Rλ = (Q(ml9...9mn9ε) - λ)
- i

4. Formal properties of some non linear representations. Suppose
given integers nλ >: 0, n2 >: 0, «3 >: 0 and n4 > 0; put n = nχ+ n2 +
n3 + n4. Suppose also given a continuous linear representation (£/, E) of
the Poincare group, ί/ = Θ/L, Um"ε< on £ = φ/L, E(M(mi9 ε,)) such that

1. m7 > 0 and εf = — 1 if / = 1,...,/!,,
2. /wf > 0 and εz = + 1 if / = nλ + 1,.. .,7^ + «2,
3. mι — 0 and εi; = —1 if/ = nλ + « 2 + 1,...,«, + n2 + n3,
4. mι: — 0 and εz = + 1 if / = nx + n2 + n3 + 1,...,AI.

Denote by E~ (resp. E+ ) the space (&?±λ E(mι9 ε^ (resp.

®Γ=»Γ+i £ ^ m " ε ' ^ ' a n d b y P ~ ^ r e s p * P + > Γ e s p p m " ε ' ) t h e projector on
£ ~ (resp. £ + , resp. E(M(mi9εi))). One labels with a subscript the
corresponding projectors (P~ , P τ

+ , and Pτ

m"ε ') restricted to 2?T.
Define £"c = Θ" = 1 Ec(M(mn εz )). As a topological vector space,

£c.(M(mz, εz)) = limind £(ίΓ), where K C M(mi9 ε, ) is compact.
Given a topological vector space 7, denote by t(is τ, Y) the set of

power series/G S ( £ τ , Y) of the f o π n / = Σk>2f
kJk e S^(^T, Y), such

that/^(Pτ

mMεΊ ® XPτ

m'k>e>k) = 0 whenever at least one of the following
conditions is satisfied

(Cj) εi9... ,εf. are not all equal, or
(C2) there exists7 E {/l9... 9ik} such that my = 0.

For short one writes Qn(X) = »„(-¥, X), δ(ΛΓ) = g ( Z , JST) (X being a
topological vector space).

PROPOSITION 4.1. Suppose that G is either P or T4 and that (S, E) is a
smooth representation of G in E (for this notion see [1, Definition 6]),
Sg = Σ ^ , 5;, S; G β Λ ( £ ) , such that

(\)Sι = U\G.
(2) For any i, j such that m^πij φ 0, then mi + nij > mk for any k\

i, j,k G {l, . . . ,w}.

Then, there exists a unique A G t ( £ τ , £ τ ) swcΛ

(4.1)
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Proof. One denotes by E^ the space of differentiable vectors of U\G.
(S,E) being smooth, the mapping g -> S£-ιS£ is C°° from G to %n(E) and
S" 6 S J ^ ) for any g £ G. Since Γ4 is an invariant subgroup of G, and
S SJφ = SgSg-ιxgφ9 x E Γ4, g E G, the mapping c -> S^Sjφ is C00 from T4

to £ whenever φ E £ τ . Therefore, S] E %x(Er) for any g E G. Using the
relation SxSgφ — SgSg-\xgφ one sees by induction that Sg E Qn(Er) for
any g E G. Take / > 2 and suppose that there exists a unique polynomial
At_x = A2 + +Λ 7" 1 E t(Eτ9 Eτ) such that

(4.2) ((/ + A,_x)Sl - Sg(l + A^fp? = 0

for 1 < f c < / - l.Then,

( 5 ^ ( 7 + ^ / - 1 )) / P τ

= t = {SgSg,(l + ^ . J ) ^ = ^ ( 5 ^

Now, from (4.2), one has

Σ C « C ( 1 Λ- A \\ P± — I I \* C w π Γ -4- J ^ C ^ l P±

8 I 8' v *^l— 1 / I T — I I JLJ ^ g j K 1 ' Λ / - 1 / ^ g ' I Γ Ί *

Consequently, defining R^ — Sg(Σn>2 Sg-\(l + At_x))ιP*, we have

(4.3) R^g' ~ ^ g ~̂~ ^g^lξ^g~1'

This means that i ϊ* is a 1-cocycle on G with coefficients in 87(2?T), the
action of G being defined by g -> S'jZSJ-i, Z E S7(f:τ).

Consider now the cocycle dR±, on the Lie algebra t 4 of Γ4, defined
by

dR%φ = j^(RtxpsXψ)s=0, X e t 4 , φ G £ τ .

Then dR^E: Qf(Er). By [8, Lemma 6.3], d/?^has a linear extension (again
denoted by dR±) to the universal enveloping algebra U ( t 4 ) o f t 4 such that

dR%γ = dSι

xdRγ + dR% * d5{,, J f j ε U(t 4 )

(because rfR* * dS£ = ί/i?
Given a Lorentz basis {̂ Γo, X1? X2, X3} in t 4 , we have the central

element Q = Σ^= o flμ^μ 5 where η 0 = - 1 , ηx = η 2 = η3 = 1. Therefore
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If X E ί4, we have

(4.4) dR% = dSι

xdR% + dR%d(®ιSι)Q,

(4.5) dRlx = dSλ

QdR%+dR% * </S|.

EquaUties XQ = βJT, (4.4), (4.5) and Pr

m^dSx

Q = nήP™^ imply (for

ε. = . . . = ε. = ε = ±_ \9 R* meaning JR+ or R~ according to the sign of
ε) that

(4.6) P«J*j(dR χ(m* - Q(mh9...,mil9 ε)) - {dSι

xdR*Q - dR*Q * dSι

x))

X (Pτ"VeΊ ® . . . ®P™ire<i) = 0.

When miχ Φ 0,... 9mt/ Φ 0 and ε̂  = = ε^ = ε = ± 1, we shall define

(4.7) ^'(P^M^i ® . -. ®Pτ

m'/'ε'/)

= 2 Pmj^dRε

Q(m2j - Q(miι9...9miι9

and take Aι(P™n*εn ® - ®p™*reu) = 0 if ε l V . . . ̂  are not all equal or if
there existsy E {i l9... ,ΪZ} such that my = 0. We have

(4.8) dR\ = dSι

xA'Pτ

B - ( ^ P / ) * J S | , ; c E t 4 ,

which means that dl?ε is the coboundary oΐAιP* on t 4 . Consequently

**x = S^A'PήS^ ~ A'PT*, x G Γ4.

Define Λj = i?j - Sι

g(AP* )Sj-, - ^ ' P τ * , g e G . W e have R* = 0 for
j e Γ 4 . .R* is a 1-cocycle on G with coefficients in Q,(ET). Writing
Rg-*xg = 0, x E Γ4, one gets

(4.9) SJΛ* 5,1-, = - S ^ * - . 5 ; - , JC e Γ4, g G G.

The right-hand side of (4.9) being independent of X one obtains

dS^R'-R^dS^O, I6t4.

Therefore

μ=0

which implies that

Pm>*R*(m2j ~ Q{miχ9...9miι9 e^P^n ® QPfr'ή = 0.
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Proposition 3.4 implies then that R^ — 0. Going back to the definition of
Rg, this means that

sι

g[ί 2 s Λi + A,^))'pr* = sμ'pr*s*g-, - A'P?,

which can be rewritten with Aι = A{_ λ + A1

(4.10) (/ + A,)'SIP? = (Sg(l + ^ / )) 'P T

± .

One then defines A = Σ/>2 ̂ ' There remains to prove the uniqueness of
A1 G t(Eτ, Eτ). Suppose that there exists a second one, A1. Equality (4.10)
implies that

Sx

x{Aι - A1) - (A1 - Λι)Sλ

x = 0, x G T4.

Therefore

dSι

x(Aι - Ά) - (A1 -A1) *dSl

x = 0, XE t 4 .

The same calculation as above proves then that A1 = 4̂7. D

REMARK 4.2. Consider the series A G t (£ τ , £ τ ) satisfying the conclu-
sions of Proposition 4.1. The formal power series I + A has an inverse in
S(2?τ). Consider, on Er9 the formal representation (for this notion see [1,
Definition 1]) Sg = (I + A)~ιSg(I + A). It satisfies (Sι

g - SJP* = 0.

5. Convergence of the intertwining power series. Given two topo-
logical vector spaces X and 7, one denotes by §(X, Y) the subspace of
g(ΛΓ, 7) of the series/= Σn>2f\f" G Sn(Z, Γ). If Xand Fare Banach
spaces and r > 0 one defines φ r ( * , 7) = §r(X, Y) Π §(X, 7). We shall
write g ( £ ) - § ( £ , £), φ Γ (£) - ^XJE, E) and £ r ( £ ) = φ r ( £ , E\ and
keep the hypotheses of part 4.

A linear operator Win%{EΎ, E) can be defined by:
(1) W(fk(Pτ

m'^ ® . . . »/>;»*.**)) = 0 if condition (C, or C2) of part
4 is satisfied.

(2) If condition (C1 or C2) is not satisfied:

- 2 P*, V*((my

2 - Q(miχ

7 = 1
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Obviously W(f) Et(Eτ9E). Moreover, it results from Proposition 3.3
that there exists a constant C such that

1 ,, „ 2
(5.1) ||(mj-ρ(/n |.,...,m/ t,ε1.))" II < Ck

Consequently, given compact sets Kt C M(miy εf ), i — 1,...,«, W is con-
tinuous from § Γ (Φ; = 1 £(#,), £) to itself.

LEMMA 5.1. Suppose that G is either P or T4 and that (5, E) is a smooth
representation of G in E satisfying the hypotheses of Proposition 4.1. Given
AΓ compact in M(mi9 ε,.) (/ = 1,... ,/i) /Aere exists r>0 such that the series
A G t(Eτ9 Eτ) defined by Proposition 4.1 belongs to $r(Θ/L, £ ( ^ ) £)

Proof. We shall write equality 4.1 in a form which will be more
convenient to prove the convergence of A.

Take x G t 4 ; equality (4.1) implies, by differentiation, that

(5.2) ((/ + A) * </S£ - ώS;r(/ + A))P~ = 0.

Let 7V = Σn>2 ^ Equality (5.2) now writes

(5.3) dSx

x{AP?)- {AP7

±)*dS)c= -Γ , (/ + ^)Pr

which in turn implies that

dSx

xdSx

x{AP? ) - ((AP* ) * dSι

x) * dSι

x

- - (dSι

xTx(I + A) + (TX(I + A)) * dSι

x)P* .

Therefore, if ε̂  = = eik — ± 1 and miχ Φ 0,... 9mlk =£ 0, we have

2j - Q(miι9...9mik, εiχ

(

which is equivalent to

(5.4) Λ = - ^ ( Σ ( ; )
\μ=0 /

Now, using the fact that Λl satisfies equality (5.3) one has

7 + ̂ ) - ( 7 ^ * Γ,-)(/ + A)

+ (TXμ(\ + A)) * dS
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Consequently, since A G t (£ τ , £ τ), one gets (from (5.4)) the equation:

(5.5) A=N(A)

with

3

(5.6) N(A) = -W Σ 7iJ\dSl9Tx]Jl + A) - (τx *TX)(I + A)

Notice that the term of degree k in N( A) depends only on A 2,..., A k \
Therefore equation (5.5) has one and only one solution in §(/sc, E).
Since, as was just proved, the solution of (4.1) is solution of (5.5), it is
sufficient to solve (5.5) in ^(Θ/L, E(Kt)9 E) for some r > 0.

(5, E) being a smooth representation, there exists λx > 0 such that
(g> SΊ -* Sg'g-tSgg'-1 ^s °̂° fr°m a neighbourhood of the identity in
G X G to φ λ (£"). Writing g = exp Λ Xand g7 = exp s'X9 X E ί4, one gets

^ ' = o = ^xTxΨ - Tx*dSxΨ withφ G £„,.

Therefore

[dSx, Tχlψ = 9^7(^- ,5 g g , - , ) ί = ί , = 0 φ + 7V*

Thus [rf5|, Γy]* E$λ2(E) for some λ2 > 0. Take now

/ = Σ / * e Sx(i?)» * ! = Σ A* and
A:>2 A:>2

A2= Σ*2 inφ λ i
A:>2 \ ι = l

with 0 < 4λ' < λ. We have

(5.7)
A:>2

and

with α(j) = / + A, + ί(A2 — A,). Since

k>2
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we have

d

ds

f(a(s))
λ'

χ

Now, if || A, || v < λ' and || A2II v < λ' then | |α(s)| |λ, < 4λ', and there exists
a constant C(λ') such that limλ,_0 C(λ') = 0 and

(5.8) | | / ( / + h2) -f(I + A,)||λ, < C(λ')IIA2 - A,| | v.

It results from (5.7), (5.8), and from the fact that W is continuous from
φλ(Φ/Li E{Kt\ E) to itself for any λ > 0, that for r > 0 small enough the
mapping

μ =

maps the closed ball of radius r to the ball of radius r/2 in
l £) and

with 8 < 1, and Aλ,A2'm the closed ball of radius r.
Now, using the fact that dS\ is bounded on E(Ki), from inequality

(5.1) and again from (5.7) and (5.&) one sees that, for r > 0 small enough,
the mapping

Λ) - -2w[ Σ {TXμ{\ +A)) *dsΔ

maps the closed ball of radius r to the ball of radius r/2 in
l £) and,

for Ax, A2 in the closed ball of radius r.
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REMARK 5.2. This was the point where inequality (5.1) is important.
In fact inequalities of the type \\mj — Q(miχ9.. ,mik, ε ^ l Γ 1 ^ Ck~ι

would be sufficient to be still in the situation of no "small denominators".
Going back to the proof of Proposition 5.1, the mapping

sends the closed ball of radius r in %r{®^λE{K^E) to itself and
\\N(AX) - N(A2)\\r< δ\\A] - A2\\r9 for Λ,, A2 in the ball of radius r. By
the contraction mapping theorem, there exists A9 unique in
|> r( Θ/Lι E{Ki), £ ) , which is solution of equation (5.5). D

THEOREM 5.3. Suppose that G is either P or T4 and that (S9 E) is an
analytic representation of G in E (for this notion see [1, Definition 2]),
Sg = Σ n a E l s;, S; G 2H(E), such that

2. For any i9 j such that mi φ 0 and m- Φ 0, then mi + nij > mk, for
anyk9i9j9 k G {1,...,«}.

Then there exists a unique A G t ( £ τ , E) such that

(5.9) {(I )

and, given Ki C M(mi9 ε, ) compact (i — 1,... ,n) there exists r > 0 such

Proof. From [1, Proposition 5], there exists B — Σn>2 &n i*1 $5\(E)> f° r

some λ > 0, such that Vg — (I + B)~ιSg(I + B) is a smooth representa-
tion of G in E.

By Proposition 5.1, there exists C = Σn>2 C" in t(Eτ9 Eτ) such

and there exists λ > 0 such that C G φ λ ( Θ " = 1 £ ( £ , ) , £ ) . Define (/ + D)
y ( Sλ

g*
nowAk %(EE)b

= 1 (
B)(I+C). Obviously (/ + D)Sλ

gP* = 5^(1+ D)P~. Define

k,etk jf m ^ ^ 0 , . . . ,/Wfjk ^ 0

and C/i = = ε/Λ and by AkPT

m^ ® ®Pr

m^k = 0 otherwise. Then
y4 G t ( £ τ , 2?) and satisfies equality (5.9).

Suppose now that there exists a second series 4̂ satisfying the conclu-
sion of Theorem 5.3. One gets

(Λ - A)Sλ

gP~

Identifying degree by degree in this equality, one gets inductively
{A - A)PT

± = 0 and therefore, since A9 A G t(Eτ9 E)9 A = A. D
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6. Application to a family of wave equations. We shall now give an
example describing a spinless field of mass m > 0. One denotes by / -» /
the Fourier transform in the space S'(R3) of tempered distributions on R3.
Choose a Lorentz basis (Xo, Xλ9 X2, X3) int4. One introduces the follow-
ing spaces.

(\) Hois the space of tempered distributions, the Fourier transform of
which are elements of L](R3). If/ E # 0 , define II / II0 = II / II L'(R

3)

(2) Hx is the space of tempered distributions / E S'(R3), the Fourier
transform of which,/, is a function such thatp -> (m2 + \p\2)~ι/2f(p) is
inL^R3). I f / e # , define

( |/|Γ
R3

(3) H is the Frechet space of functions / such that the function
p^(m2 + \p\2)nf(p) is in L!(R3) for any π > 0.

Suppose now given an analytic mapping/ E |>r(C) (r > 0). If φ E Ho,
define (J(φ))(x) = /(φ(x)) and /(/) =J(f). Since L!(R3) is a convolu-
tion algebra, J can be considered as an element of (j)r(H0).

Consider now the wave equation (where J(0) = J (0) = 0 by defini-
tion)

(6.1) Dφ, + m2φ, = /(φ,)

Write φ/ = d/dt φr One wishes to solve (6.1) for φt G Ho, φt G Hλ (i.e. one
takes Ho θ Hx as space of initial conditions). Define

\2)V2φt and

2φt ( Ϊ 2 = - 1 ) .

Equation (6.1) is then equivalent to the system

(6.2)

Ul

with
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Put G = (G1? G2). The functions p-* (m2 + \p\2)~x/1af (p) belong to
L*(R3), therefore GG$r(H0XH0). One now defines E(M(m9ε)) =
Lλ

dv(M(m, ε)). We can consider af as an element of E(M(m, ± 1)) by the
identification a±(p) = a±(p) if p = (/?0, p) G M(m, ±1). We now de-
note Sι = ί/™'"1 θ [/m+1 the representation of the Poincare group P on
E = E(M(m9 -1)) θ E(M(m9 +1)). The system (6.2) becomes

If X = Σ 3

= o « ^ > o n e defines

which is an analytic representation of t 4 in Er compatible with Sι (for this
notion see [1, Definition 8]). By [1, Proposition 10], there exists a unique
analytic representation (S, E) of T4 in E such that dS — θ. It results from
Theorem 5.3 that there exists A E §(2sτ, is) such that given K_ (resp.
ΛΓ+) compact in Λf(m, — 1) (resp. M(m, +1)),

Λ E ! > λ ( £ ( # _ ) θ E(K+), £ ) for some λ > 0,

and such that

Take A E E(K_) U £(A:+) with ||A|| < λ. Define ψ, = (7 + ,4)Sjxp ^oA.
Since 5j is norm preserving and Sg(I + A)h — (I + A)Sλ

gh, the mapping
t -> ψ, is C00 from R to £ and we have <//Λψ, = θx$r

Coming back to equation (6.1) one gets in particular:

PROPOSITION 6.1. There exists A E §(7/ X H, H0X Hλ) with the fol-
lowing properties:

(1) Given any compact K in R3 there exists λ > 0 for which A E
$>\(HK X Hκ, Ho X Hλ), Hκ being the space of such functions in Ho, the
Fourier transform of which vanish in the complement of K.

(2) // h0 E HK9 | | A 0 | | < λ / 2 and hλ{P) = ±i(m2 + \p\2Ϋ/2h0(p),
equation (6.1) has a solution ψt for all t, with initial condition (φ0, φ0) =

The approach followed in this article can be applied to systems of
relativistic evolution equations with arbitrary spin with an analytic inter-
action (provided that the masses satisfy the inequalities given at point 2 of
Theorem 5.3.) to get global solutions for small data in some sectors.
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Let us now compare the example given above with previous results.
The problem of existence of global solutions for relativistic wave equa-
tions, seen from an abstract point of view, was initiated by I. Segal [11].
An example which has been studied extensively is the equation

(6.3) Dφ + m2φ = λφp ( GN)

for which global solutions exist for small initial data (in a suitable Sobolev
space) [10, Theorem 21], when/? >: 3. Furthermore, (6.3) has global weak
solutions for any initial data, with the restriction λ < 0,/? odd [12].

Concerning the equation Dφ + m2φ = /(φ) with φ real, / being a
continuous real valued function satisfying φ / ( φ ) < 0 , W. Strauss [13]
proved that there exist real global weak solutions for any real initial data.

Global solutions which are C°° in space and time for equations of the
type

(6.4) Dφ-G^φ^ φ),

(where G(£z, τj/y) is a C°° function in £, and τj/7 and vanishing for ξ — 0
and η = 0, and where the space of initial data is the space of C00 functions
on Rd, d>6) have been proved to exist by S. Klainerman [7] if the initial
data is small enough (i.e. the L1 and L2 norms of the initial data and a
certain number of its derrivatives are small enough).

The problem of the existence of global solutions for relativistic wave
equations for initial data in some sectors is discussed in a review work of
M. Reed [10].
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