
PACIFIC JOURNAL OF MATHEMATICS
Vol 105, No. 2, 1983

SOME TOPOLOGIES ON THE SET
OF DISCRETE STATIONARY CHANNELS

JOHN C. KIEFFER

Some topologies are defined on the set S of all discrete stationary
channels with given finite input and output alphabets, which are weaker
than the topology of Neuhoff and Shields arising from the d concept of
channel distance. The closure of various subsets of § with respect to
certain of these topologies on S are determined. For example, a topology
on S is introduced with respect to which the set of weakly continuous
channels (the most general class of channels for which coding theorems
of information theory have been obtained) is the closure in § of the set
of channels with input finite memory and anticipation. As a by-product,
results are obtained on simulating channels by block codes and on
constructing sliding-block codes from block codes using sets called
coding sets.

I. Introduction.

NOTATION. A, B will denote finite sets to be fixed for the rest of the

paper; (£, $ will denote the sets of all subsets of A, B, respectively.

(A°°, β 0 0) denotes the measurable space consisting of A™, the set of all

doubly-infinite sequences x = (x f )£=_«, from A, and (£°°, the usual prod-

uct σ-field of subsets of A00. We define ( 5 0 0 , ®°°) similarly.

Let Z be the set of all integers. If x G A°°, and i G Z, xi denotes the

zth coordinate of x. If m, n E Z and m < n, xn

m denotes the (n — m + 1)-

tuple (yl9... Λ _ w + 1 ) in An~m+λ such that>> - xm+i-l9 1 < i < m + n -

1. Similarly if x E Ak, where k is a positive integer, and 1 < i < k, xi

denotes the ith coordinate of x9 and if 1 < m < n < /c, xn

m denotes

(y\>- ? Λ + w - i ) = (xm, - , O One defines similar notations for x E B°°

or Bk,k> 1.

{Xf. i €Ξ Z} denotes the family of projections from A°° -* A; that is,

X£x) = xi9 iSZ9 x G A°°. Similarly, {ίj: i G Z} denotes the family of

projections from B°° -» B. {Jζ : / G Z} are the maps from A00 X B00 ^ A

and {Y;: i G Z) the maps from^ 0 0 X B°° ^ B such that Jζ.(jc, 7) = Xt(x\

Yt{xy y) = f O ) , J c 6 i ° ° j G £°°, / G Z. If m, « G Z and m<n,Xn

m

denotes the map (Xm9...,Xn) from A°° ->An~m+x. Similarly, we define

Ϋm> xm> γm> except we denote Xx\ Yf, Xx\ Ϋλ

n respectively by X\ Y\ X\

359
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R denotes the real line. If S is a finite set, | S | denotes the cardinality
of S. If (Ω, 3") is a measurable space and We$9 Wc denotes the
complement of W\ that is, Wc = {ω G Ω: ω £ W). The map Iw\ Ω -> i?
is the indicator function of W— the function equal to 1 on W and 0 on
Wc.

A function f: A* -» R is finite-dimensional (f.d.) if / is a function of
X£ for some m < n, m, n G Z. Similarly, we define a f.d. function /:
5 0 0 -> R. A function/: A00 X B°° -> R is f.d. if/is a function of (*£, ί^)
for some m < «, m, « G Z. A subset £ of 4̂°°, 5 0 0, or A00 X 5 0 0 is said to
be f.d. if IE is f.d.

TA: A™ -> ̂ 4°° and TB: B°° ^ B°° denote the two-sided shift transfor-
mations. (That is, TAx — Jc, where Jc7 = x m , i 6 Z ; similarly for TB.) We
will sometimes denote TA or ΓB by T9 when the context makes clear what
the domain is.

Sources. 9H denotes the family of all probability measures on &°°
stationary with respect to TA. We call the elements of 91L stationary
sources. c3ίH/ denotes the family of all probability measures on &°° X%°°.
On 91L, 9K/ we place the vmz/: topology [19]; for example, the weak
topology on 911 is the unique metrizable topology such that if {μn)™=sl C 9H
and μ E 911, then μn -* μ in the weak topology if and only if μn{E) -> μ(£")
•for every f.d. E CA°°. 911, 9R/ are compact topological spaces.

A sequence x G ̂ 4°° is periodic ΊtTNx = x for some positive integer N.
If Λ: is periodic, let N be the smallest positive integer N such that
TNx = x. N is called the /?eπW of x. We let 5p denote the set of all the
periodic sequences in yί00. We say μ G 9H is periodic if μ(Sp) = 1. We say
a periodic μ G 9H has order N if μ places probability one on the set of all
periodic sequences of period < Λf. We let 911̂  denote the subset of 9H
consisting of the periodic sources. We say μ G 911 is aperiodic if μ(Sp) = 0.
9Hα will denote the subset of 9H consisting of aperiodic sources. We let
& C 911 denote the family of all ergodic sources; that is, μ G S if and only
if μ is ergodic relative to TA.

Channels. We say v is a channel if for some pair of measurable spaces
(Ω1? ?Γj), (Ω2, ?Γ2), *> is a family *> = {^: x G Ω,} of probability measures
on % such that for each E G ?Γ2, the map x -> ̂ ( £ ) from Ω, -> [0,1] is
?Γj -measurable. We call Ω1 the //I/?M/ φαce of the channel v, and Ω2 the
output space. We will be dealing with discrete finite-alphabet channels; that
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is, channels whose input and output spaces are spaces of doubly-infinite
sequences drawn from finite sets.

If M is a positive integer, a channel v with input space (A°°, $°°) and
output space (B°°y ®°°) is said to be M-stationary if VTMX(T^E) = vx(E\
x E A00, E E ®°°. We call a 1-stationary channel simply a stationary
channel. Let § denote the set of all stationary channels with input space
(A°°9 &°°) and output space ( 5 0 0 , ®°°). Following [3], a channel ^ E § i s
said to have input finite memory and anticipation if for some positive
integer M, the following holds: For each k = 1,2,..., and E C i?2*+ *, the
map x -> vx(Ϋ-k E is) is a f.d. function from v4°° -»[0,1], depending on x
only through x'tt-M We let §y denote the subset of S consisting of all
such channels.

By a stationary code, we mean a measurable map ψ: ̂ 4°° -* 5 0 0 such
that ψ TA = TB ψ. Given a stationary code ψ: Λ00 -> £°°, let *>* denote the
channel in S such that v+(E) = /£(Ψ(JC)), £ E $°°, JC E ̂ l00. We let ξ>d

denote the subset of S such that %d = {̂ ψ: ψ a stationary code}.

The elements of Ŝ  are called deterministic channels. We let Sdf denote
ξ>d Π Sf. A stationary code ψ: 4̂°° -> JB00 is called a sliding-block code
([2], [20]) if for some positive integer k, there exists ψ': ^42/c+1 -• B such
that ψ(xχ = ψ'(x ί£), x E ̂ 4°°, i E Z. It is easy to see that %df = {*>ψ: ψ a
sliding-block code}.

Given a channel P with input space (̂ 4°°, ̂ °°) and output space
(I?00, ®°°), and a probability measure μ on &°°, we let /x̂  denote the
probability measure on $°° X %°° such that μ^(£ X F) = fEvx{F) dμ(x),
E E $°°, F E Φ00. We define ^ E S to be weαfcfy continuous if the map
μ -* μv from 9IL -»(3ll/ is continuous. We let § c denote the subset of §
consisting of the weakly continuous channels. %c is the most general class
of channels for which coding theorems of information theory have been
obtained [7] [9] [10] [11]. In §111 of this paper, we provide a characteriza-
tion of such channels.

Channel Topologies. In [14] Neuhoff and Shields introduced the d
concept of channel distance, which is a pseudometric on §, and de-
termined the closure with respect to the resulting topology on S of a
simple class of channels called primitive channels; subsequently, in [15]
[16] they determined the closure of some interesting subclasses of the class
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of primitive channels. In the same spirit, we define here some topologies

on § weaker than theirs and then devote the rest of the paper to

investigating the closure of Sf9%d9 Sdf under these topologies.

Let D̂ be a subset of 91L We define 3̂ (<>D) to be the topology on §

whose basis consists of the sets of form E(§9 F9 v09 ε) — {v E §:
SUPEGQ^GF\ ^(E) — μvo{E) | < ε}, for all ε > 0, v0 E S, finite collections

§ of f.d. sets from &°° X ®°°, and finite subsets Fof <φ. If {vn}%λ C § and

ί Έ § , then ?„ -> p in the ^(ty) topology if and only Ίi μvn-+ μv for every

/ J I E 6 ! ) , or equivalently, if and only if μvn{E) -> μv(E) for every μ E ̂ D

and f.d. set £ from &00 X ®°°. Consequently, we call the topology

the topology of pointwise convergence on 6Ϊ).

We define %(fy) to be the topology on S whose basis consists of sets

of form E(Q, v09 ε) = {*> E S: s u p ^ g ^ | μ*>(£) ~ M^o(£) < ε ) ?

 f o r a 1 1

ε > 0, p0 E §, and finite collections § of f.d. sets from &°° X ®°°. It is easy

to see that ?π -> v in the ^ ( Φ ) topology if and only if for each f.d. set E in

&°° X® 0 0 , μvn(E) -> μv{E) uniformly in / I G 4 Accordingly we call

the topology of uniform convergence on 6ί>.

If § ' C § and ?Γis a topology on S, let β [ S ' | ?Γ ] denote the closure of

S' relative to the topology ?Γ. Let β^lS'l ?Γ ] denote the sequential closure of

§ ' relative to ?Γ; that is, ^ E β 5 [ § ' | ?Γ] if and only if there is a sequence

{vn}™=\ f r ° m § ' such that vn -> ^ in the ?Γ- topology. In general β j § ' | ?Γ ] C

βlS'l^Γ], with equality if ?Γ is first countable. The uniform topologies

^ ( Φ ) are first countable and so, β j S ' | ^ ( φ ) ] - e [ S ' | ^ ( Φ ) ] . The

topologies ^ ( Φ ) may not be first countable if D̂ is not countable, and so

it is possible one may have S j S ' | 9^(^)1 Φ Q\%' \ ̂ p{%\ for such topolo-

gies.

Coding Sets. If N is a positive integer, E C A°° is called a coding set of

order N if £ is f.d. and does not contain any periodic sequence of

period < N. E C A°° is called a coding set if £ is a coding set of order N

for some N. Coding sets will play a role in constructing sliding-block

codes, as we will see in §V.

Let D̂ C 9lt. We say φ is concentrated on coding sets if there is a

sequence of coding sets {/v)/?=i s u c h ^ a t ^O Γ e a c h ^ ^v ^s o ^ order N9

and for each μ G 6 } , limN_o0μ{FN) — 1.
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We say tf) is uniformly concentrated on coding sets if for each ε > 0 and
positive integer N, there exists a coding set of order N such that μ(iv) >
1 - ε for all μ G <$>.

It is important to know when φ is concentrated on coding sets or
uniformly concentrated on coding sets in view of results to be obtained
later in the paper (see §11, P3 and P4).

II. Statement of main results. The main results to be obtained in
this paper are the following

Closure Properties ofξ>f, ξ>d, ξ>df

PI. e ^ l 9,(911)] = S.

f

P3. β[Sdf\
 <5U(6D)] D Sc if Φ C 9ϊt is uniformly concentrated on cod-

ing sets.
P4. β[Sdf\ ^(ty)] D § c if ^ C 911 is concentrated on coding sets.

Properties PI, P5, P6 show that § / ? ξ>d9 Sdf are dense in S if one
chooses the right topology on S.

Property P2 gives a characterization of weakly continuous channels.
Properties P3, P4 allow one to approximate weakly continuous channels
by channels from %df.

Property PI is proved at the end of this section. Property P2 is proved
in §111. Properties 3 and 4 follow from Theorem 2 of §V. Property P5
follows from Properties PI and P3, as indicated at the end of §VI.
Property P6 follows from Property P5 with the help of Lemma A3 of the
Appendix.

Proof of P\. Let v G S, ε > 0, a positive integer j , and a finite subset
{μ1?... ,μn) of 9H be specified. PI follows provided we can find ? G § /

such that

(2.1) sup sup \μiv[XJ = a, Yj = b] - μiv[χj = a, Yj = b] | < ε.

Choose k >j so large that 2j/k < ε/2. Choose δ > 0 so small that
nδ IA \k IB \k < ε/2. Let μ = n~\μx + +μn). Since f.d. functions are
dense in L*(μ), there is a channel *>' with input space A°° and output space
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Bk such that for each b e Bk the map x -» v'x{b) from A00 -> [0,1] is f.d.

and

(2.2) \vx(b)-vx(Ϋk = b)\dμ(x)<8,

By Lemma A2 of the Appendix, there exists £ E §y such that for all

a E AJ, b e BJ

(2.3) I μ,P[χJ = a, YJ = b]- μ,v[χJ = * . ̂ y = b] \

^ 2j/k + 2

By (2.2), we have for α' e Ak, b' e 5*, and all /,

i = l , . . . , / i .

Hence the right-hand side of inequality (2.3) is upper bounded by 2j/k +

\A\k\B \kn8 < ε. (2.1) now follows.

III. A Characterization of weakly continuous channels. In this sec-

tion we prove P2 which gives the following characterization of weakly

continuous channels: A channel v E § is weakly continuous if and only if

there is a sequence {vn} Cξ>f such that vn -» v in the S"M(9IL) topology. We

accomplish parts of the proof by means of the two lemmas which follow.

LEMMA 1. Let W C A™ be f.d. Let /: A00 -> [0,1] be a measurable

function such that the map μ -> jwfdμfrom tyU -> [0,1] is continuous. Then,

given ε > 0, there is a f.d. function g: A°° -> R such that

(3.1) Ugdμ-ffdμ
\JW Jw

Proof. We place the discrete topology on 4̂ and the product topology

on A00, making ^ί00 a compact topological space. Let C(^4°°) be the Banach

space of all continuous functions from A°° -» i?, under the supremum

norm. By the Stone-Weierstrass Theorem [1, Theorem A7.5], the f.d.

functions are dense in CiA™). Thus we need only obtain a g G C(A°°)

such that (3.1) holds.
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Let £ be the space of all finite signed measures on 6B00, with the weak
topology. If μ E £, let μw G £be the measure such that

μw(E) = μ(EΠ W)9 E G &00.

Let t w = {μw: μ G £}, 911^ = [μw\ μ G 911}. tW9 with the topology it
inherits as a subspace of £, is a locally convex space, and 911^ is a
compact convex subset. Hence any continuous affine functional on 911^ is
the uniform limit on (d\iw of continuous linear functional on £ ^ [13, The-
orem T.6, p. 221]. Thus there is a continuous linear functional G: t w -> R
such that

(3.2)

Let G*: £

(3-3)

G(μ)-(fdμ μ

be the linear functional such that

G*(μ) =

G* is continuous since it is the composition of the continuous map
μ-^ μw from £ -> t w with G. Now by the Riesz Representation Theorem
[l,Thm. 4.3.13], t can be identified with the dual space of C(A°°) under
the weak-star topology. By [l,Thm. 3.5.17], since G* is a weak-star
continuous functional, there must be g G C{A°°) such that

(3.4)

Ifjue91t, then

(3.5)

G*(μ) = f gdμ, μ G £.

G 9H^ and so by (3.2)-(3.4)

Replacing μ in (3.5) by μw gives

(3.6) ί g^μ^- [ fd(μw)
JA°° JW

W

But jgdμw- lwgdμ and \wίd{μw)w- jwfdμ, so (3.1) follows from
(3.6).

LEMMA 2. Leί W C A°° be f. d. Let δ>0.Letfl9... Jn be /. d. functions
from A°° -* R such that

(a) -8/n < fwft dμ < μ(W) + δ//i, / - 1,... ,n, μ G 91L.

(b) μ(W) - 8 < lw®U\fi) dH ^ ^W) + δ, μ G 9H.
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Then there aref.d. functions gl9... ,gn: A°° -> R such that

(a') I Swfi dμ ~ iwSi dμ | < 65, μ E 9IL, i = 1,.. . ,Λ.

(b') Σ? = 1 g z = 1 throughout A°°.

(c') gι > 0 throughout A°°, i= 1,...,«.

Proo/. From (a), (b) and Lemma Al of the Appendix we see that for k

sufficiently large,

(3.7) A;"1 2 [ ( / , - l ) V l :r;<2δ/«, i=l,...,n.

(3.8) /:-' 2 (f,
7=0

(3.9)
J=ί

Let W= {x <Ξ W: Tιx <Ξ W for infinitely many / > 0}. By Poincare's

Recurrence Theorem [4],

(3.10) μ(w) = μ(W)9 μ G 9H.

Define φ: J^ -* {1,2,...} to be the map such that

φ(x) = inf{/ > 0: Γ'JC E JF}, X <Ξ W.

Thus, φ is the time of first return to W. Define f: W-* W&s follows:

fx = Tφ(x)x, x E W.

As is well-known [5], Γis measure-preserving; that is

(3.11) ίj'fdμ=[jdμ,
W JW

for every measurable /: W -> [0, oc), and every μ E 911. Also, by Kac's

Recurrence Theorem [4],

(3.12) (φdμ<l, juE^lL.

For any/: 4̂°° -^ JR it is easily seen that

Σf(f'x)= Σ
i=0 ι=0
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Applying this to (3.7)-(3.9), it is clear that we may fix a postive integer k
so that for every x E W9

(3.13) 2 [fi-l](Px)<:2δ/n 2 Φ(fJx)9 / = l,...,n.

k-\ k-\

(3.14) Σ fi(fJx) >-2δ/n 2 φ(fJx)9 i = \ 9 . . . 9 n .
y=0 y=0

(3.15) -2δ 2 Φ(fjx) ^ Σ
j=o f = l

2 δ 2
y=0

Let /: W->R be the function such that /(x) = ^
x e # . For each ι = 1,...,«, let Λ;: # - • R be the function such that
h,(x) = k-^jZlttfJx), χ(ΞW. Then (3.13)-(3.15) reduce to

(3.16) Λ , < l + 2 δ / / n , / = ! , . . . , « .

(3.17) Λ,>

(3.18) -2δ/< + 2 δ /
1 = 1

For each / = 1,...,«, let hf: W -* i? be the function such that

Then,

(3.19)

Now by (3.18),

h* > 0 for each ί and 2 A* = 1.

1 < 2 (h, + 2δ«-'/) < 1 + 4δ/,
ί = l

and so for each i

(3.20) —

Now by (3.16), (3.17),

(3.21) I hi |< 1 + 4δ/ for each /.
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Hence by (3.12), (3.21) we have for all i and all μ e 91L,

From this and (3.20), we get

- 4 δ +

But fύhi dμ = /^/. dμ by (3.11) and so

(3.22) ( h*dμ-( fdμ < 4 δ for all/,μ.

Now the {λ*} may not be f.d., so we modify them appropriately. If
1 < r < s, define

Ers = (JC G W\ Tx E ί^for at least r indices

/ in the range 1 < / < 5}.

We may fix positive integers / and r so large that for all s > r,

(3.23) Λ* is constant on W Π £ r j Π {jfc, = a),

0 G i 4 J + / + ι , / = 1 , . . . , Λ .

From (3.10), we have

μ ( W n Ί £ r

c J | 0 a s 5 ^ 00, μ G 9IL.

Since W Π ̂  is f.d., the map μ ^ μ{W Π £r^) from 911 -> [0,1] is con-
tinuous. Hence, by Dini's Theorem [1, p. 181], we may fix s so large that

μ(WΠEr

c

s)<δ, μG91t.

Now by (3.19), (3.23) we may select f.d. gu... ,gΛ: A00 ^ R such that (b')9

(cθ hold and

Then for all /, μ,

fw Jw

This, coupled with (3.22), gives (a')

g i dμ- ί h*dμ< 2μ{WΠ Ec

rs) < 28.
Λ/ J U/

Proof of F2. Suppose v is in the 3*M(9H) closure of %f. Since ^(911) is
first countable, this implies the existence of a sequence {vn} C § / such that
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vn -> v in the ^(911) topology. Fix a f.d. set E CA°° X B°°. Let Φ:
911 -» i? be the map Φ(μ) = μK£), M G ^ It will follow that v E %c if Φ
is continuous. For each n, let Φn: 911 -> i? be the map such that Φn(μ) =
μvn{E), μ E 911. Then Φn -> Φ uniformly on 91L. Since each Φn is continu-
ous, Φ must be continuous.

Conversely, suppose v E Sc. Fix ε > 0 and a positive integer,/. We will
have v in the ^(911) closure of §y if we can find v E §y such that

sup sup \μp[XJ = a, Yj = b] ~ μv[Xj = α, 7^ = b]\<ε.(3.24)

Fix A: >j so large that 2y/A: < ε/2. Choose δ > 0 so that 7δ | A \k \ B \k <
ε/2.

By Lemma 1 pick for each a E: Ak f.d. functions {//: b E Bk] such
that for all b, μ

(3.25) fb(x)dμ(x)-f vx(Ϋk = b) dμ(x)
Xk = a) J{Xk = a}

<δ/\B\".

To ease the notation, denote the set {Xk = a) by [a]. Then from (3.25) we
obtain for aeAk,bEBk,μE 911,

< / fa

bdμ<μ[a]+δ/\B\k,
J[a]

fa

b)dμ<μ[a]+δ.

Thus, by Lemma 2, we may select for each a G Ak f.d. functions
b G Bk) such that

(3.26)

(3.27)

(3.28)

gb

adμ-f fa

bdμ
[a] Jίa]la]

gb

a>0, for all b;

b<ΞBk

< 6 δ , for all 6, μ;

Let y' be the channel with input space 4̂°° and output space Bk such that

(3.29)
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By Lemma A2 of the Appendix, there exists v E §y such that for all

μ E 91L, a E AJ, b E £ 7 ,

( 3 . 3 0 ) I μv[xj = a, Yj = b] - μv[XJ = a,Y
J = b]\

ί {v'(b') - vx(Ϋk = b')} dμ(x)
a'<=Ak,b'(ΞB> '{X"=a}

Now by (3.29), (3.26), (3.25)

[v'x{b') - vx{Ϋk = b')} dμ{x)< 7 δ , forallα', Z/,μ.

Hence the right-hand side of (3.30) is upper bounded by 2j/k +

7δ\A\k\B\k<ε. This gives (3.24).

ΓV. Simulating a channel by block codes. A block code is a map φ:

AN -» BN for some JV. In this section we show that block codes can be

used to simulate certain channels. We now make precise what we mean by

this.

In the rest of the paper, if w, v are two elements drawn from the same

set, we define δ(w, v) to be 0 if u φ υ and 1 if u — υ.

Let K, M be positive integers and v a channel with input space
A2M+2K+\ a n d o u t p u t s p a c e #2/Γ+l j f N > 1 K + 2 M ? e > Q

G AN X BN

9 we say (x, y) is ε-typical ofv if

N-K-M N-K-M
+/ = b) - va{b) 2 s(*;_™, a)

<(N-2K- 2M)ε, for all a G

We say v can be simulated by block codes if for each ε > 0, there exists a

positive integer Ne such that for every N > Ne there is a block code φ:

AN ^ BN satisfying the requirement that (x, φ(x)) is ε-typical of *>,

Before giving the main result of this section on the simulation of

channels, we need to present some more notation.

If S is a finite set and Ή — (7r(/, j): (/, j) E S X S} is a stochastic

matrix, α(ττ) denotes the number max^ y l 2^ s^j^s I ̂ y ~~ ̂ i/1 If ^ i s a

random variable defined on the probability space (Ω, <&, λ), EλX denotes

the expected value of X. If Y is another random variable on this space,
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COVλ(X, Y) denotes the covariance of the pair (X, Y). Suppose now λ is

a probability measure on %°° such that λ(£) > 0 for every f.d. set

£ 6 Γ . I f m , « G Z and m < n, define λ(? m , . . . , Ϋn) to be the function

from B">->[09l] such that λ(Ϋm,...X)(y) = λ(?m = Jm(y)9...9Ϋn =

Ϋn(y)\ y^B°°; define the function λ(fπ + 11 Ϋm9...9Ϋn)tobe the ratio

λ(y m f . . . ,y n + 1 )/λ(y m , . . . , f n ) .

THEOREM 1. Le/ ΛΓ, M be positive integers and v a channel with input

space A2K+2M+X and output space B2K+ι. Suppose there exists / G § such

that v'x(γκκ = b) = ^ 5 + ^ ( 6 ) , j c G Γ , ί G 5 2 * + 1 . ΓΛew v can be simulated

by block codes.

Proof. It is not hard to see that it suffices to prove the theorem under

the assumption that vx(E) > 0 for all x G A00 and all f.d. sets E G ®°°.

Fix ε > 0. Choose δ > 0 so that δ < e and 2 | B \2K+ι | A f*+2Λ/+ig2 < j

Let v G § be the channel such that

π
r,5 G Z, 5 - r > 2UΓ, x G ^4°°.

For each i G Z, x G ^°°, let Λ/Xί be the stochastic matrix Mx4 -

{Mx>'(bl9 b2): bl9b2 G B2K+ι} such that

Mx,i(γi-h2K y i + 2AΓ+l\ — t(γ I γi + 2K\

For each x G ^l00, {^/+2ΛΓ}^-oo i s a Markov chain under ?x such that the

conditional distribution of Ϋ^2^1 given Ϋ/+2K is given by MXii

9 i G Z.

The set of matrices S = {Mxj: x G A00, i G Z} is finite and any finite

product of elements from S is regular. Thus, by a result of Wolfowitz [21]

there is a positive integer / such that if n > / and τr1 ?... ,πn G S then

α(7Γj πn) < δ 4 . Choose No so large that No > 2K + 2M and

2J/(NQ - 2K- 2M) < δ 4 . Fix ΛΓ > Λ ô. We want to show there is a

block code φ: AN -> BN "ε-typicaΓ of v. Fix x G AN. Our task is to define

φ(x) so that (x, Φ( x)) is ε-typical of v. Fix x G 4̂°° so that x f = Jc. By

definition of ί, the choice of/, and Lemma A4 of the Appendix,

(4.1) Efχ[itf_+κK=b}] = v x , + Λ φ ) , i e z , b e B 2 K + \

(4.2) [ { ^ ) { / V > ]

ijez,\i-j\>J,bsB2K+i.
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For each α G / ™ + 1 , let Ra = {K + M + 1 <y < N - K - M:
xj-K-M = «}. Letting Nγ= N-2K- 2M, we have, using Chebyshev's
Inequality and (4.1), (4.2),

vx[{x, ΫN) is not δ-typical of v]

Σ >8N}

' + N?84] <2\A \2K+2"+i I B \2K+]82 < 1.
a,b

In the preceding, the covariance terms were first summed over ι, j with

I i — j | < /, yielding the upper bound 2NXJ by Lemma A4; the remaining

terms have upper bound N284 by (4.2).

Hence, we may find some y E BN such that (Jc, y) is δ-typical and

therefore ε-typical of v. Define φ(x) = y.

V. Building finite codes using coding sets. In this section we in-

vestigate the possibility of building a sliding-block code ψ so that v^ is

"close to" a given weakly continuous channel. We describe briefly how

this is done before going into details. A finite sequence of disjoint sets

{F0,Fι,...,Fn} from $°° is called a Rohlin-Kakutani tower if T% = Fi9

1 < i < w. Roughly speaking, to approximate a given channel v we first

simulate the channel with a block code. We then choose an appropriate

coding set and use it to build a sufficiently long Rohlin-Kakutani tower.

The block code is then "embedded" in the tower (as for example in [20])
to obtain the desired sliding-block code ψ. The extent to which v^ mimics

v depends only on how good a coding set can be found. Later on, in the

next section, we provide a complete answer to the question of when a

good coding set can be found.

By means of the following lemma, we show how a coding set can be

used to construct a Rohlin-Kakutani tower.

LEMMA 3. Let N be a positive integer. Let F C A™ be a coding set of

order N. There exists af.d. set E C 4̂°° such that

(a) E,TE,..., TNE are disjoint.

(b) For some positive integer L, F C Uf=0TΈ.
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Proof. Find i G Z, a positive integer k, and F' C Ak such that
F = {Jt tϊ S F'}. Now Ff = {ft,,... ,ftr}> say. Each ft,., 1 < i < r, has the
following property:

, , There is no c G .400 such that jtf = ft,, and Tj{x)k

λ = ft.
for some y in the range 1 <j<N.

For, if (5.1) fails, it is not hard to see that F must contain a periodic
sequence of period < iV. Define

£ = U {Xi:t = bm,X;tj:t¥°bs;l<s^m-l,-N«Zj<:N}.

From (5.1) we deduce (a). Suppose for some s E Z and M > 0 we have
Γyjc ^ £, for all; in the range j <j < ̂  + M. It follows that Γ̂ x ^ F for
ally in the range s + (r — l)N <y <.s + M — (r — l)iV. Then, replacing
E by some shift TmE of itself if necessary, we get (b).

Here is the main result of this section.

THEOREM 2. Let v G %c. Let a positive integer K and ε > 0 be given.

Then there exists a positive integer J such that:

For each coding set F of order J there exists a sliding-block ψ: 4̂°° -> B°°

for which

(5.2) 2 \μ

, μ £ 9H.

Proo/. In view of P2, we may assume v E §y. Thus we can find a
positive integer M and a channel v with input space Λ 2*+ 2 Λ / + ' a n d output
space B2K+λ such that

Choose δ > 0 so small that

(5.3) 3 μ | 2 * + 2 M + 1 | £ | 2 * + 1 δ < ε .

In view of Theorem 1, we may pick N > 2K + 2M and a block code φ:

AN -> 5 ^ such that

(5.4) (x, φ(χ)) is δ-typical oiv, x e ^ ^ .

We assume iV is large enough so that

(5.5) 2N-ι(2K+2M)<δ.
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Let / be a multiple of N so large that

(5.6) 2N/J<8.

Let F be any coding set of order /. By Lemma 3, pick a f.d. set E and

L>J such that

(5.7) E, TE,..., TJE are disjoint,

L

(5.8) FC U TE.
i = 0

Let ψ: 4̂°° -> B°° be a sliding-block code satisfying the following property:

If x G A°°, i G Z, and Γ'JC G E9 then ψ(x);ί^+ A Γ~ 1 = Φ ί ^ + ί j ^ " " 1 )

for all s in the range 0 < 5 < r — 1, where r = r(x, i) is the largest

positive integer for which both (a)-(b) which follow hold.

(a) Tsx £ E for all s in the range i < s < i + rN - 1.

(b) r # - 1 < L.

(Note that r is at least 1 by (5.7).) Roughly speaking, we code onward

from each coordinate / where T'x G E (that is, where E is "windowed")

using the block code φ, stopping when the next coordinate where E is

windowed is reached or when no more than L coordinates of x have been

coded, whichever comes first.

Since both sides of inequality (5.2) are continuous functions of

μ G 9H and & is dense in 911 [18], we need only show (5.2) for μ G &. Fix

μ G &. We may assume μ(F) > 0. (Otherwise (5.2) trivially holds.) Then,

from (5.8), μ(E) > 0. Fix x G ̂ 4°° a regular point of μ. (This means

lim^^ooΣfJo/ίΓ'Λ:) = fAccfdμ, for every f.d. function /: A00 -* R.) Sup-

pose i9j G Z, i <j9 are given so that T'x G 2s, Γyx G E, and Γ*Λ; ̂  £ for

all s in the range i <s<j. Then, we have for all a G A2K+2M+\ b <Ξ B2K+λ

(5.9) Σ δ(x,s

j = i s = i

^ (j ~ i)S + 2N-\2K + 2M){j - i) + 2N

)s-κ>b)
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The first three terms on the right-hand side of inequality (5.9) arise from

summing over indices s which are no bigger than i + rN + N — 1 sum-

ming over the remaining indices, if any, we get the last two terms on the

right-hand side of (5.9), since such an index s is at a distance from /

greater than L and so Tsx £ Fby (5.8).

Nowj — / > / by (5.7) and so by (5.6),

(5.10) 2N<Jδ<(j- i)S.

Since μ(E) > 0, we have T'x E E for infinitely many i > 0, say ix < i2 <

• . We obtain from (5.5), (5.9), (5.10) that for t = 2,3,...,

ί£, b)

~ ί.Γ1 V/f (^)β«M, a).
5 = 1,

Letting ί -» oo in the preceding we obtain, since x is a regular point,

(5.11) < 3δ + μ[F< n {x: x^M = a, ψ(x)5^ = b}]

Substituting μv[X^\ = α, 7.^ = ft] for Pa(b)μ[X5Ά = fl] in (5.11),
and summing over α, fe, we obtain by (5.3) that

« - ^ = a, Yκ

κ = b]\ < ε

(5.2) follows from this.

We remark that P3, P4 easily follows from Theorem 2.

VI. Families of sources concentrated on coding sets. In this section

we characterize when a family Θ C 91L is concentrated on coding sets

(Theorem 4) or uniformly concentrated on coding sets (Theorem 3).
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LEMMA 4. D̂ C 91L is concentrated on coding sets if and only if there

exists a sequence off.d. sets {FN}°£=] such that

Proof. Let tf) be concentrated on the coding sets {FN} where FN has

order TV. Let μ G <Ubp be of order TV'. Let TV > TV'. Then / ^ does not

contain any periodic sequence of period < TV' and so μ(FN) = 0. Thus

limM_>ooμ(i ϊ;) = 0 for all μ G <U\Lp which have finite order. If μ G cDϊLp,

and ε > 0, we show l i m s u p ^ ^ μ ^ ) < ε. Let Em — {x G ̂ 4°°: x is peri-

odic with period < m}. Then μ(Fm) -> 1 as m -> oc. Fix m so large that

μ(Em) > 1 — ε. Let μ' be the measure such that μ'(i?) =

μ(E Π Em)/μ(Em% E G £°°. Then μr G °ftp and is of order m, so

l i m ^ ^ μ X F J - 0. But μ(Fn) < μ'(Fn) + e, and so l i m s u p ^ μ ί F J < ε.

Thus (a) holds — (b) automatically holds.

Conversely, let {Fn} be a sequence of f.d. sets such that (a)-(b) hold.

Let x G ̂ 4°° be periodic with period N. Let μ be the periodic measure

which places probability TV ~* on each of x,Tx,...9 TN~ xx. Since μ(Fn) -> 0,

we must have μ(Fn) — 0 for n sufficiently large. Hence Fn cannot contain

x, for n sufficiently large. Since x was an arbitrary periodic sequence of

period N, and TV was arbitrary, there is a subsequence {Fn }™=ι of {Fn}

such that for each k, FHk is a coding act of order k. By definition, D̂ is

concentrated on the coding sets {Fn}.

DEFINITION. Recall that Sp C 4̂°° is the set of periodic points. For

each 8 > 0, define 9IL* - (μ G 9H: μ(Sp) < δ).

Note the following: if μ G 9IL, then there exists μ0 G 911^, μj G 9Hα

such that μ = (1 — α)μ 0 + aμv where a = μ(Sp). If μίS^) = 0 or 1, this

is trivial. If 0 < μ(Sp) < 1, define μ0, μ, so that

( Sn)

Π

LEMMA 5. L^/ 5C fee α cteeJ 51/fce/ o/9IL. Lei 8 > 0. Assume % C

For α«y positive integer TV, ίΛere ex/̂ r̂  α coding set F of order TV suc/i

μ(F)> 1 -4δ, μG5C.
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Proof. Fix N. Let E — {XNlφ ^?+i} Since E contains no periodic
sequence of period < N,

(6.1) μ(E) = 0, μ E 911̂  of order < N.

If μ E 911 and μ( JE1) = 0, then μ is periodic of order < iV! Hence

(6.2) μ(E)>0, μe9Ha.

Let £ = {x e £: Γ'JC e E for infinitely many i > 0). Let φ: E -* {1,2,...}
be the time of first return to E. That is,

φ(x) = inf{i > 0: T'x E E),

By Kac's Recurrence Theorem [4]

xGE.

(6.3) [φdμ=l, μ(Ξ&,μ(E)>0.

Now by ergodic decomposition theory [17], given μ G 9 t l there exists a
family {μω: ω E Λί00} C S such that

(a) For each F E β00, the map ω -̂  μω(F) from °̂° -> [0,1]
is (J00-measurable.

(b) μ(F) - Looμω(F) rfM(ω), F E 6T.
Let μ E 9!Lα. Since μ(5p) = 0, if {μω} is the decomposition of μ satisfying
(a)-(b), we must have μω(Sp) — 0 for μ-almost all ω E A°°. Hence we may
assume that the "ergodic components" {μω} of μ E ζU\ia are all in ζΰ\ia.
Thus we must have

(6.4) j_φdμ=\,

since this already holds for all μ G & Π 9Lα by (6.2), (6.3). Now if
μ e <Ut, by the remarks preceding this lemma we may decompose μ in the
form μ = (1 - α)μ0 + αμ,, where μ0 E 911^ μ, G 9Hα, and a = μ(Sp.
Hence by (6.4) we have for all μ E 9H that /fφ ί/μ > α/fφ rfμ, = α =
μ(5/). Since μ(5/) > 1 - 8 for μ e 5C, this gives

(6.5) lim min
w-*oo

φdμ,\ -8

Now μ(E) = μ(E) for all μ E 911 buy Poincare's Recurrence Theorem [4].
Thus, for n = 1,2,..., letting fn by the f.d. function

fn ~~

n ' / - I

Π h-JE<
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we have

f fndμ= ί φdμ, μG^It.

This implies that in (6.5), the pointwise limit of an increasing sequence of
continuous functions on the compact set % is being taken. Thus, by Dini's
Theorem [l,p. 181], the convergence in (6.5) is uniform on %. Therefore
we may fix n so that

(6.6) ffndμ> l-3δ/2, μS%.

Now by (6.3),

(6.7) O

By (6.1)

(6.8) ffn dμ = 09 μ G 911̂  of order < N.

Choose β>0 so that 2β < min(N~\ 8/2). Using Lemma Al of the
Appendix and (6.6)-(6.8) we obtain a f.d. g such that

(c) -β < g < 1 + β
(d) fgdμ> 1 - 35/2, μ G X
(e) fg dμ = 0, μ G 911̂  of order < M

(f) 0 < g < 1

(g)/g rfμ ̂  (1 + 2>β)-1(l - 36/1) > 1 - 2j8 - 35/2 > 1 - 25, μ

(h) /g Jμ - j8(l + 2βYx < β9 μ G % of order < iV.

Set F = /(|>i/2). By Chebyshev's Inequality and (h),

(6.9) μ(F) < 2 J g Jμ < 2)8, μ G ̂  of order iV.

Let Λ: be a periodic sequence of period j < N. Let μ be the periodic source
which assigns probability j ' 1 to each of x, Tx,...,TJ~ιx. Now μ(F) is
either 0 or is at least y"1. Buty"1 > Λ "̂1 > 2̂ 8, so the latter possibility is
ruled out by (6.9). Hence F cannot contain any periodic sequence of
period < N9 which means F is a coding set of order N. Using Chebyshev's
Inequality and (f), (g),

1 - μ(F) = μ[l - g > 1/2] < 2/(1 - g) rfμ < 4δ, μ G 9C.

Hence, μ ( F ) > 1 - 45, μ G 9C.
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THEOREM 3. Let fy C 911. Thenjfy is uniformly concentrated on coding
sets if and only if ̂  C ty\La, where φ denotes the closure of Θ in the weak
topology on 91L.

Proof. By Lemma 5, if <3) C (dίia then Φ is uniformly concentrated on
coding sets. Conversely, let us suppose ^ is uniformly concentrated on
coding sets. Pick coding sets {FN}™=19 where FN is of order JV, and
μ(FN)>\ -N-\μE<s!)9N= 1,2,... .Let

Then D̂ C § and § is a closed subset of 91L. All that remains to be shown
is that % C <DHβ. Let μ G § . Let ε > 0. Decompose μ in the form μ -
(1 — a)μ0 + αμ^ where μ0 E 911 ,̂ μ! E 9ILβ, and α = μ(S^). As shown
in the proof of Lemma 4, μo(FN) -» 0 since μ0 E (3TLp- Hence

1 - lim μ(iv) = (1 - a) lim μo(FN) + a lim M l (F^) < α.
ΛΓ-»oo /v-*oo Λr-»oo

Consequently μ(5pC) = 1 and so μ E 9ϊtfl.

THEOREM 4. Lei D̂ C 91L. ΓΛew D̂ is concentrated on coding sets if and

only if for any ε > 0 there exists a σ-compact subset <ΰε of 91L such that

Proof. Suppose for any ε > 0, there is a σ-compact set ^ such that
^ C 9lt*. For eachy = 1 , 2 , . . . , write $)-, = U™=ι%jJ\ where each

CP is compact and %\j) C 9 0 ^ , / = 1,2,.... Applying Lemma 5, for
each %jJ) we may find a coding set Ft

U) of order / such that

(6.10) μ(F^)>\-4Γ\ μe3C<Λ

Let /; = U ^ , ^ , / = 1,2,.... Then each Fi is a coding set of order /
and

(6.11) μ(/; . )^μ(f ; .ω), y < ι .

We show Φ is concentrated on the coding sets {/]}. Let μ E Φ, and
suppose {μ(Fi)} does not converge to 1. Pick integers {ij}JL\ such that
μ E %jj\j = 1,2.... Pick jβ < 1 and integers {m7}°°=1 such that

( ) ( F ) 8 y l 2
(b) my >max(7,/ 7 ) ,7= 1,2,....

Then for each y, μ G X ^ and μ(F w ) > μ ( i ^ ) by (6.11). By (6.10),

) >: 1 - 4j-\ Thus, ί im^^μίF^^) = 1, which contradicts (a).
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Conversely, suppose ^ is concentrated on coding sets. By Lemma 4,
pick f.d. sets {Fn} such that μ(Fn) -> 0 for μ G 911̂  and μ(FΛ) -* 1 for
μ G 6ϋ. Let ε > 0. Let

Then ^ is σ-compact and tf) C %. To complete the proof we need to show
that % C 911;;. Let μ G <%. Write μ = (1 - α)μ0 + αμl9 where μ0 G 91^,
μ, G 9Hβ, and a = μ(S/). Since (1 - a)μo(Fn) + a > μ ( i g > 1 - ε for *
sufficiently large, and μQ(Fn) -> 0, we get a > 1 — ε. Thus μ(S^) < ε and
so μ G 9It* by definition of 911*.

Examples. (A) Any finite subset of 91Lfl is closed and thus is uniformly
concentrated on coding sets by Theorem 3.

(B) If ε > 0 the set φ of all product measures ("memoryless sources'')
μ in 9H such that πάnaeAμ(Xι = a) > ε is uniformly concentrated on
coding sets by Theorem 3.

(C) If ε > 0, the set ^ of all Markov measures μ in 9IL whose matrix
of transition probabilities πμ = (TΓ^: /, j G A) satisfies min7 y G / 4 πfc > ε,
is uniformly concentrated on coding sets by Theorem 3.

(D) The set Φ of all measures in 91tβ relative to which T is a mixing
transformation is concentrated on coding sets. For, if μ G <>D,

limsupμ[l r t = A;2ίJ < lim lim μ[Xk = X

= Urn 2 { μ [ ^ = a]}2 ^ l i m maxμ[XΛ = a] = 0.

Hence, setting fj, = (Xf! ΦXl"lλ}> Fn is a coding set of order n and

(E) The set Θ of all μ G S with positive entropy is concentrated on
coding sets. To see this, set

F _ I I

ι=0

Then /^ is a coding set of order n. There is a subset Gn of Ainl) such that
^ = ^χ{n\γ e G j ? a n d ( Π i )-2 l o g | Gc|_> 0 a s w -̂  oo. Hence, by the

Shannon-McMillan Theorem [6], if μ G <>D, μ(FΛ

c) -> 0.
(F) 9HΛ is «or concentrated on coding sets. To see this, we first

observe that 91tα is a §δ subset of 911; that is, 91tα is a countable
intersection of open subsets of 9H. (For,

fMa= Π Π {μG91L:μ(x)<«~1}.)
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If GΆ,a were concentrated on coding sets, by Theorem 4 there would exist

a σ-compact subset φ of 9H such that <Uta C ̂ and <# Π ®ίtp = 0 . We can

write S r = U ĵΐJC,., where each %. is compact. Since GJ\La is a βδ subset of

the compact metrizable space 911, the relative topology on (d\ia is metriz-

able with a complete metric [l,Thm. A9.9]. Thus 9Ha is a Baire space

[l,Thm. A9.2], and so the 91tα-closure of some %x Π 9HΛ must contain a

non-empty 91tα-open set. Therefore there is an open subset θ of 91L such

that β Π <Vta C 9C,. for a certain /. Now 911^ is dense in 91L [18]. Thus we

may pick μ E 0 Π 911 Since 9ltβ is also dense in CDIL[18], we may pick

{μn} C 91Lα such that μn -> μ. Then μrt G 0 Π 9Hβ, eventually. This would

force μ G%p since %. is closed. But %. Π 911^ = 0 , so this is a con-

tradiction.

To conclude this section we point out how P5 can be shown to follow

from PI and P3. Given ε > 0, v E S, μl9...9μn E 9Itβ, and f.d. sets

El9... ,£^ C A°° X 5 0 0 , we need to find *>' E %df such that

(6.12) | μ y ( ^ ) - μ X £ . ) | < e , / = l,...,n;j= 1,...,Λ.

First, by PI find v E %f such that

(6.13) μ^yEj) — μ ^ y E j ) ^ < ε / 2 , / = 1 , . . . , / i y = I 9 . . . 9 k .

Then, as observed in Example (A), {μ,,...,μw} is uniformly concentrated

on coding sets; thus, by P3 there must exists / G δ ^ such that

(6.14) \μiv'{EJ)-μiv{EJ)\<e/2, for all/, y.

From (6.13), (6.14), we obtain (6.12).

APPENDIX

The following is Lemma A3 of [8], in which paper a proof is given.

LEMMA Al. Let f\ A°° -* R be a f.d. function. Suppose fΛ^fdμ > 0 for

all μ E 91L. Then, given ε > 0, there exists a positive integer N such that for

alln>N,

n-\
-\ ^

Ti > __ε throughout A°°.

LEMMA A2. Let v &&. Let k be a positive integer. Let vf be a channel

with input space A™ and output space Bk, such that for each b E Bk, the

map x -> v'x(b) from A00 -> [0,1] is f.d. Then there exists v Gξ>f such that
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the following holds for every μ G 911, 1 <j < k,aG Aj, b £ Bj:

(A.I) \μv[XJ = a,YJ = b] - μv[χj = a,YJ = b]\

+ f = b')-v'x{b'))dμ{x)

Proof. Let v be the /^-stationary channel with input space A°° and

output space B°° such that

*J X {Ϋ£:ΐ = b,}\= Π 'rΛb,),
W = -oo ' i = -oo

for all χ(ΞA°° and {&,}£=-<» C 5*. Then, for μ e 911, a G τlA, 6 e Bk,

= a,Yk = b]- μv[Xk = a,Yk = b]\

f vx{Ϋk = b) dμ(x) - [ _ ^ (y* = ό)£/μ(Λ)
J f Ϋk — \ Jf iζk — )

f k [φ) ~ rx(Ϋk = *)] M*)

It follows from this that if/: Ak X Bk -»[-1,1], then

(A.2)

^ Σ ί [v'x{b) - vx{Ϋk = b)] dμ{x)

Let ? E S be the channel such that

k-\

vτ,x{TE),
i=0

It is easily checked that v e §y. Now for all μ e 9H, I <j <k, a & AJ,
b <ΞBJ,

(A3) = a, Y> = b\- μv[χj = a, Yi = b]

^ I{χ:H=°*y,Ή=ι
1 = 0

- E,
μv

k~\

- Eμ9f(Xk, Yk)



TOPOLOGIES ON THE SET OF DISCRETE STATIONARY CHANNELS 383

where/: Ak X Bk -> [-1,1] is the function such that

fix", rk) = (k -j + I)"1 Σ W<=«.IΉ=*>
i = 0

Coupling (A.3) with (A.2), we get (A.I).

For our next lemma we need to present some notation. Let k be a
positive integer. Let <$k be the set of all β00-measurable ordered partitions
P = {P ( 1 ),... ,P<*>} of Λ00 consisting of k sets. Let # * be the subset of <$k

consisting of those partitions whose elements are f.d. sets. If μ E 911 and
P,, P 2 E <3)/c, then the μ-distance between Pj and P 2 , written | P, - P 2 |μ, is
defined to be Σ*= 1μ(P/ΔP/).

Recall that S is the set of all ergodic sources in 9IL Consider the
measurable space (S, ίF(S)), where ^ ( S ) is the smallest σ-field of subsets
of & such that for each E E &00, the map μ-> μ(E) from S -> [0,1] is
measurable.

The following is a consequence of Theorem 1 of [12].

LEMMA A3. Let Φ 6 f (g) . Let X be a set. A family {Φμ: μ E <?>} 0/
maps from <3>k -^ Xis given such that

(a) Φμ(Px) = Φμ(P2) i / | P ι - P 2 | μ - 0, Pl9 P2 e<$k,μ(Ξ ĵ).
Let E be a subset of X such that

(b) {μ E <$: Φμ(P) EE} E f (S), P E ^*.

Using the preceding lemma along with P5, we now are able to show
that P6 follows. Suppose we are given v E S,ε > 0, and f.d. sets El9...,Em

C 4̂°° X B°°. To establish P6, we need to find a stationary code ψ:
^00 _ ^ £00 s u c h t h a t

(A.4) sup sup \μpφ(Ej) - μv(Ej)\ < ε.

Let I BI = /: and B = ( 6 l ? . . . ,feΛ}. Let β be the set of all stationary codes
ψ: A00 -* 5 0 0 . There is a one-to-one map T of (3>k onto β defined as follows:
If P = {P ( 1 ),... , P W } E <?*, define τ(P) - ψ to be the stationary code ψ:
A°° -> 5 0 0 such that {x E ^°°: ψ(;c)0 = bj) = Pu\j =\,...,k. In Lemma
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A3, take Φ = 91tfl, X = R, and for each μ E 9Hα, let Φμ: <$k -» i? be the
map such that

= SUP

Let £ = { x E i ? : j c < ε/2}. Assumptions (a)-(b) of Lemma A3 are easily
seen to hold. Assumption (c) is a consequence of P5 since T maps $*k onto
the set of all finite stationary codes. Applying Lemma A3, we obtain
P E ^ such that Φμ(P) E E, μ E <>Jltβ. Letting ψ = τ(P), this means

sup

This implies (A.4).

LEMMA A4. Let S be a finite set. Let π = {τrzy: i, 7 E S] be a stochastic
matrix. Let (Ω, ̂ , P) be a probability space. Let X, Y: Ω -> S be measura-
ble functions such that P[X = /, Y=j] = P[X= i]ττij9 1, 7 E 5. L^ /:
S -> [0,1]. Then

Proo/. = P[X = /], / E S; let μ, =

= Σ

μ 2 = . Then

Since

1/(0 - Mi I I / O ) - μ 2 l ^ i . i . / e

it is clear that | COV(/( A"), f(Y)) | < 1. Fix / G 5. Then

) - rι)p,)(Σ(ΛJ) - *i)*ij) = o

Thus

cov(/(jf), /(r)) -
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