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MEROMORPHIC FUNCTIONS THAT

SHARE TWO FINITE VALUES

WITH THEIR DERIVATIVE

GARY G. GUNDERSEN

It is shown that if a nonconstant meromorphic function / and its
derivative/7 share two finite values (counting multiplicities), then/(z) =

We say two meromorphic functions f(z) and g(z) share the finite
complex value c if f(z) — c and g(z) — c have the same zeros. We will
state whether a value is shared CM (counting multiplicities), IM (ignoring
multiplicities), or by DM (by different multiplicities at one point or
more). In this paper all functions will be assumed to be meromoφhic in
the whole complex plane, unless stated otherwise.

R. Nevanlinna [7, p. 109] proved that if/and g share five values IM,
then either f—govf and g are both constants. He also found [7, Chapter
V] the particular form of all pairs /, g that share four values CM and all
pairs/, g that share three values CM.

L. A. Rubel and C. C. Yang proved the following result:

THEOREM A. [8] // a nonconstant entire function f and its derivative / '
share two finite values CM, then f = /'.

E. Mues and N. Steinmetz [6] have shown that "CM" can be replaced
by "IM" in Theorem A (another proof of this result for nonzero shared
values is in [3]).

On the other hand, the meromoφhic function [6]

(1) / ( z ) = | i

shares 0 by DM and 1 by DM with/'; while the meromoφhic function [3]

9 Λ

(2) M=l-Be~2'9 A * ° > B Φ 0

shares 0 (lacunary) and A by DM with/'; a n d / ^ / ' in both (1) and (2).

The puφose of this paper is to prove

THEOREM I. If a nonconstant meromorphic function f and its derivative
/ ' share two finite values CM, then f = /'.
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E. Mues has shown the author how he used sums of logarithmic
derivatives to prove some results on meromoφhic functions that share
four values. By choosing the sums in clever ways he was able to effectively
combine Nevanlinna theory with the shared value properties. For the
proof of Theorem 1 we will use natural extensions of his ideas and
combine these extensions with the relationship of/and/'. S. Bank and the
author had earher found a proof of Theorem 1 in the special case when
order(/) < 2, but this proof cannot be used if order(/) > 2.

Examples (1) and (2) both have 0 as one of the shared values which is
certainly a special case. Hence it is still not known whether there exists a
meromoφhic function / such that / and / ' share two finite nonzero values,
by DM for at least one value.

It should be mentioned that if a nonconstant meromoφhic function /
and its derivative / ' share three finite values IM, then f — f [3,6].

We will assume that the reader is familiar with the standard notations
and fundamental results of Nevanlinna theory as found in [5]. We define
S(r, f) to be any quantity that satisfies

T(r,f)

as r -» oo outside a possible exceptional set of r of finite linear measure.
The next result will follow from Theorem 1.

COROLLARY 1. If a and b are two distinct complex constants and w is a
nonconstant entire function, then the algebraic differential equation

(a-be»)f+ab(e»-l)
{ ) J (\-ew)f+aew-b

does not possess a nonconstant meromorphic solution /.

We mention that it follows from the general theorems of F. Gacks-
tatter and I. Laine [2] and N. Steinmetz [9] that there does not exist a
nonconstant meromoφhic solution/of equation (3) such that Γ(r, ew) —

The following result is obtained by combining Theorem 1 and [3, The-
orem 1].

COROLLARY 2. If h and g are nonconstant entire functions such that
(i) h\ g' share 0 CM, (ϋ) h", g" share 0 CM, and (iii) a(\ + h/W) =
b{\ + g/g') for distinct nonzero numbers a and 6, then h\z) = Ce~z and
g\z) = Ke~z for nonzero constants C, K.
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Entire functions H and G such that (i) H and G share 0 CM and (ii)
H' and G' share 0 CM, are studied in [4].

I would like to thank E. Mues and S. Bank for some helpful
discussions.

Proof of Theorem 1. Let a and b be the shared values. If ab — 0, then 0
is a Picard value of both / and / ' and it follows that / = / ' [3, Theorem
4(i)]

Now suppose that ΰ ^ O and b φ 0. Then all ^-points and Z>-points
for both / and / ' are simple. It is easy to see that / ' cannot be a constant.
We will first prove

LEMMA 1. If in addition to the hypothesis of Theorem 1 we have

Proof Set φ, = / ' / ( / - b) -f"/(f' ~ b).

Then from Nevanlinna's fundamental estimate of the logarithmic
derivative we obtain

+ 0 ( 1 )

Since Γ(r, /') < 2T(r, f) + S(r, f) this means that m(r, φ{) = S(r, / ) .
Since φ{ is the logarithmic derivative of (/— b)(f — b)'\ it follows that
ΛΓ(r, Φι) = N(r9 f) = S(r, / ) . Hence 7\r, φ,) = S(r, / ) .

Similarly, if

then T(r, φ2) - S(r, /) .
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Suppose first that φ, Φ 0 (i.e. φ,(z) £ θ ) and φ2 Φ 0. Then from
Nevanϋnna's fundamental estimate and Jensen's Theorem we obtain

Φi = r r r
f-a (f-a){f-b) f'U'-bYf-a'

m\r,-.—-\<m\r, — \+m\r

< τ\r, j-) + S(r, f) + S(r, /') + S(r, f)

Similarly, by using Φ 2 / ( / ~ b) we obtain m(r, l / (/— &)) = ^ί^, / ) .

Now if f¥=f, then from the first fundamental theorem and the
fundamental estimate we get that

2T(r, f) = T(r, f, a) + T(r, f, b) + 0(1)

= N(r9f,a)+N(r9f,b) + S(r,f)

S ( r ? / ) < r | r , ^ ? l ) +S(r,f)

- S(r, f) + N(r, /,0) < Γ(r, / ) + 5(r, / ) ,

which implies the contradiction T(r, f) — S(r, / ) . Thus/ = / ;.
On the other hand, if φλ = 0 (i.e. φ^z) = 0), then from integration of

Φx we get

where C is some nonzero constant. If C = 1, then/ = f'ΛiCΦX, then α
is a Picard value for both / and /'. This is impossible because a Φ 0 [5, p.
60]. Similarly, if φ2 — 0, then/ = /'. This proves Lemma 1.

Proceeding now with the proof of Theorem 1, we will assume that
/ 7̂  /'. Consider the following function:
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m(r, ψ) < S(r, f) + S(r, f - f) < S(r, / ) . Since ψ is the logarithmic
derivative of

it follows that N(r, ψ) = N(r, F). Hence

(5) T(r,φ) = N(r,F) + S(r,f).

Suppose that z0 is a simple pole of /. We will examine the value of

Ψ(*o).
Note that since / and / ' share a and b CM, it follows that there is an

entire function w(z) such that

- „»
(6) can be rewritten as

(7) (a - b){f -/) - {e» - 1)(/- a)(f - b).

From (7) we see that ew — 1 has a simple zero at z0 and the residue of/at
z0 is (α — b){w\zo)Yλ. We emphasize here that the assumption that/has
a simple pole implies that w' 7̂  0. If

f( 7\ 1 °°

(8) jHr = -j±7+ ΣBn(z-zoy

is the Laurent expansion about z0, then for any fixed c E C, we find that
Ao — Bo — cw'(zo)(a — b)~λ in the Laurent expansion

f(z)-c z-Zo

 +

 nio

A"[Z Z»]

about z0. It is easily found that Co = 1 in the Laurent expansion

about z0. Substitution of these calculations into (4) gives

(9) ψ(zo) = 2 5 o - ^ w ' ( z o ) - l .

We will further examine the constant Bo. To this end, set

z z
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and substitute the expansion (10) into (7) and equate the coefficient of
(z - Zo)"1. This yields

n - a ~ b + l(* + h\+ (& ~ a)w"(z0)
Do — —z—r- + — {a + b) H — .

w'M 2 2(w'(zo)f
Now substitute the expansion (10) into (8), multiply by/, and equate the
coefficient of (z — zo)~ι. Using (11) we obtain

Substitution of (12) into (9) gives

03) ^ ) = - ^

We have two cases.

Case 1. ψ(z) ^ 1 - w"{z)/w\z).

Note that if / has a pole of order k at z, then from (7), ew — 1 has a
zero of order fc at z,; if /c > 2, then w' has a zero of order k — 1 at zJβ

Combining this observation with (13) gives

(14) N(r9 f) < i v ( r , ψ - 1 + ^ ,

From (6) we obtain

m(r, ew) < 2Γ(r, /') + 2Γ(r, / ) + θ{\)

Since w' is the logarithmic derivative of ew, this means that

(15) m(r,w') = S(r,f).
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Hence from (14), (5), and (15) we obtain

(16) tf(r,/) «sr(r,ψ-l+•"•£,<)) + T(r,w',0)

= r(r, ψ - 1 + ̂ ) + T(r, w') + 0(1)

< #(/-, F) + S(r, w') + S(r, f) < N(r, F) + 5(r, /).

We will now prove an inequality in the opposite direction. First
differentiate (6) logarithmically to get

w, = Jl_ + _L r f"
f'-a^f-b f-a f'-b

Multiplying by/' and using (15) gives

w' [f-a f-b (f>-a)(f>-b)l>

< T(r, w') + S{r, f) + S(r, /') < S(r, f).

Hence

(17) T{r,f') = N(r,f) + S(r,f).

We note also that [5, p. 33]

(18)
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Now by the second fundamental theorem we have

2Γ(r, /') < N(r, f) + N(r, f',0) + N(r, f, a)

+N(r,f,b) + S(r,f).

Therefore, by using N(r, f, a) = N(r, /', a), N(r, f, b) = N(r, f, b), (17),
and (18), we obtain

2N(r, f')<\N{r, /') + T(r, f',0) - m(r, f',0)

+N(r,f,a) + N(r,f,b) + S(r,f)

< ±N(r, f) + T(r, f) - m(r, f, a) - m(r, f, b)

+N(r,f,a) + N(r,f,b) + S(r,f)

= \N{r, f) - T(r, f,a) - T(r, f,b)

+ 2N(r, f, a) + 2N(r, f, b) + S(r, /);

hence

(19) $N(r, /') + 2T(r, f) < 2N(r, f, a) + 2N(r, /, b) + S(r, f).

Since a pole of /of order k > 2 is a zero of w' of order k — 1, then by
using (15) we get

N{r,f)<N{r,f) + N{r,w',0)

< \N{r, f) + T(r, w') + O(\) = \N{r, f) + S(r, f).

Hence from (19) we obtain

(20) ±N(r, f) + T(r, f) < N(r, /, a) + N(r, f, b) + S(r, /).

Then from (20) we can deduce that

N(r,F)+±N(r,f) + T(r,f)

< N(r, F) + N(r, f, a) + N(r, f, b) + S(r, f)

N(r,w',0) + N(r, f,0) - N(r, f,0) + S(r, f)

< r(r, ^ ) + T(r, w') + N(r, f,0) - N(r, f,0) + S(r, f)

< N(r, f) + N(r, f,0) + S(r, f) < N(r, f) + T(r, f) + S(r,

which gives

(21) N(r,F)
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But (16) and (21) together imply that

N(r9f) = S(r9f).

By Lemma 1 , / = /', which we have been assuming is not true.

Case 2 . ψ ( : ) Ξ l - w"(z)/w'(z).

Then integration of (4) gives

(22) F = K^r
w

where K is a nonzero constant. If z0 is a simple pole of /, then from (7),
the residue of / at z0 is (a — b)(w'(zo))']. Thus from (22) we obtain
ez° = (b — a)K~λ. On the other hand, a pole of order n > 2 of / i s a pole
of order « — 1 of F. Since 0 and oo are Picard values for ew, we have that
T(r, ew) = N(r, ew, 1) + S(r, ew) from the second fundamental theorem.
Combining these observations with (7) and (22) we see that

T(r, ew) = N(r, ew, 1) + S(r, ew)

(f-a)(f'-b)
= N\r, \ +S(r,ew)

f'-f

N(r,w',0) + N(r, F) + S(r,ew)

= - + 2N(r,w',0) + S{r,ew)
Ίϊ

< - + 2T(r, w') + S(r, ew) < - + S(r, ew).
IT TT

Hence outside a set of finite linear measure we have

(23) T{r,ew)<^.

Now we will invoke the following lemma due to S. Bank.

LEMMA 2. [l,p. 68] // g(r) and h(r) are monotone nondecreasing
functions on (0, oo) such that g(r) < h(r) for all r outside a set of finite
linear measure, then for any given real number λ > 1, there exists r0 > 0
such that g(r) < h(λr) for all r > r0.

Lemma 2 (with λ = 2) applied to the inequality (23) gives
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Hence the order of ew is at most one. It follows that ew — AeBz for some
nonzero constants A and B. Since w' — B, (22) reduces to

(24) F = Cez

where C is a nonzero constant. Eliminating/' between (24) and (6) yields

Then

(b - a)ABeBz

(26) / ' = -Cez +
(AeBz - I)2

Substitution of (26) and (25) into (24) gives

(27) bCez(AeBz - \f + C2e2z(AeBz - if + (a ~ bf AeBz

+ {b- a)Cez(AeBz - 1) + C(a - b)ABe^B+x)z = 0.

If the constant B is not real, then by equating the coefficient of ez on the
left side of (27) to zero, we get aC — 0, which is a contradiction. If B > 0,
then the coefficient of e ( 2 β + 2 ) z in (27) gives A2C2 = 0, which is a con-
tradiction. If B < 0, then the coefficient of e2z gives the contradiction
C2 = 0. Thus 5 = 0 which is a contradiction.

Cases 1 and 2 have both led to a contradiction. Therefore / cannot
have any simple poles.

If w' =£0, then from (15),

N{r, f) <k N(r, w',0) < T(r, wθ + O(l) - S{r, / ) .

Then/ = / ' by Lemma 1, which contradicts the original assumption. If
w' = 0, then ew = C where C is a nonzero constant. If C = 1 then / = / r

from (7), a contradiction. If C =?M, then / has no poles and / = / ' from
Lemma 1, a contradiction.

Therefore, the original assumption that/ φf has yielded a contradic-
tion, and the proof of Theorem 1 is now complete.

Proof of Corollary 1. Since equation (3) is merely a rewriting of
equation (6), the result easily follows.
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