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ON THE COMPUTATION OF THE NIELSEN NUMBER

BOJU JIANG

The aim of this note is to show the following
MAIN THEOREM. Let X be a compact connected ANR,f: X -» X be

a map. Suppose there is an integer n such that f£(τrλ(X)) CJ(fn). Then
any two fixed point classes of f have the same index. Hence

L(f) = 0 implies N(f) = 0, while

L(f)¥=0 implies N(f)= #Coker(/71(ΛΓ) * J* H^X)).

Here L(f) and N(f) are the Lefschetz number and Nielsen num-
ber of / respectively, and J(F) C TTX(X) stands for the Jiang subgroup
of/.

This is an improvement of a previous theorem ([3], see also [1]) which

required the stronger hypothesis / ( / ) = iτλ(X). A nice feature of this

improvement is that the present hypothesis is symmetric, in the sense that

given φ: X -» Y and ψ: Y -» X, then ψ ° φ: X -> X satisfies the condition

iff φ o ψ: Y -* Y does (see §5). The symmetry between ψ ° φ and φ ° ψ is a

built-in symmetry of the fixed point problem. It occurs at both the

geometric level, because the fixed point sets of ψ © φ and φ o ψ are

homeomorphic, and at the algebraic level: N(ψ o φ) = N(φ o ψ). So, a

theorem which respects this symmetry is better than one which does not.

The proof of the main theorem given in §3 is based on an analysis of

the relationship between the fixed point classes of / and those of the

iterates of/(§2). Our notation and terminology is explained in §1. Some

corollaries are given in §4.

The mod p Index Theorem in §2 was known to Ross Geoghegan, and

is implicit in [2]. The author is grateful to him for a discussion about it.

The proof given here is based on an Approximation Theorem which is of

independent interest.

1. Notation and terminology. We will use the notation of [4]. For

the convenience of the reader, we give a brief review of the basic notions

in the theory of fixed point classes. Cf. [1], [5], [4].

Let X be a compact connected ANR, and let p: X-* X be its

universal covering space. Let π be the group of covering transformations,

identified with π{(X, x0) as usual, where x0 is a prescribed base point of

X. Let /: X -> X be a map. Letting /: X -• X be a lifting of /, then every

105



106 BOJU JIANG

lifting of / can be uniquely written as a ° /, a E π. The lifting / de-
termines an endomorphism fv: π -> π by fπ(a) o f = fo α, a E π. The
relation between fm and the induced homomorphism fπ: πι(X9x0) ->
πx(X, f(x0)) is that, for any path w in X from a point x0 €ί p~\x0) to
/(x0), we have fv = w, o /^ where w,: ^ ( Z , /(x0)) -> ̂ (ΛΓ, x0) is the
isomoφhism induced by the path w — p ° w.

Two liftings /, / ' of / are conjugate iff there is a γ E TΓ such that
/ ' — Ύ ° f° Ύ~] Hence α ° / and β ° f are conjugate iff a and β are
/ .̂-conjugate, i.e. there is a γ E 77 such that β = yoifπ{y~λ) Each conjugacy
class of liftings [α ° /] determines a fixed point class pYιx(a of) of /.
The index of a fixed point class F = p Fix( α o /) is denoted by index( /, F).

The homotopy in variance of the index: If a homotopy {ht}: X -> X
lifts to a homotopy {ht}: X-* X9 then we say Fo = pFix(h0) corresponds
to Fj = /? Fix(Λj) under {ht}9 and we have

index(Λ0,F0) = indexίA^F!).

The commutativity of the index: If φ: X -> 7 and ψ: 7 -» X, then for
any fixed point class F o f / = ψ o φ , G = φFis also a fixed point class of
g = φ o ψ? and we have

index( /, F) = index( g, G).

More generally, if U is open in X and has no fixed points on its boundary,
we have

index(/, U) = index(g, ^ι(U)).

The subgroup /(/, x0) C πγ(X, f(x0)) is defined to consist of loop
classes α' such that there is a cyclic homotopy {ht}: / — /of which the
trace {ht(x0)} is in α'. Similary the subgroup /(/) C π is defined as the
subgroup of elements a such that there is a cyclic homotopy {ht}\ f' — f
which lifts to {A,}: /— « ° /. The subgroups are related by the isomor-
phism w* above: /(/) = w*J(f, x0). Hence the condition //,(X, x0) C
/ ( / , JC0) is equivalent to f^π C / ( / ) . This condition is independent of the
choice of the base point x09 so we may write fjτx(X) CJ(f). The
elements of fnπ commute with elements of /(/) (cf. [3] Lemma 4.4), so if
f^π C /(/) then fa is abelian. If φ: X, x0 -> 7, y0 and ψ: 7, y0 -> X, xθ9

then it is not hard to see that φπJ((ψ ° φ)n, JC0) C J((φ ° ψ) n + 1 , Jo)
In §2 we will need the following technical notion. An affine map g:

σ -* T sending a /c-simplex σ onto a /c-simplex T is said to be expanding if
d(g(x)9 g(x')) > d{x, x') whenever x ¥= xf. If the diameter of σ is less
than the distance between the barycenter and the boundary of r, then g is
certainly expanding. If σ C T, the affine map g: σ -+ T is expanding, and g
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has a fixed point x0 in the interior of σ, then x0 is the only fixed point on
σ and the index of g at x0 equals (-1)* times the sign of the determinant
of g; in symbols,

index(g, x0) = (-l)*sgndet g.

2. Fixed point classes of iterates of /. Let n be a natural number.
We write f(n) for an arbitrary lifting of the iterate/": X-> X9 and/" for
the iterate of a lifting/of/. It is obvious that/?Fix(/) C/?Fix(/"). We
define pFix(fn) to be the fixed point class of fn containing pFix(f). Thus,
each fixed point class (empty or not) of / is contained in a unique fixed
point class of/". (Note that if pFix(f) is empty, it is contained in every
fixed point class of fn in the set theoretical sense.) For the fixed point
class/? Fix(a o / ) ? the containing fixed point class of/" Ίsp Fix(α o f)n —
pFix(a{n) o /«), where a{n) = afv(a) •/tr

Λ"1(α), since

a o f o . . . o a ° f ° a ° f = a ° f ° ° («/,.(«)) ° /° / =

Every/ (" } can be factored a s ^ ° ° f2 o /j, where/ are liftings of
/, i — 1,... ,n. It is obvious that

/ .Fix(/ n ° ••• » / 2 < ' / 1 ) = F i x ( / 1 o / Λ o ••• o / 2 ) ,

and

= / , F i x ( / , o / n o ••• o / 2 ) .

We say that the fixed point class p FΊx(fx ° fn° ° /2) is the f-image of
the fixed point class pF'ιx(fn ° ° f2

o f\)- It is easy to see that if
fn° '" ° fi° // is conjugate to /„ ° ° /2 o /„ then // o /; o . . . o ^
is conjugate to fx ° fn ° ° /2, so the definition of /-image is indepen-
dent of the factorization of/("}. It follows from the commutativity of the
index that for any fixed point class F ( π ) — p Fix(/2 ° °/ 2 °/ i) of/"
we have

index(/π,F ( n )) = index(/",

because/° Z"" 1 — fn~x ° /. Note that if F ( " } contains a fixed point class
of /, i.e. F ( " } = pFix(fn) for some lifting / of /, then by the above
definition of the /-image we have/F (" } = F (" }.

LEMMA, (i) Suppose {ht}\ X -» Xis a homotopy. Let Fo, F,, Fo

("}, Έ\n) be
fixed point classes ofhθ9 hu hn

0, h\ respectively. / / F o C Fo

("}, F, C F,(/l), and
Fo corresponds to Fj under {ht}, then F ^ corresponds to F( π ) under [hn

t).
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(ii) Suppose φ: X^ Y, ψ: Y ^ X. Let F,G, F(n\ G("> be fixed point
classes ofψ o φ > φ o ψ, (ψ o φ ) r t

? (φoψ)« respectively. IfF C F ( w ), G C G ( n )

G = φF,

The proof is left to the reader. D

THE mod p INDEX THEOREM. Suppose X is a compact connected ANR,
/: X -* X is a map. Suppose n— p\ p = prime. Let F ( λ ϊ ) be a fixed point
class offn such that F ( n ) = / F ( n ) . Then

index( fn, F ( Λ )) = 2 ^dex( /, F) mod />,
F

e summation is over all fixed point classes F of f contained in F ( w ) .

Proof. Suppose X is dominated by a fintie simplicial polyhedron
Y = \K\, with φ: Z -» 7 and ψ: 7 -> X such that ψ o φ - id χ . Then

y ^ ( y ' o ψ ) o φ : A r - ^ X B y the homotopy invariance and the commutativ-
ity of the index, and the above Lemma, it is readily seen that the theorem
for / follows from the theorem for g = φ o (/o ψ); y -̂  y. So without
loss we may assume X to be a polyhedron \K\ .

In view of the Approximation Theorem below, we may assume
further that/is a simplicial map Kf -> K such that

(i) every fixed point of/lies in the interior of some maximal simplex
of Kf on which/is expanding, and

(ii)/" has only a finite number of fixed points.
Let F, be the fixed point classes of/contained in F ( n ) . Since/F ( n ) =

F (/2), then F ( w ) — LKF, is invariant under / and decomposes into orbits.
Each orbit length divides n = p\ hence is divisible by the prime/?. But by
commutativity

i n d e x ( r , x ) - i n d e x ( r , / ( x ) )

for every isolated fixed point x of /", hence we have

index(/*,F(*>) Ξ2index(/",F;.) mod p.
i

For each x E F , / (hence fn) is an expanding affine map in a
λ>dimensional Euclidean neighborhood of x. Thus

index(/, x) = (-l)*sgndet /,

index(/w, JC) = (-l)*sgndet fn.
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So

index(/w, JC) = index(/, x) iΐp φ 2,

index( fn,χ)= index(/, JC) mod2 if p - 2.

In any case

index( fn

9x) = index(/, x) mod p.

Hence

index( /*, F)) ΞΞ index( /, F,) mod p. D

The Approximation Theorem mentioned in the above proof follows.

APPROXIMATION THEOREM. Let K be a finite simplicial complex, f:

\K\-+\K\ be a map. Then there is a subdivision Kf of K and a simplicial

map g: K' -» Khomotopic to f such that

(i) every fixed point of g lies in the interior of some maximal simplex of

Kf on which g is expanding, and

(ii) every iterate gn of g has only a finite number of fixed points.

Proof. Each simplex of K of positive dimension has a nonzero

distance between its barycenter and its boundary. Let ε be the shortest of

such distances. Let g: K' -> K be the simplicial map obtained from the

Hopf Approximation Theorem (cf. [1] p. 118). Since mesh K' < ε, the

map g is expanding on those simplexes where it is nondegenerate. So g is

homotopic to/and satisfies (i). It remains to show (ii).

Let x EI KI be a fixed point of gn. Let σy be the carrier of gJ(x) in K\

7 = 0,...,/ι. Since g(gJ(x)) = g y '+ 1(x) fory < n and gn(x) — x, we have

g(σj) D σy + 1 for j < n and σn — σ0. Hence each g | o} does not decrease

dimension (otherwise we can never get on — σ0), i.e. g | σy is nondegenerate

for 0 <y < n — 1. By the choice of ε, g | σy is expanding for 0 <j < n — 1.

Let τ = ( g | σ o ) - 1 ( g | σ 1 ) " 1 ( g | σΛ_1)~1σ0, then r is a simplex in σ0

containing x. Since every g | σy is expanding, gn: τ -» σ0 is also expanding,

hence c is the only fixed point on τ.

This analysis shows that no two fixed points of gn can share the same

sequence σ0, σv... ,σn_{ of simplexes of iΓ. (If they did, they would be in

the same T, a contradiction.) But K' is a finite complex, there are only

finitely many different sequences of simplexes of length n. Hence gn has

only finitely many fixed points. D
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3. Proof of the Main Theorem. (A) We will need the following

result in [5], §3.2. See also [4].

LEMMA. Let f: X -> X be a map, f: X -> X be a lifting off. Suppose

f^πλ(X) is abelian for some n. Then the composition

πλ{X, x0) !>HX{X) - Coker(l - / * : HX(X) -> HX(X))9

where θ is the abelianization and η is the natural projection, induces a
bijection from the set of fixed point classes of f onto Coker(l — / * ) , sending
p Fix(α o / ) to η o θ(a), a E π.

In our Main Theorem, we assume f^irx(X) C J(fn) for some n, thus

f£πλ(X) is abelian as mentioned in §1, and the Lemma applies. So the last

sentence of the Main Theorem follows from the preceding one.

(B) The case n = 1, namely fvirx(X) C / ( / ) .

As mentioned in §1, this is the same as fππ C / ( / ) . For any a E TΓ,

we always have p Fix(α ° f) — p Fix(^(α) © /) since a is ^-conjugate to

fπia). N o w ^ α ) E^TΓ C / ( / ) , so there is a homotopy {ht}\ f^f which

lifts to / — /,(«) °/. Hence by the homotopy invariance we have

index(/, /?Fix(/)) = index(/> p¥ix(a ° /)). This a is arbitrary, so that

any two fixed point classes of/have the same index.

(C) Pick a prime q such that

(ii) q is coprime to the order of the torsion subgroup of Coker(l — /*) ,

and

(iii) q is larger than the absolute value of the difference of indices for

any two fixed point classes of/.

Such a q exists since if n satisfies the condition in the hypothesis then

so does any n' > n.

Let F). = p¥ix(ai © / ) , / = 1,2, be two fixed point classes of/. The

respective fixed point classes of fq containing them are F/<7) =

p F i x ^ © f)q = p Fix(α^ } © fq\ where

(D) Claim: Different fixed point classes of/are contained in different

fixed point classes of fq.

Suppose F^ = F2

(q). We want to show F } = F 2. In fact, we may

assume a\q) = a{

2

q\ Otherwise, since a\q) = a{

2

q) are /^-conjugate there is a
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γ such that a(

2

q) = ya\q)fq(y~x), and we may use a[ = γ^iΛίϊ ' 1) i*1 place
of α,. Note that

/*

So qη ° θ(ax) = qη ° θ(a2). By the condition (ii) for q9 we have η ° θ(ax)
= η ° θ(a2). Now we see Fι = F2 by (A).

(E) Applying the result of (B) to the map fq\ X -» X, in view of the
condition (i) for q, we get

= index(/«,F2<*>).

By (D) and the mod p Index Theorem, ( / F ^ } = F ^ } since Fz C

index(/ί?,F;(ί7)) =index(/,F f) mod ςr, / = 1,2.

Hence

index( /, Fj) = index( /, F2) mod q.

But q is large enough by condition (iii) so that we have

index( /, ¥}) = index( /, F2). D

4. Corollaries.

COROLLARY 1. Suppose X is aspherical, f: X -> X is such that f£πx(X)
is abelian for some n. Then L(F) = 0 implies N(f) = 0, while L(f) ¥= 0
implies N(f)= #Coker(l - / * ) .

Proof. Since Xis aspherical, by Gottlieb's Theorem (cf. [1] p. 102),

But fπ

nπx(X) is abelian iff fyx(X) C Z(f^τrx(X)9 πx(X)). So we have
f£πx{X) C /(/") for some w. The conclusion now follows from the Main
Theorem. G

COROLLARY 2. Suppose /: X ^ X, n^ = 1 / w (J i ) « contained in a sub-
polyhedron Xo C X such that J(X0) — πx(X0). Then L(f) — 0 implies
N(f) = 0, andL(f) Φ 0 ΐ/w/rfiey iV(/) = #Coker(l - / J .
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Proof. Replacing Xo by a regular neighborhood if necessary, we may
assume that there is an integer n such that/wX C Xo. Pick a fixed point x0

of / as base point. Write π = π}(X9 x0) and π' = ^ ( A Q , X 0 ) . Let iπ:
π' -> 7r be induced by the inclusion i: Xo -> X Since /" can be factored
through ί, we have/> C ιw7r' and iπJ(X0) C / ( / " ) . Thus

Now apply the Main Theorem. D

5. Remarks. The following simple example shows that our Main
Theorem is indeed better than the results in [3].

EXAMPLE. Let X = V JLjS. be a bouquet of circles at x0. Suppose a
map/: JSf, JC0 -» X, x0 satisfies

/(«/) = «,-! foΓϊ> 1,

where αz is a generator of TΓ^^, JC0) C π^X, x0). Since Xis aspherical, by
Gottlieb's Theorem we have

iίn < m ~ 1,

So that tf(ir)£J(fn) for Λ </n - 1, but fn

n(π)CJ(fn) for rc>
m - 1. D

Actually all the computations in [1], VII.C are easy consequences of
the Main Theorem.

As mentioned in the introduction, a nice feature of our Main Theo-
rem is that the hypothesis is symmetric. More precisely,

PROPOSITION. Let φ: X -> 7, ψ: 7 - ^ 1 , / = ψ ° φ and g — φ ° ψ.
> , ( * ) C /(/») /or some it ///g>,(F) C J(g") /or some n.

Proof Let x0 be a fixed point of /andj>0 = φ(x0). Then

On the other hand, we have <pnJ(f",x0)
 c ^(gw + 1

? 7o) a s mentioned in
§1. H e n c e / ^ X ) C/(/") i m p h e s g ^ ^ y ) C/(g r t + 1 ). D
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