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AMPLENESS IN COMPLEX HOMOGENEOUS SPACES
AND A SECOND LEFSCHETZ THEOREM

NORMAN GOLDSTEIN

This paper investigates how ampleness of the normal bundle of a
smooth subvariety Y of a complex homogeneous space Z = G/H in-
fluences the intersection of Y with other subvarieties of Z.

We consider a class of homogeneous spaces, rigged spaces, that
includes Grassmannians, quadrics and P r \ P * (the compliment in Pr of a
linear subspace P*). A result of Corollary 4.5.2 is:

Let Z be a rigged homogeneous space with group G. Let 7 be a
compact smooth subvariety of Z possessing an ample normal bundle NY.
(See [10] for the definition of ample.) Then the map

φ y : P ( i V * y ) ^ p «

determined by the (/-sections of TZ is generically 1-1 (see 2.2 for the
definition of φγ).

Corollary 4.5.2 and Theorem 5.2 imply that if X and Y are both
smooth and compact subvarieties of Z with ample normal bundles, then
for all g G G , except for a closed codimension 2 subvariety of G, X Π
g~\Y) is either a transverse intersection, or has precisely one singular
point and it is non-degenerate quadratic.

In §5 these results are used to prove a generalized "second Lefschetz
theorem on hyperplane sections", in analogy to the author's previous
paper [6], and following the generalized first Lefschetz theorems of Barth
[2,2A] and Sommese [19,20].

I expand, now, the outline of the paper.

Section 1 begins by considering a holomorphic bundle map ψ: E -> F
of holomorphic vector bundles over a complex space W, i.e. ψx: Ex -> Fx is
linear for all x G W. The linear fibre space S (see 4.1) is of central
importance to the paper, and is defined as the kernel ker(g*) : = g*"1

(zero section of F) for a certain bundle map g*. (The confusing notation
"g*" for the bundle map does not refer, of course, to any one element
g E G\) The map g* fits into a commutative diagram of vector bundles
(4.2.3) and the results of Lemma 1.4 allow us to conclude, by a vector
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bundle "diagram chase", that & is isomorphic to ker(/?*), another linear
fibre space.

Section 2 describes the ampleness map

φ: P(Γ*Z) -> P(Te*G),

and the orbit decomposition P(Γ*Z) = U p Op under the action of G.

Section 3 defines "rigged spaces", and discusses why Grassmannians
and quadrics are rigged.

Sections 4 and 5, as already described, analyse the linear fibre space &
and prove the Lefschetz theorem.

I would like to thank Andrew Sommese for many helpful and guiding
conversations, and the Natural Sciences and Engineering Research Coun-
cil Canada for their continuing support. Also, Jim Carrell has clarified for
me many aspects of group actions.

1. Preliminaries. More background material is in [6, §0]. All map-
pings in this paper are regular, i.e., everywhere defined.

Let X be a complex space. The reduction of X is Jfred, and we denote

(1.1) redim(X) = d i m ( * r e d ) .

Let π: E -> X be a complex vector bundle over the space X. We
denote, also by "X", the zero section of E.

Let φ: E -» F be a linear map of vector bundles over X. Then
Φ~\X) = Ker φ is a linear fibre space over X cf [5] (1.6).

Note. The variety Ker(φ) is smooth at e precisely when φ meets the
zero section of F transversely from e.

(1.1.2) DEFINITION. Let π: E -» X be a vector bundle over X. A local
projection on E is a map

where U is a neighbourhood of x E X, π~\U) — U X Cb, and v is the
corresponding natural projection.

I omit the elementary proofs of the following four lemmas.
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(1.2) LEMMA. Let φ: E -* F be a map of vector bundles over X, and
suppose that φ(e) E X.

Then φ meets the zero section, X, of F transversely from e <=» v o φ is a
submersion for a local projection, p, on F near φ(e).

(1.3) LEMMA. Let φ: E -> F and ψ: G -* F be maps of vector bundles
over X. Suppose that φ(e) = ψ(g).

Then φ and ψ meet transversely, from e and g, respectively <=* the map

φ Θ (-ψ): E® G -* F

meets X transversely from (e, g).

(1.4) LEMMA (i). Le/ φ: E -> F be a map of vector bundles over X. Then

φ.X^X

is an isomorphism.

(ii) Let E ->F-*G be an exact sequence of vector bundles over X. Then

φ(E) C Ker(ψ), and

φ: E -> Ker(ψ) IJ α submersion,

i.e. the sequence is "exact" when viewed as a map of varieties.

(1.5) LEMMA. Let & be a linear fibre space over X, and P(S) =
(&\X)/C* itsprojectivization. Let e E & be non-zero.

Then & is smooth at e

<& P(S) is smooth at [e].

(1.6) LEMMA. Le//: Xm -> Yn be a map of complex manifolds, and

f*:f-ι(T*Y) -> Γ*̂ Γ

/Λe codifferential of f.

Then, as a map of varieties, the natural map

/ ' : Ker(/*) -

has constant rank n. (See example below.)

Proof. Locally,

T*X= XX C

T*γ= YX c
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f-ι(T*Y) = XX C",

f*(x9w) = \x, \^-(x)) w L and
\ \ QX I I

Ker/*= l(x,w) E X X C" = w'

Let A be the m X (m + n) matrix

which is the Jacobean of the equations describing Ker/* in X X C". Then

T{x^(Kcrf*) = kerΛ

Now,/'(x, w) = (/(x), w). It follows that

ker/; = (ker/1') Θ {0}.

Thus

rk/' = dim(kerΛ) - dim(keryί')

= m + n — rk A — (m — rkA) — n. D

EXAMPLE. The above lemma may be illustrated with the map

f:X=C^Y=C,

x H* x2;
f*:f-\T*Y) = C2 -> T*X= C2,

(x, w) ̂  (x,2xw);

Ker/* = {(x, w) e C2: xw = 0}

/':Ker/* -» Γ*7=C2,

(X,W)H»(X2,W).

It is easy to compute that the differential of/' has constant rank 1.

(1.7) LEMMA. Let

U.x,-*γ, /=i,.. .,f l,

fee maps o/ complex algebraic varieties, and let Yk = {y E 7: 3x, G X(,
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Then Yk is a constructable subset of Y of dimension at most k.

Proof (sketch). Let 9Cbe the fibre product of the/, and

the natural projection.
Then

Thus,

and the lemma follows. D

(1.7.1) COROLLARY. Let f: X -» Y be a map of complex algebraic
varieties. Let

Π h{TxX))<ίk\.
rι(v) ' i

Then Yk is a constructable subset of Y of dimension at most k.

Proof. Let a be the local embedding dimension of 7, and apply the
lemma to a copies of the map /. D

Let Z be a complex algebraic homogeneous space with algebraic
group G. The evaluation map

, x ZXG->Z,

is necessarily algebraic (cf [3], Proposition 7).

Let X and Y be Zariski locally closed smooth subvarieties of Z. The
main tool that we use is the family of intersections

Let

(1.9) μ:XX G^Z

be the restriction of the evaluation (1.8) to X X G. Then η — μ~ι(Y) is a
Zariski locally closed smooth subvariety of X X G.



(1.10)

Let p and q be the restrictions to η of the natural projections on
I X G , a s in Figure (1.10). Let Yg denote the variety X Π g'\Y). Then

Yg~p~ι(g) v i a 4

For simplicity, we assume that Z, G, X and Y are connected. Let
dim Z = r, dim G — N, dim X = « and dim 7 = r — 5. Let

corkx{Yg) = dim{Tx{Yg)) - (n - s)

be the corank of Yg at x. Then Yg is smooth at x (i.e. X meets g - 1(7)
transversely at x) precisely when corkx(7g) = 0. Each smooth Yg has pure
dimension n — s. Moreover

Let

(1.11)

x g)p = N - corkx(Yg).

S — {(x, g) G η: x is a singular point of Yg).

2. Ampleness and group actions. In [17] §1, Sommese defines the
notion of fc-ampleness:

Let A be a reduced compact complex space. A line bundle L -> A is
A:-ample if the sections of some tensor power of L induce a map of A to
projective space, whose fibre dimensions are at most k. Ample is the same
as 0-ample. A vector bundle E -» A is /c-ample if the tautological line
bundle

is fc-ample. Here, P(£*) = (E*\A)/C*.
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If E is spanned by sections {sθ9...9sa}9 it follows that E is /c-ample
precisely when the map

P(E*) ->Pα

defined by {sθ9...9sa} has maximal fibre dimension at most k.

Let Z and G be as in (1.8), and let e be the identity element of G.
Each v E ΓeG determines a section

where

These sections span TZ since z* is a submersion. Let υ, , . . . , t ) j V bea basis
of ΓeG. The sections {SVι,... ,SV/f} induce the map

φ: T*Z -* CN

1?ZB a»(a(SOι(z)),...,a(SΌif(z)))

= (z* (α)(o 1 ),. . . ,z* (α)(t>Λr)).

Thus, φ may be viewed in the coordinate free way

φ: Γ*Z -> Γe*G,

7 ^ Z 3 αh->z#*(α).

We denote, also by " φ " , the map

(2.1) φ

Let 7 be a smooth sub variety of Z, and TV 7 the normal bundle of Y
in Z. Then, SΌχ9...9SΌN induce sections which span NY, and

is the map that they define. If Y is compact, then NY is /c-ample precisely
when

(2.2) φ y

has fibre dimensions at most k.

Group Actions, Let Z be a complex algebraic homogeneous space, as
in (1.8). The action of G on Z induces an action of G on Γ*Z, through
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linear maps, and hence an algebraic action

(2.3) P(F*Z) X G ^ P ( Γ * Z ) .

Let

P(Γ*Z) = U Op

be the orbit decomposition of the action (2.3). Each orbit Op is an
irreducible, Zariski locally closed, smooth sub variety of P(Γ*Z). The
natural projection P(Γ*Z) -> Z is G-equivariant. Since the action of G on
Z is transitive, there is a 1-1 correspondence between orbits of G in
P(Γ*Z) and orbits of Gz in P(7?Z), where Gz is the isotropy group of an
element z E Z.

Let Y be a Zariski locally closed, smooth subvariety of Z. Then,
P(N*Y) C P(Γ*Z), and we define

(2.4) P(tf«Ύ)p = P(Λ^*Γ) Π Op,

dp

γ = redim{P(N*Y)p) (1.1).

In particular, let

dp — d^ — dimension of the pth orbit

of the action of the isotropy group Gz on P(7?Z).

It is easily seen that

(2.5) dim{Op) = r + dp

where dim Z — r.

3. Rigged spaces. This paper is concerned, ostensibly, with Grass-
mannians and quadrics. In this section, we define a class of homogeneous
spaces, rigged spaces, which includes the above two families. For simplic-
ity, in the remainder of the paper, we will be assuming that the ambient
homogeneous space, Z, is rigged, although it will be clear that many of the
results are true under less stringent hypotheses.

(3.1) DEFINITION. Let Z be a complex algebraic homogeneous space
with connected group G. We say that Z is rigged if

(i) The universal covering map of G is algebraic. As is well-known,
this is equivalent to π^G) being finite, and this is the case when G is
semisimple.
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(ii) There are finitely many orbits Ol9... ,Om for the action of G on
P(Γ*Z) cf (2.3). In particular, there is a (unique) open orbit, say, Om.

(iii) The isotropy group of an element of Om is connected,
(iv) The map

φ : P ( Γ * Z ) -

is 1-1 on Om cf (2.1). This condition is equivalent to:
(iv') The isotropy group of an element a of Om is equal to the isotropy

group of φ(a) with respect to the co-adjoint action of G on P(Γe*(G)).
(v) For each orbit Op, there is a Zariski locally closed submanifold Xp

of Z such that P(N*(Xp)) is generically contained in Op i.e. d*» — r — 1,
cf. (2.4).

We discuss, now, briefly, why Grassmannians and quadrics are rigged,
and mention only that P r \ P * is rigged where P* is a linear projective
fc-subspace of P r , and the group G is {g G PGL(r, C): g(P*) = P*}.

Grassmannians. Let Z = Gr(/, C τ + / ) be the Grassmann manifold of
C 9s in Cτ+t. The group G is the projective linear group PGL(τ + t - 1, C).
The universal cover of G is the algebraic projection

SL(τ + ί,C) ->G

where SL(τ + t, C) is the special linear group in C τ + / .

Over Z, there is a well known tautological sequence

where E and F are, respectively, rank / and rank T vector bundles.
Moreover,

Γ*Z = Hom(2s E)

so that each element α G Γ:*Z has a rank between 0 and m = min(τ, /) its
rank as a linear map

We can write

m

p(r*z) = U op

where Op is the projectivization of the elements of rank p. This is also the
orbit decomposition of the action of G on P(Γ*Z). The orbit Om of the
maximal rank vectors is the open orbit. A calculation shows that the
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isotropy groups are connected, and that

dp~tτ—{t — p)(τ — p) — 1, where tτ = r = dim Z.

Consider now the map

φ : P ( Γ * Z ) ^P(Te*G)

φ(a) = projectivization of i2 ° a ° π2.

Here, T?G is identified with sl(τ + /, C), i2 is the inclusion E2 -» C τ + r and
77Z is the projection C τ + ' -»,FZ. From this, one sees that rkα = rkφ(α). Let,
now, A = φ(a) have rank p. Then φ'\A) ^ { z G Z : i m ^ C z C
^ Gr(ί - ρ , C τ + ί ~ 2 p ) . In particular, φ is 1-1 on Om.

Finally, let C τ + r ~ p be a codimension p subspace of C τ + r , and put

Then P(7V*Xp) is generically contained in Op.

Quadrics. Let Z = S r C P r + 1 be the r-dimensional quadric. The group
G is the projectivization of the special complex orthogonal group
P(SO(r + 2, C)) and has a finite fundamental group (of order 2 for r odd
and order 4 for r even).

There is a commutative diagram

/* Plϋcker embedding

The image of Γ consists of all P1 's that are tangent to Z. If a E P(Γ*Z),
then

r-(Π.))-Π«)nz={pl ί « "
[point, Γ(α) (/Z.

Now, P(Γ*Z) = O] U Om is the orbit decomposition where

0, = {α E P(Γ*Z): Γ(α) C Z} and

In particular, φ is 1-1 on Om. Again, a computation shows that the
isotropy groups are connected, and dλ = r — 2.
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Finally, let Xx be the smooth points of a singular hyperplane section
of Z. Then, V(N*(XX)) is contained in Oλ.

4. Analytical results on rigged spaces. Throughout this section, we
study the relationship between two smooth subvarieties X and Y of the
homogeneous space Z. The main tool that we use is a linear fibre space &
which contains information of how singular are the intersections of X with
the translates of Y by the group G.

(4.1) The Construction of&. Recall the maps

μ: η -» 7, q: η -> X,

(x,g) h-»gx, (x,g)\-*x.

Define a map (with abuse of notation)

g*:μ-χ(N*Y)->q-ι(T*X)9

N*XY3 αh-»g*(α) G T?X

and let

(4.1.1) S = Ker(g*),

cf. §1. We note that

(4.1.2) &iX9g) - g*-χ(N;x) n N;xγ=(g*(τxx) + y f c r z.

In particular

(4.1.3) dim{&(xg)) = coτkx{Yg).

(4.2) Bounding &. Let P(S) = ( S \ η ) / C * be the projectivization of &.
The map & -> η induces the map P(S) -» S. Also, the map <j>γ: N*Y -* T*G
induces the map

φ&:&G

LEMMA. There is a commutative diagram

& - G X T*G

(4.2.2) U II

P-+ T*G

(See (1.6) for the definition of p'.) The vertical maps are isomorphisms.
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In Figure (4.2.3), one of the diagonal exact sequences is for the
conormal bundle oί η in XX G. The other expresses the direct sum
decomposition of Γ ( I X G). The maps a and b are defined, respectively,
as ai and γ/. It is clear that #* =jβ and/?* =jδ. Since

βa + δγ = idτ*(XXG)

we have

q*a + p*b =ji — 0.

This, Lemma (1.4) and a diagram chase show that

Φ: Ker(tf) -> Ker(p*)

is well-defined and an isomorphism of varieties.

As for the top two rows of Figure (4.2.3), the map μ : I X G - ^ Z i s a
submersion and η — μ~\Y). Thus, by a dimension count, the codifferen-
tial of μ induces an isomorphism

jU*:μ-1(iV*y) -> JV*τj.

The composition a o μ* is just "the partial of μ with respect to x" viz. g*.
This fills in the top row of Figure (4.2.3), inducing, also, the isomorphism

μ*: & -> Ker(α).
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To complete the proof of the lemma, the two left columns of Figure
(4.2.3) give the diagram

(4.2.4)

Here, we have replaced b ° μ* with x#* i.e. "the partial of μ with
respect to g". Now, x # = (gx)# o R~\ so that x # * = 7?*-, o φ y ? cf. (2.2).
This fills in the right half of Figure (4.2.4), and proves the lemma. D

(4.3) PROPOSITION. Let X be a locally closed smooth subυariety of the
complex algebraic homogeneous space Z. If Y is a compact smooth sub-
variety of Z and NY is k-ample, then

redim(P(S)) <N- 1 + k.

Proof. Projectivize diagram (4.2.2).

(4.3.1)

By Lemma (1.6),

P(S) -

u
P(Ker/?*) -

rkp' =N- 1.

> G X P(Te*G)

U

P(T*G)

Thus, redim(imφg) < iV — 1. But, Y is compact and NY fc-ample, so
the fibres of φγ are at most /^-dimensional. The same is true of φ s, and it
follows that

redim(P(S))<iV- 1 + k. D

(4.4) DEFINITION. We define the decomposition
m

P(g) = U P(S)P

byP(S)-p(S)nJu-1(p(iv*y)p)

= {a G P(S): a is in the pth orbit Op).

(4.5) PROPOSITION. Let Y be a smooth compact subvariety of the rigged
homogeneous space Z. If NY is k-ample then the reduced dimension of each
component ofP(N*Y)p is between dp and k + dp, cf. (2.4).
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Proof. A lower bound for the dimension of each component of
P(N*Y) Π 0pis

dim(P(7V*7)) - cod P ( Γ , Z ) 0 p

= r - l - { 2 r - \ - { r + dp))=dp.

To determine an upper bound, let X be any locally closed smooth
subvariety of Z, and construct the space S for X and Y. Define a map (cf.
(4.1.2))

θ: P(S) -» P(N*X) X P(N*Y),

For each p,

P(S) P - θ-ι(P(N*X)β X P(N*Y)P).

Thus,

(4.5.1) θ: P ( S ) P -* P(N*X)P X P(iV*Γ)p

and this restriction has fibres isomorphic to the isotropy group of an
element of Op, i.e. the fibres are N — r — dp dimensional.

By (4.3),

k + N - 1 > redimP(S)p = df + dp

γ + N - r - dp,

so dp + dj < r — 1 + dp + k. But, since Z is rigged, there is an X with
ap — r l.

Hence dp <dp + k. D

(4.5.2) COROLLARY. Let K = r - 2 - supp^m{^p}. // Z ώ πggeJ, 7
compact, and NY is κ-ample, then P(N*Y) meets the open orbit Om, and

is genetically 1-1. For the Grassmannian Z — Gr(/, C τ + ? ) we have K —
11 — T I , and for quadrics K — 0.

/. The hypotheses ensure that dp

y < r — 2 for pφm, so that
P( J V * 7 ) W m u s t be non-empty. The definition of rigged implies that φγ is
1-1 on this Zariski open set. The specific values of K may be computed (cf.
§3). •

(4.5.3) COROLLARY. Let Z be rigged, Y compact, NY ample, and
assume that P(N*X) meets the open orbit Om. Then redim(P(S)p) < N — 2
for p φ m.
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Proof. Using the map (4.5.1) we have

redim(P(S)p) = df + dj + N - r - dp

= d* + N-r<N-2 for p ^ m since P(7V*^)

meets the open orbit Om. D
We fix, now, an element z0 of Z.
(4.6) Note. Let σ denote a local cross section of the bundle

So, σΣ E G, oz(zo) — z Vz E U — domain of σ, and σ determines a local
projection (cf. (1.1.2))

T*Z3 απ»σ*(α).

(4.7) PROPOSITION. Let X and Y be smooth connected subυarieties of the
rigged homogeneous space Z.

Then P(S) m is a smooth (N — 1 dimensional) connected open sub-
variety of P(S>).

Proof. Certainly, P(S) m is open, and the fibration (4.5.1) shows that
P(S) m is connected. By Lemma (1.5), we need only verify the smoothness
ofS.

O ^ S ^ μ~\N*Y) C q-\T*X)

0 -* q'ι(N*X) -> q-](T*Z)

The top row of (4.7.1) defines & as Ker(g*) cf. (4.1.1). In particular, &
is smooth (i.e. iV-dimensional) when the horizontal g* meets the zero
section of q~\T*X) transversely. Now, by Lemma (1.4), & is smooth
precisely when the vertical g* meets q~x(N*X) transversely. By Lemma
(1.3), & is smooth precisely when

μ~}(N*Y) θ q~](N*X) -* q~](T*Z),

(β9a\X9g)»(

meets the zero section transversely.
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Let v be the local projection of q~\T*Z) defined in Note (4.6). Now,
by Lemma (1.2), & is smooth precisely when

μ(NY)Θq

(β,a\x,g)»σx*(g*(β)-<x)

is a submersion.
Fix α, β, x and y9 and consider g's of the form g — σyha~ι where

h G G2Q, the isotropy group of zQ. For (4.7.2) to be a submersion, it
suffices that

C* X GZo - T*Z,

(λ,h)^h*(σy*(λβ))=λh*σ*y(β)

be a submersion, and this is equivalent to

G. ^P(T*Z),
z0 \ z0 ) '

h - £ * < ( £ )

being a submersion, which is certainly the case when β is in the open orbit

om. •
5. A second Lefschetz theorem. In [6], a Second Lefschetz Theorem

is discussed and proved in the context of complex projective space. This
section proves an analogous theorem for rigged homogeneous spaces (cf.
§3). The version of the First Leftschetz Theorem that we use is due to
Sommese [18,19, 20]:

(5.0) Let Z be a complex algebraic homogeneous space, Y a smooth
connected compact subvariety of Z with an ample normal bundle, and X a
smooth connected closed subvariety of Z. Let

dim Z = r, dim X — n and dim Y = r — s.

Assume that 2s < r. Then

7rf.(ΛΓ, XΠY,y)^0 forι<min(π ~ s,r~2s+ 1).

In particular, if X = Z then

(5.0.1) *τf(Z, Γ, >>) = 0 f o r / < r - 2 J + 1,

orif« + 5 < r + 1 then

(5.0.2) *,.(*, ATI Y , J O = 0 f o r i < / i - j .

(5.1) With the notation of (5.0), we recall (1.11) that

§ — {(x, g) E η: x is a singular point of Yg)

is a closed subvariety of η.
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Let §α = {(x, g) E i,: corkx( Yg) - a] (cf. §1) so that S - U β 2 £ l Sβ,
and for each k UβΞϊA; §α is a closed subvariety of §. The space Sj possesses
a natural variety structure, as defined in [6], (3.3). (The same is true of all
the Sα, but we will not be using them.)

Let Δ = /?(§>) be the discriminant of the family, i.e.,

Δ = {g E G: Yg is singular}.

The hypotheses on X and Y ensure that p is proper, so that Δ is a
proper closed algebraic subvariety of G.

Fix a base point o 6 G \ A , and let

be the monodromy group associated to the fibre bundle

We define the invariant cycles

(5.1.1) inv= {υ GHn_s(Y09C): Tυ = ϋVΓ E9H}.

If g0 E Δ and if 7go has but one singular point and if it is non-degen-
erate quadratic, then there is associated to it special monodromies
(Picard-Lefschetz transformations)

(5.1.2) Tv^v- (v,a)a

where a G Hn__s(Y0,C) is called a vanishing cycle, and ( , ) is the middle
homology pairing.

We define

van = span of the vanishing cycles determined by the family η.

The next theorem is a main ingredient of the Second Lefschetz
Theorem.

(5.2) THEOREM. Let Zr be a rigged homogeneous space with group GN

(cf. §3). Let Yr~s be a compact smooth connected subυariety of Z with an
ample normal bundle, and let Xbe a smooth connected closed subυariety of Z
such that P(N*X) meets the open orbit Om. cf (4.5.2).

Then there is a smooth connected open subvariety, D, of the discrimi-
nant Δ^" * such that

( i )d im(Δ\Z>)<#-2, and
(ii) if g E D then Yg has only one singular point and it is nondegener-

ate quadratic.
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REMARK 1. If dim Δ < N — 2 the conclusion is trivially satisfied by
taking D to be the empty set.

REMARK 2. The hypothesis that P(iV*X) should meet the open orbit
Om is stronger than necessary. For example, if Z = Gr(2, C2k) and Y is a
smooth hypeφlane section of Z, then P(iV*7) C Om. Thus, if P(N*X) Π
Om — 0 then the discriminant Δ is empty.

Proof of theorem. Construct the linear fibre space &, as in (4.1).

There is a diagram
p

& -* η -» G

U U
(5.2.1)

P ( S ) - S ^ Δ

77

(The notation is described in (5.1).)

Recall (4.4) that P(S) = U p P(S) p . Let

pφm

= |g e Δ: dirnl Π im(/» ) < i V - 2 .
j

Put D = Δ\(£, U £ 2 U £ , U sing(Δ)).
Certainly, D is a smooth open subset of Δ, and is also connected since

D is an open subset of the irreducible variety τr(P(S)m) cf. (4.7).

By Corollary (4.5.3), dim(£,) < N - 2, and by Corollary (1.7.1) we
also have

dim(£2) <N-2 and dim(£3) < N - 2.

Thus, dim(Δ\Z))<JV-2.

The restricted mapping
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is a bijection of sets, as is easily seen from (4.1.3). In fact, it is an
isomorphism of varieties. This is a local calculation using the special
coordinates of [6] Lemma (3.3). From Proposition (4.7) it, now, follows
that S1 is smooth (iV — 1 dimensional) at each point over D.

Fix, now, a point g E D.

As in [6] Proposition (3.3.3), each singular point of Yg is nondegener-
ate quadratic since g & E2.

Moreover, since g £ E3, we have

dim 2 ker/\*,g) = l

We remark that ker/?* = (im
Now, if xx and x2 are two singular points of Yg then

as elements of P(Γg*(G)). Referring to diagram (4.3.1), we see that xλ — x2

since π'\D) C P ( δ ) m and φ& is 1-1 on P ( S ) m (cf. (3.1)iv). D

(5.3) THEOREM (Second Lefschetz Theorem). Let Z be a Kaehler
complex algebraic rigged homogeneous space (e.g. Grassmanian, quadric,
P'XP* cf. §3). Let Y be a connected smooth compact subυariety ofZ with an
ample normal bundle NY. Let X be a connected smooth closed subυariety of
Z such that P(N*X) meets the open orbit ofP(T*Z) cf. (2.4) and Corollary
(4.5.2).

Let dim Z = r, dim X — n and dim Y = r — s. Assume that n + s <
r + 1, 2s < r and 77;(Z, Y) — 0 for / < « — 5 + 1. (This last assumption is
satisfied, for example, when n + s < r (5.0.1).)

Let F Q ^ I Π 7 and assume that X meets F transversely in Z. In
particular, 70 is a smooth « — s dimensional subvariety of X. Let

ker = kernel of Hn_s(Y0, C) -> //„_,(X, C),
van = span of vanishing cycles in Hn_s(Y0, C), and
inv = cycles in Hn_s(Y09 C) invariant under the monodromy cf. (5.1.1).

Then

, 0

ker = van,
the monodromy acts transitively, up to sign, on the set of vanishing

cycles, and
van is irreducible under the monodromy action.



290 NORMAN GOLDSTEIN

There is a corresponding conclusion in cohomology.

Proof. The proof is essentially the same as that of [6] (6.1). In the
latter, replace " P " by " Z " and [6] Theorem (3.5) by Theorem (5.2) of
this paper.

We need, now, only two lemmas to modify the proof of [6] (6.1)ii.

Let v: Gλ -> G be the universal cover of G, which is an algebraic map
(3.1i). Putij1 = P~\η), cf. (1.10).

LEMMA. Hn~s(XX G\ C) -> Hn's(η\ C) is onto.

Proof. The map

XXG1 ->Z,

(x,g) -+v(g)x

is a fibration, so the proof of [6] (6.1.3) applies. D

LEMMA, van-1 C inv.

Proof. We show, in fact, that van"1 C im. Since π{(Gι) = 0, the
monodromy subgroup, 91L1, of Aut(Hn_s(Y0, C)) determined by the family
ηι is generated by the Picard-Lefschetz transformations cf. (5.1.2). This
implies that van"1 = inv1, where

inv !{a GHn_s(Y09C): Ta = aVT G 9H1}.

But inv1 = im, as in [6], (6.1)iii. •

6. Concluding remarks. The question in [6] §7 asks whether there is
a smooth hypersurface Y in Gr(2,4) such that P(N*Y) is contained in the
lower dimensional orbit of rank 1 vectors. According to Proposition (6.5)
this is impossible, since NY is necessarily ample. Actually, Andrew
Sommese had answered the above question using a line bundle argument,
and this was encouragement enough to work out a general solution.

Note added in proof. In Definition 3.1, condition (ii) may be replaced
by the weaker condition "The action of G on P(Γ*Z) has an open orbit,
0 m " i.e. one need not require that there be finitely many orbits. In
"Finding the nondegenerate quadratic singularities", Proc. Symp. Pure
Math., 40 (1982), the author indicates why this is so.
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