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A NOTE ON THE CARDINALITY
OF INFINITE PARTIALLY ORDERED SETS

JOHN GINSBURG

Let P be an infinite partially ordered set with 0 and 1. A subset B of
P is called a π-base for P if for every element x of P with 0 < x < 1
there exist elements b, c in B such that 0 < b < x < c < 1. We let π(P)
denote the smallest cardinality of a ττ-base for P. We also let hττ(P) —
sup {π(S) : 5 C ? } . The width and depth of P are defined as usual:
w(P) = sup{/c: P contains an antichain of cardinality /c}; d(P) =
sup{/c: P contains a well-ordered or dually well-ordered subset of cardi-
nality *} . We establish the following result: THEOREM. | P | < hττ(P)d(P\
Various corollaries are obtained which imply and extend several known
results on the cardinality of partially ordered sets, for example:
COROLLARY, (a) | P | < 2hπ(P\ (b) | P | < w(P)d(P\ (c) If B is a Boolean
algebra then \B\<2w(B\

1. Preliminaries. In this note several cardinality statements are
established relating the cardinality of a partially ordered set to its width,
depth, and π-weight. These results extend and imply several known
results.

Our set-theoretic notation and terminology are standard and follow
[3]. In particular the cardinality of a set S is denoted by | S\ and a
cardinal number is thought of as an initial ordinal. If a and β are ordinals
then aβ denotes the set of all mappings from β into a. If a and β are
cardinals then we also let <xβ denote the cardinal exponentiation of a to
the power β. If K is a cardinal then /c+ denotes the first cardinal bigger
than /c, and cf(/c) denotes the cofinality of K—the least cardinal λ such
that K is the sum of λ cardinals each of which is less than K.

For additional information on partially ordered sets and the concepts
considered here the reader is referred to [5]. Let P be an infinite partially
ordered set. The width of P, denoted by w(P), is defined as

w(P) — ω - sup{/c: P contains an antichain of cardinality K] .

We define

d+ (P) = ω - sup{/c: P contains a well-ordered subset of cardinality K]

and

d~(P) = ω - sup{/c: P contains a dually well-ordered subset of

cardinality K] .
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The depth of P, denoted by d(P), is defined by

d(P) = ω - sup{κ : P contains a well-ordered or

dually well-ordered subset of cardinality K} .

Note that d(P) = d-(P)-d+(P).
If P has no largest element 1 then the expression P — {1} is under-

stood to just mean P itself. A similar remark applies to P — {0}. Let S be
a subset of P. A subset C of S is said to be cofinal {coinitial) in S if for
every element x of S there exists an element c in C with x < c. (c < x). If
C is both cofinal and coinitial in S we call C a π-base for S. Following the
notation of [3] we let πo(P) = min{κ: P — {0} has a coinitial subset of
cardinality K} <O and πx(P) = min{κ: P — {1} has a cofinal subset of
cardinality κ} ω, and π(P) = ω min{/c: P — {0,1} has a ττ-base of
cardinality /c}. π(P) is called the π-weight of P. Clearly π(P) =
7ro(P) τr1(P). We also define Λττo(P) = sup{ττo(S): S c P}, Λ ^ P ) =
sup{ίτ,(5): S C P}, and Λττ(P) = supiTriS) : S c P ) . Here, in consider-
ing π(S) for subsets S of P, we are of course considering S as a partially
ordered set in its own right in the induced order. hττ(P) is called the
hereditary π-weight of P.

2. Some relations involving cardinality, width, depth, and τr-weight.
Throughout this section we assume that P is an infinite partially ordered
set with 0 and 1. This latter assumption is superfluous, since we can
always add a 0 or 1 if necessary, and our results are valid for all infinite
partially ordered sets. In the following proof of 2.1 we use a simple
" tree-type argument" or ramification system as described in [2].

2.1. THEOREM, (a) | P | < hπλ(P)d~{P\ (b) | P | < hπo(P)d+{P\

Proof, We prove (a); the second statement follows by duality. We let
K = hπx(P) and let λ = d~(P). If φ C S C P then S contains a cofinal
subset of cardinality < K. We choose one such subset C(S) cofinal in S
and let C(S) — {ps(O : έ < /c} be a fixed enumeration of the elements of
C(S).

Now for every a < λ+ and for every / E καwe will define a point xf

of P as follows: We let xφ = 1. Now, supppose α < λ+ and that for every
β < a and for every/ E K^ we have defined xf. Let/ E κa. We will define
x .̂ If a is a limit ordinal we let xf= 1. If a = /? + 1, let 5y = {/? E P : /?
< JC^ for all £ < β}. If 5} = φ, let JC7 = 1. Otherwise let xf = psjif(β)).

Thus for every α < λ+ and every/in /cα we have defined a point xf.
We now show that P = (x^: / E U [κa : a < λ+ }}. For suppose not.
Then there exists an element r in P which is not equal to xf for any/in κa

for any α < λ+ . In particular r < 1.
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We now define inductively, for every a < λ+ , a function ga in κa as
follows. Let g0 = φ. Now, let a < λ+ and suppose that for every β < a we
have defined gβ E κβ such that

l . γ < 0 < α - » g 0 | γ = gγ,
2. r < Λ; for every β < a, and
3.γ</?</?+l<α-^+i<xw

We now define ga E κα. If α is a limit ordinal let gα = U {gγ : γ < a).
If α = β + 1, let Ta = {p E P: /? < xgy for all γ < α}. Then Γft ^ φ by
(2) and so the set C(Ta) is defined. SinceV E Γα and C(Γα) is cofinal in Ta9

there exists an element pτ(,ζ) in C(Ta) such that r ̂ pτ£ξ). We define gα

as follows: ga(η) — gβ(η) if η < β and ga(β) = the first ordinal £ < /c such
that r <pTa(ξ). This defines gα E /cα. We note that pτ^ga(β)) - xga, as
follows from the manner in which we defined the Xj's. Therefore, by the
choice of r it follows that r < xga. Also note that since pτ£ga(β)) ^ Ta,lX
follows that xga < xg for all γ < a. This completes the induction; the
result is a sequence (ga: a < λ + } which satisfies (1), (2), and (3) above
for all γ, β < λ+ . But then {Xga+ι: a < λ+ } is a dually well-ordered
subset of P of cardinality λ + . Tins is impossible since d~(P) = λ. This
proves our claim that P = [xf : / E U{/c α :α<λ + } } . Therefore

| | | { } | 2
α<λ+

completing the proof of (a).

2.2. COROLLARY. | P |<

First note that d+(P)<hπλ(P) (and dually that d~(P) <
hπo(P)); for let / ^ ( P ) = K. If J + ( P ) > /C then P must contain a well-
ordered subset of cardinality /c+ and hence must contain a subset £
isomorphic to the ordinal κ + . However any cofinal subset of κ+ has
cardinality /c4" and so πγ(S) = /c+ , which contradicts the fact that πλ(S) <

= κ. Thus we have J + ( P ) < A^(P) and the dual. Therefore
hπ(P). Theorem 2.1 now implies that

I P | < hπ(P)d(P) < 2hπ{Pyd{P) < 2hπ(Pyh'rτ(P) = 2Λ ϊ Γ ( / > )

as desired.

2.3. COROLLARY. // P satisfies the descending chain condition then

| P | = A π j ( P ) . 7 / P satisfies the ascending chain condition then \P\ —

hπo(P).

Proof. This is really a corollary of the proof of 2.1. We prove the first
statement. If P satisfies the descending chain condition then P contains no
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decreasing ω-sequence. In the proof of 2.1 we replace λ + by ω and we
conclude that P = {xf: f E U {κn : n G ω}}. Therefore

: 2d \κ \ =

Since hπx(P) ^\P\ obviously holds in general, the corollary follows.

Theorem 2.1 can also be used to obtain a relationship between the
cardinality of P and the width of P which was first obtained in [4] by a
different method. First we establish a lemma.

2.4. LEMMA, (a) τro(P) < w(P)d~{P\ (b) iτλ(P) < v ^ P ) ^ * .

Proof. We prove (b); the first statement is the dual. Thus let K — w(P)
and let λ = d+ (P) . Now P contains a cofinal subset S which is well-
founded; that is, a cofinal subset S which contains no infinite decreasing
sequence. (See [5].) Therefore every chain in S is well-ordered, and so all
chains in S have cardinality < λ. Also all antichains of S have cardinality
< K. Now, considering the partition relation ( κ λ ) + -> (κ + , λ + ) , (see [2]),
and the partition of the pairs of elements of S into incomparable pairs
and comparable pairs, we conclude that | 5 Ί < / c λ . Therefore
I S\ < /cλ, as desired.

As a corollary we now obtain the following result from [4].

2.5. COROLLARY. | P | < w(P)diP\

Proof Obviously if S is any subset of P then w(S) < w(P),
</-(P), and </+(S) < ^/ + (P). Therefore the lemma implies that πo(S)
w(5) r f " ( S ) < w(P) J" ( / > ) . Therefore hπo(P) = sup{πo(S) : S C ? }
w(P)< / ( / > ) . Part (b) of Theorem 2.1 now implies that | P | < hτro(P)d^P)

J ( / > ) ^ + ( / ) ) d^ as desired.

2.6. COROLLARY. | P | < 2M;(

Proo/. This follows immediately from 2.5.

2.7. COROLLARY. 4̂&swrae Λ̂e generalized continuum hypothesis G CH.
Let P be a partially ordered set. If d(P) < cf(w(P)) then \P\-w(P). In
particular, if \ P | = κ + α«t/ if d(P) < cf(w(P)) then P contains an anti-
chain of cardinality /c+ .
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Proof. Assuming GCH, we have ab — a whenever b < c/(a). Therefore
the assumptions imply by 2.5 that | P | < w ( P ) . Since always w(P) <
I P I the result follows. The second statement follows from the first and the
definition of w(P).

3. Some comments and examples concerning the previous results. We
will now examine the shaφness of some of the preceding results and their
connection with other results in the literature. Our comments pertain
mainly to 2.2, 2.5, and 2.6.

First note that for any partially ordered set P, w(P) < hπ(P). For, if
S is an antichain then the only cofinal or coinitial subset of S is S itself.
This relation, together with the fact that d{P) < hττ(P), mentioned in the
proof of 2.2, are the only relations which hold in general involving these
three cardinal numbers.

We observe that, in the statement of 2.2, | P | < 2Aίr(P), we cannot
replace hereditary π-weight by π-weight. That is, | P | < 2"(/>) does not hold
in general. For example, if Q is any partially ordered set of cardinality /c,
then the ordinal sum P = ω + Q + ω has | P | = K and π(P) — ω. One
class of partially ordered sets for which | P |< 27r(/>) does hold is the class
of Boolean algebras. (If P is Boolean and if B is a τr-base for P, then for
every non-zero element x of P, we let Bx — {b E B: b < x}. Note that if
x Φy then Bx φ By and so | P |< ^ .)

Familiar examples show that equality can be attained in the results of
the preceding section. Regarding 2.5 and 2.6 we note that neither of the
numbers w(P) or d(P) by itself in general limits the cardinality of P, as is
shown in the case when P is a chain or an antichain. For the important
special class of Boolean algebras, w(P) alone limits the cardinality of P.
In fact, as is shown in [1], if B is a Boolean algebra then | B | < 2w{B\ (This
follows from a stronger result proved in [1], that π(B) < w(B) if B is
Boolean.) We note here that the result | B |< 2w(B) for Boolean algebras
can also be deduced immediately from Corollary 2.6: | P | < 2w(P)d{P\
because in any Boolean algebra we always have d(B) < w(B). (If {xa: a
< K} is a well-ordered subset of B with a < β -> xa < xβ, then the
elements xa+ι — xa for a < K form an antichain.)

Regarding 2.5, we note that a weaker statement, namely | P | <
w(P)i(P\ can be proven directly from a partition relation. (Here /(P)
denotes the length of P; /(P) = sup{/c: P contains a chain of cardinality
K}.) In fact, the proof of 2.4 above really contains a proof of this fact
using the partition relation ( κ λ ) + -> (/c+ , λ + ) from [2],

We also note that 2.6 includes as a special case the well-known result
that, if Tis a totally ordered set then | Γ | <
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In conclusion the author wishes to thank E. Milner for his comments
concerning the above results. I would also like to thank the referee for the
argument used to prove 2.4 above, much simplifying the original.
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