ON THE ZETA FUNCTION FOR FUNCTION FIELDS OVER F_{p}

Emery Thomas

Abstract

We consider here the zeta function for a function field defined over a finite field F_{p}. For each inter $j, \zeta(j)$ is a polynomial over F_{p}, as is $\zeta^{\prime}(j)$, the "derivative" of zeta. In this note we compute the degree of these polynomials, determine when they are the constant polynomial and relate them to the polynomial gamma function.

In a recent series of papers D . Goss has introduced the notion of a zeta function $\zeta(j)$ for rational function fields over F_{r}, where $r=p^{k}$, with p a rational prime. In particular, for each positive integer i, with $i \neq 0$ $(r-1), \zeta(-i) \in F_{r}[t]$. Goss also defines the "derivative" of ζ, ζ^{\prime}, with $\zeta^{\prime}(-i) \in F_{r}[t]$ if $i \equiv 0(r-1)$. We combine these special values of ζ and ζ^{\prime} into a single function $\beta(n)$ (with $n=-i$) defined by:

$$
\begin{align*}
& \beta(0)=0, \quad \beta(1)=1, \tag{1}\\
& \beta(n)=1-\sum_{\substack{i=1 \\
i=n(s)}}^{n-1}\binom{n}{i} t^{i} \beta(i), \quad n \geq 2
\end{align*}
$$

where $s=r-1$. Thus, by (3.9) and (3.10) of [2],

$$
\beta(n)= \begin{cases}\zeta(-n), & n \neq 0(s) \tag{2}\\ \zeta^{\prime}(-n), & n \equiv 0(s)\end{cases}
$$

An important situation where these functions arise is in determining the class numbers of certain extension fields over $F_{r}[t]$ (modeled on cyclotomic fields). If P is a prime polynomial in $F_{r}[t]$, Goss defines class numbers $h^{+}(P)$ and $h^{-}(P)$ associated to P, in the classical fashion, and shows that their study (a la Kummer) involves the polynomials $\zeta(-i)$ and $\zeta^{\prime}(-i)$. Thus it is important that we know certain facts about these functions, and hence about $\beta(n)$. Specifically, when is $\beta(n)=1$? What is the degree of $\beta(n)$? When does $\beta(n)$ factor? In this note we give some answers to these questions, for the case $r=p$.

Remark. I am indebted to Goss for bringing this material to my attention.

The function $\beta(n)$. Let p be a rational prime, and for each integer $n \geq 0$, let $\beta(n) \in F_{p}[t]$ be the polynomial defined above. Note that if $0<n \leq s(=p-1)$, then $\beta(n)=1$. For $n>s$ we rewrite (1) as follows: set $k=[(n-1) / s]$. Then (1) becomes:

$$
\begin{equation*}
\beta(n)=1-\sum_{i=1}^{k}\binom{n}{i s} t^{n-i s} \beta(n-i s) . \tag{3}
\end{equation*}
$$

Let $n=\Sigma_{i} a_{i} p^{i}$ be the p-adic representation of n; thus, $0 \leq a_{i} \leq s$, and almost all a_{i} are zero. Define

$$
l(n)=\sum_{i} a_{i} .
$$

Our first result is:
Theorem 1. Let n be a positive integer with $l(n) \leq s$. Then,

$$
\beta(n)=1 .
$$

The proof depends upon several simple facts about binomial coefficients mod p. Recall the result of Lucas:
(4) If m and n are given p-adically by $m=\sum_{i} b_{i} p^{i}, n=\sum_{i} a_{t} p^{i}$, then

$$
\binom{n}{m} \bmod p \equiv \prod_{i}\binom{a_{i}}{b_{i}} \bmod p .
$$

In particular,

$$
\binom{n}{m} \not \equiv 0 \bmod p \Leftrightarrow 0 \leq b_{i} \leq a_{i} \text {, all } i .
$$

As an immediate consequence, we have:

$$
\begin{align*}
& \text { If }\binom{n}{m} \neq 0 \bmod p, \text { then } l(n)=l(m)+l(n-m) . \text { In particular, } \tag{5}\\
& \text { if } 1 \leq m<n, \text { then } l(n)>l(m) .
\end{align*}
$$

Finally, note that since $p \equiv 1 \bmod s$, we have:

$$
\begin{equation*}
n \equiv l(n) \quad \bmod s . \tag{6}
\end{equation*}
$$

Proof of Theorem 1. Let j be any positive integer. By (6), since $j s \equiv 0$ $\bmod s, l(j s) \geq s$. Thus, if n is an integer with $j s<n$ and $\left({ }_{j s}^{n}\right) \neq 0 \bmod p$, then by (5), l(n)>l(js) $\geq s$. Therefore, if $l(n) \leq s$, then $\binom{n}{j s} \equiv 0 \bmod p$. Thus, by (3), $\beta(n)=1$, as claimed.

We suppose now that n is an integer with $l(n)>s$; our goal is to calculate the degree of $\beta(n)$ - call this simply $D(n)$.

Define an integer valued function $\rho(n)$ by:

$$
\begin{equation*}
\text { If } l(n) \geq s, \text { set } \rho(n)=n-m, \text { where } m \text { is the least } \tag{7}
\end{equation*}
$$ positive integer such that

$$
l(m)=s \quad \text { and } \quad\binom{n}{m} \neq 0(p)
$$

Thus, if n is written p-adically in the form

$$
\begin{equation*}
n=\sum_{i=0}^{N} p^{e_{1}}, \quad \text { with } e_{0} \leq \cdots \leq e_{N} \tag{8}
\end{equation*}
$$

and with no more than $s e_{i}$'s with the same value, then

$$
m=\sum_{i=0}^{s-1} p^{e_{i}}
$$

If q is an integer (≥ 0) with $l(q)<s$, set $\rho(q)=0$.
Set $\rho^{i+1}(n)=\rho\left(\rho^{i}(n)\right)$, with $\rho^{0}(n)=n$. Thus, for large $i, \rho^{i}(n)=0$.
Example. $p=5, n=3 \cdot 1+4 \cdot 5+2 \cdot 5^{3}$. Then,

$$
\begin{aligned}
& \rho^{1}(n)=3 \cdot 5+2 \cdot 5^{3} \\
& \rho^{2}(n)=5^{3} \\
& \rho^{3}(n)=0
\end{aligned}
$$

Our result is:

Theorem 2. Let n be an integer with $l(n)>s$. Then

$$
D(n)=\operatorname{degree} \beta(n)=\sum_{i \geq 1} \rho^{i}(n)
$$

The proof will be by induction on $l(n)$. Suppose first that $l(n)=s+1$. If j is any positive integer with $j s<n$ and $\binom{n}{j s} \neq 0 \bmod p$, then by (5) and (6), $l(n-j s)=1$, and so by Theorem $1, \beta(n-j s)=1$. Therefore, by (2), $D(n)=n-j s$, where j is the least positive integer such that $\binom{n}{j s} \neq 0(p)$; i.e., $D(n)=\rho(n)$, as stated in Theorem 2 .

We now make the following pair of inductive hypotheses: let k be an integer $\geq s+1$, and suppose that n is any integer such that

$$
s+1 \leq l(n) \leq k
$$

$\left(\mathrm{A}_{k}\right) \quad$ For any such integer $n, D(n)$ is given by Theorem 2 .
$\left(\mathrm{B}_{k}\right) \quad$ Let n be any integer as above. If c is the least positive integer such that $\binom{n}{c s} \neq 0(p)$ and d is any integer with $c s \leq d s \leq n$ and $\binom{n}{d s} \neq 0(p)$; then $D(n-c s) \geq D(n-d s)$.

Claim 1. \mathbf{A}_{k} implies \mathbf{B}_{k+1}.
Proof. Write n as in (8) so that $c s=\sum_{i=0}^{s-1} p^{e_{i}}$. Thus, $n-c s=\sum_{i=0}^{N-s} p^{f_{1}}$, where $f_{i}=e_{i+s}$. Similarly, write $n-d s=\sum_{i=0}^{M} p^{g_{i}}$, where $M \leq N-s$. Then, for $i \leq M, p^{f_{i}} \geq p^{g_{i}}$, and so $D(n-c s) \geq D(n-d s)$, either by Theorem 1 or by A_{k} and Theorem 2, since $l(n-c s)$ and $l(n-d s)$ are less than $l(n)$.

Claim 2. A_{k} and B_{k+1} imply A_{k+1}.
Proof. Let n be an integer with $l(n)=k+1$. Write n as in (8) and define $c s$ as above, so that $\rho(n)=n-c s$. By (3) and B_{k+1},

$$
D(n)=n-c s+D(n-c s)=\rho(n)+D(\rho(n))
$$

Since $l(\rho(n))<l(n)=k+1$, by A_{k}

$$
D(\rho(n))=\sum_{i \geq 1} \rho^{i}(\rho(n))=\sum_{i \geq 1} \rho^{i+1}(n)
$$

Therefore, $D(n)=\Sigma_{i \geq 1} \rho^{i}(n)$, which proves A_{k+1}.
Proof of Theorem 2. We showed above that A_{s+1} holds, and so by Claims 1 and $2, \mathrm{~A}_{k}$ holds for all $k>s$. This proves the theorem.

Note that (trivially) if n is positive, then $\beta(n) \neq 0$. Combining Theorems 1 and 2 we have:

Corollary 1. If n is a positive integer, then $\beta(n)=1$ if, and only if, $l(n) \leq s$.

For certain values of $n, D(n)$ can be written out explicitly.
Corollary 2. Let k and m be positive integers, with $m \leq s$. Then

$$
D\left((m+1) p^{k}-1\right)=s \cdot \sum_{i=1}^{k-1} i p^{i}+k m p^{k}
$$

Relation to the gamma function. We are interested in comparing the function $\beta(n)$ with the Gamma function Γ_{n} (see [1]). Combining Corollary 2 with (3.1.1) of [1], we find:

Corollary 3. Let $n=(m+1) p^{k}-1$, where k and m are positive integers with $m \leq s$. Then,

$$
\operatorname{deg} \beta(n)=\operatorname{deg} \Gamma_{n}
$$

For certain values of n we have a stronger result.
Theorem 3. Suppose that $n=(m+1) p-1$, with $1 \leq m \leq s$. Then,

$$
\beta(n)=1-\Gamma_{n} .
$$

We are especially interested in divisibility properties of $\beta(n)$. Thus, we have:

Corollary 4. For $1 \leq k \leq s / 2$ and p an odd prime,

$$
\beta((2 k+1) p-1)=\left(1-\Gamma_{k p}\right)\left(1+\Gamma_{k p}\right)
$$

In particular,

$$
\beta\left(p^{2}-1\right)=\left(1-\Gamma_{s p / 2}\right)\left(1+\Gamma_{s p / 2}\right)
$$

Proof of Theorem 3. We will need the following (easily proved) fact:

$$
\text { If } 0 \leq i \leq s, \text { then }\binom{s}{i} \equiv(-1)^{i} \bmod p
$$

Suppose that $n=(m+1) p-1$, as above. Thus, $n=s \cdot 1+m p$, and so by (3) and Theorem 1,

$$
\begin{aligned}
\beta(n) & =1-\sum_{i=0}^{m}\binom{n}{s-i+i p} t^{t+(m-i) p} \\
& =1-\sum_{i=0}^{m}\binom{s}{i}\binom{m}{i} t^{l} \cdot t^{(m-i) p} \quad \text { by (4) } \\
& =1-\sum_{i=0}^{m}(-1)^{t}\binom{m}{i} t^{l} \cdot t^{(m-i) p} \\
& =1-\left(t^{p}-t\right)^{m}=1-\Gamma_{n}
\end{aligned}
$$

by (3.1.1) of [1].

References

[1] D. Goss, Von staudt for $F_{q}[T]$, Duke Math. J., 45 (1978), 885-910.
[2] \qquad , Kummer and Herbrand criteria in the theory of function fields, to appear.

Received May 22, 1981. Research supported by a grant from the National Science Foundation.

University of California
Berkeley, CA 94720

