
PACIFIC JOURNAL OF MATHEMATICS
Vol. 107, No. 1, 1983

ANNIHILATOR ALTERNATIVE ALGEBRAS

I. P. DE GUZMAN

The aim of this paper is to use in the alternative case the axioms of
the annihilator Banach algebras, and obtain some structure theorems
similar to the known ones in the associative case.

1. Introduction. As corollary of the main theorem of this paper:

Theorem 3.11, we prove (see Corollary 3.12) that if A is a Kleinfeld

semisimple annihilator complex purely-alternative algebra, then A is the

closure of the direct sum of all its ideals which are isomorphic to the

algebra of complex octonions θ c .

2. Prerequisites and notation. In this paper, A is always understood

to be an alternative algebra. "Ideal" without further qualification will

mean "ideal of A".

(2.1) N(A) denote the nucleus of A (for the definition of N(A)9 see for

example [3]).

We say an ideal (or right ideal or left ideal) / is nuclear provided

{0} ΦI<ZN{A).

(2.2) In what follows we write Do for the associator ideal of A, and Uo

its maximun nuclear ideal. It is known that U0D0 — D0U0 — {0} (see [6]).

(2.3) If / is an ideal, and / n ] ) 0 = {0}, then / C Uo. A proof is easy.

(2.4) We say an alternative algebra is purely-alternative provided

t/ 0={0}(See[6]).

(2.5) Say a right ideal / of A is trivial provided / ¥= {0} = / 2 , and say

that A is semiprime provided A has no trivial right ideal.

A is semiprime if and only if A contains no trivial ideal. (For a proof

see [7]).

(2.6) For each right ideal i?, Lan(i?) denotes the left annihilator of R:

Lan(i?) = [a <Ξ A: aR = {0}}. If L is a left ideal, Ran(L) = {a G A:

La — {0}} is the right annihilator of L. If / is a right ideal of an ideal B of

A, we note by Lan 5 (/) the left annihilator of / in the algebra B.

(2.7) An element u of an algebra A is a right modular unit for a vector

subspace E of A if [a — au: a G A} C E.

A modular left ideal is a left ideal for which there exist a right modular

unit.
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(2.8) An alternative algebra A is said primitive in case it contains a

maximal modular left ideal which contains no ideal of the algebra other

that the zero ideal.

(2.9) An ideal P of A is said primitive iϊA/P is a primitive algebra.

(2.10) We define the Kleinfeld Radical of an alternative algebra A as

the algebra, if there are no primitive ideals, and the intersection of all

primitive ideals in the algebra if there are such ideals.

The algebra is said to be Kleinfeld semisimple if the Kleinfeld Radical

is{0}.

We shall denote the Kleinfeld Radical of A by Rad^(Λ). The Klein-

feld Radical is actually a ideal of A.

(2.11) HA is a Kleinfeld semisimple alternative algebra, A is semi-

prime. A proof is easy.

(2.12) An alternative algebra A is called simple in case {0} and A itself

are the only ideals of A and A2 Φ {0}.

(2.13) The notions of simple algebra and simple ring coincide. (For a

proof see [5]).

(2.14) Let A be an alternative algebra which is not associative. Then the

following are equal:

(i) A is a simple algebra

(ii) A is a primitive algebra

(iii) A is a Cayley-Dickson algebra over its centre.

Proof. If A is simple algebra, then A is a simple ring (2.13), it follows

by [8], Theorem C, that A is a Cayley-Dickson algebra over its centre.

Now let A be a primitive algebra, we can apply the arguments of [4]

Theorem 2 to prove that A is a simple algebra. Finally any Cayley-Dick-

son algebra is simple, [5] p. 48.

(2.15) Since C is algebraically closed, there is one and (up to isomor-

phism) only one Cayley-Dickson algebra over C ([5], p.53). This algebra is

called the algebra of complex octonions and denoted θ c .

3. Annihilator alternative algebras. We shall use concepts and

nomenclature of the classic theory of normed associative algebras taking

as standard reference [1].

DEFINITION 3.1. A complete normed alternative algebra A is said to

be an annihilator alternative algebra if it satisfies the following axioms:

for all closed left ideals L and all closed right ideals i?,

(i) Ran(L) = {0} if and only if L = A.

(ii) Lan(i?) = {0} if and only if R = A.
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PROPOSITION 3.2. Every not associative, alternative normed primitive

complex algebra A is algebraically isomorphic to the algebra Θc.

Proof. By (2.14) A is an algebra of octonions over its center. But this

center is a complex associative commutative normed division algebra.

LEMMA 3.3. Let A be a semiprime annihilator alternative algebra, let B

be an ideal of A. Then,

(i) Lan(£) = Ran(5) is an ideal of A.

(ii)ff O Lan(£) = {0}.

(iii) B θ Lan(£) = A.

Proof. A proof of (i) is easy. Now we can apply the proof of the

associative case ([1], §32, Lemma 4).

LEMMA 3.4. Let A be a semiprime annihilator alternative algebra, let B

be a closed ideal of A, and let Lbe a closed left ideal of B. Then,

(i) L is a closed left ideal of A.

(ii) B is a semiprime complete normed alternative algebra.

(iii) // Ran(L) ΠB = {0}, then BA C L and Ran(L) = Lan(L) =

Proof. BonsalΓs proof [1], §32, Lemma 8 applies word for word taking

into account Lemma 3.3.

PROPOSITION 3.5. Let A be a semiprime annihilator alternative algebra

and let B be a closed ideal with AB = BA — B. Then B is a semiprime

annihilator alternative algebra.

Proof. By 3.4 (ii), B is a semiprime. Now we can apply the proof of

the associative case ([1], §32, Theorem 9) taking account Lemma 3.3.

PROPOSITION 3.6. Let A be a semiprime alternative algebra. Then,

(i) ///, / are ideals of A such that A — I ® J, then I = Lan(/)

(ii) //, in addition, A is normed. Then, I, J are closed ideals and if A is

complete normed, the sum in (i) is direct

(iii) //, in addition, A is annihilator. Then, I, J are semiprime annihila-

tor alternative algebras.

Proof, (i) IJ C I Π J = {0} implies that / C Lan(/). On the other

hand, let a be, a E Lan(/), a = x + y with x G / and y G /. Then,
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(0} = aJ = xJ + yJ = yJ. Therefore y G / Π Lan(/) = {0} (3.3(ii)).

Thus Lan(/) C /. This completes the proof of (i).

(ii) Clearly.

(iii) By (ii) and 3.4(ii) /, / are semiprime complete normed alternative

algebras.

We prove next that /, J are annihilator. Let L be a closed left ideal of

/, by Lemma 3.4(i) L is a closed left ideal of A.

Ran7(L) = Ran(L) Π / = {0} implies by 3.4(iii) that Ran(L) =

Ran(/). Suppose that L φ I. Then L θ Ran(L) = L θ Ran(/) φ A,

therefore {0} φ Ran(L θ Lan(L)) = Ran(L) Π Ran(Lan(L)), which is

impossible by Lemma 3.3(ii). Therefore L — I. Analogically if R is a

closed right ideal of /.

PROPOSITION 3.7. Let A be a semiprime annihilator alternative algebra,

let B be a closed ideal of A, and suppose that the left regular representation of

B on B is a homeomorphism. Then A = B θ Lan(5) = B ® Ran(£).

Moreover B and Lan(jB) are semiprime annihilator alternative algebras.

Proof. BonsalΓs proof [1], §32, Proposition 14, applies word for word

taking into account Lemma 3.3 and above proposition.

Note. The Proposition 3.7 provides a first structure theorem for

semiprime annihilator alternative algebras.

PROPOSITION 3.8. Let A be a semiprime annihilator alternative algebra.

Then,

(i) Uo = Lan(Z)0).

(ii) A is purely-alternative if and only if A = Do.

Proof, (i) By (2.2), Uo C Lan(D0). On the other hand, DQ Π Lan(D0)

= {0}, therefore by (2.3), Lan(,D0) CU0= U09 and so, Uo = Lan(Z)0) =

Lan(A)).

(ii) {0} = Lan(Z)0) = UQ if and only if A = DQ.

COROLLARY 3.9. Let A be a semiprime annihilator alternative algebra.

Then, A = Uo® Do.

Proof. Proposition 3.8(i) and Lemma 3.3(iii), taking account that Uo is

closed.
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THEOREM 3.10. Let A be a semiprime annihilator complex alternative

algebra. Then,

(i) If P is a primitive ideal of A such that DQ ft P, there exists exactly

an ideal N of A which is isomorphic to the algebra 0C and A — P θ N.

(ii) If N is an ideal of A which is isomorphic to the algebra 0C, there

exists exactly one primitive ideal P of A such that Do ft P, and A = P θ N.

Proof, (i) If P is a primitive ideal such that Do ft P, then A/P is a

primitive normed alternative complex algebra which is not associative. It

follows by proposition 3.2, that it is isomorphic to 0C and P is of

codimension 8. If we note N — Lan(P), by Lemma 3.3 A — P θ N. Since

P Π N = {0}, we have that N has finite dimension and so P + N is a

closed ideal, therefore A = P θ N and N is isomorphic to 0C.

(ii) If N is an ideal of A isomorphic to Θc, N has finite dimension.

Now we can apply Proposition 3.7, if we note P = Lan(TV) we have

A = N θ P9 since A/P is isomorphic to Θc. It follows by (2.9) that P is a

primitive ideal.

THEOREM 3.11. Let A be a semiprime annihilator complex alternative

algebra and let {I: a E Λ} the collection of all its ideals which are

isomorphic to the algebra 0C. Then,

(i) // B is the closure of the direct sum of the ideals of this collection, B

is a semiprime annihilator purely-alternative algebra

(ii) //, in addition, A is Kleinfeld semisimple, then Lan(J?) = Uo and

A = B θ Lan(5).

Proof, (i) Let R = Σ α € Ξ Λ Ia. If a¥= β, IJβ is an ideal of A and

therefore, an ideal of /α and of Iβ. Since Ia, Iβ are simple algebras, we have

that IaIβ = {0} and the sum is direct.

Now let ea be the unit of Ia. Since

, A = {eaχ + , . . . , + e a k ) ( a a [ + , . . . k

we have R C R2 and therefore R = R2, thus R2 = R = B and B2 = B.

_Finally, B = B2 C AB and AB C B, thus B = AB. Analogically 5

= BA By Proposition 3.5, B is a semiprime annihilator algebra.

Now, in view of that each ideal Ia is a simple algebra, its associator

ideal coincides with Ia, therefore, if DB denote the associator ideal of the

algebra B, we have, R C DB C Do and B = R C WB C B, thus B = WB

and Corollary 3.9 show that B is purely-alternative.

(ii) Suppose additionally that A is Kleinfeld semisimple. Let H be the

set of all those ideals P of A such that P is a primitive ideal, if we write
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H = Hx U H2 where Hλ is the set of all those ideals P of H such that

Do ft P and H2 is the set of all those ideals P of H such that Do C P, then

Lan(J3) = Lan(A) = Π α G Λ L a n ( / α ) and by Theorem 3.10, Lan(5) =

p .

On the other hand, given m G Lan(ΰ) and a, b £ A we have

0 . a, fe) E Lan(5) = DPξΞHι P and, clearly, (m, α, 6) G CλP^Hi P.

Whence (m, α, b) G Π P E / / P = Rad^(v4) = {0}. So Lan(5) C_C^, and

by Proposition 3.8, Lan(β) C ί/0 C Lan(D0) C Lan(D g) = Lan(Z^). But

~D~B C 5, and so Lan(5) = t/0 and A = B θ Lan(B).

COROLLARY 3.12. If A is a Kleinfeld semisimple annihilator complex

purely-alternative algebra, then A is the closure of the direct sum of all its

ideals which are isomorphic to the algebra Θc.

Proof. Theorem 3.11 and Proposition 3.8
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