# REGULAR EMBEDDINGS OF A GRAPH 

Hiroshi Maehara


#### Abstract

In this paper we study embeddings of a graph $G$ in Euclidean space $R^{n}$ that are 'regular' in the following sense: given any two distinct vertices $u$ and $v$ of $G$, the distance between the corresponding points in $R^{n}$ equals $\alpha$ if $u$ and $v$ are adjacent, and equals $\beta$ otherwise. It is shown that for any given value of $s=\left(\beta^{2}-\alpha^{2}\right) / \beta^{2}$, the minimum dimension of a Euclidean space in which $G$ is regularly embeddable is determined by the characteristic polynomials of $G$ and $\vec{G}$.


1. Introduction. To embed a graph in Euclidean spaces with various restrictions, and to find the minimum dimension of the space for these embeddings, are interesting problems [1], [4], [5]. In this paper we consider a regular embedding of a graph.

An embedding of a graph $G$ in a Euclidean space $R^{n}$ is called a regular embedding of $G$ provided that, for any two distinct vertices $u$ and $v$ of $G$, the distance between the corresponding points in $R^{n}$ equals $\alpha$ if $u$ and $v$ are adjacent, and equals $\beta$ otherwise. The vertices of $G$ are mapped onto distinct points of $R^{n}$, but there is no restriction on the crossing of edges. The value $s=\left(\beta^{2}-\alpha^{2}\right) / \beta^{2}$ is called the parameter of the regular embedding. Let $\operatorname{dim}(G, s)$ denote the minimum number $n$ such that $G$ can be regularly embedded in $R^{n}$ with parameter $s$.

Consider, for example, the circuit graph $C_{5}$. For every regular embedding of $C_{5}$, it is seen that

$$
\frac{1}{2}(-\sqrt{5}-1) \leq s \leq \frac{1}{2}(\sqrt{5}-1)
$$

and

$$
\operatorname{dim}\left(C_{5}, s\right)= \begin{cases}2 & \text { if } s=\frac{1}{2}( \pm \sqrt{5}-1) \\ 4 & \text { otherwise }\end{cases}
$$

The 'critical' embeddings of $C_{5}$ in $R^{2}$ with $s=\frac{1}{2}( \pm \sqrt{5}-1)$ are illustrated in Fig. 1.

Let $\phi(G ; x)$ denote the characteristic polynomial of a graph $G$ (that is, $\phi(G ; x)=|x \mathbf{I}-\mathbf{A}(G)|)$, and put

$$
\Phi(G ; x)=\phi(G ;-x)-(-1)^{g} \phi(\bar{G} ; x-1)
$$

where $g$ is the number of vertices of $G$, and $\bar{G}$ is the complement of $G$. Let $x^{-}$and $x^{+}$be, respectively, the minimum root and the maximum root of the polynomial $\Phi(G ; x)$. Suppose that $x^{-}<0$, and $1<x^{+}$. Then our results are stated as follows.

For every regular embedding of $G, 1 / x^{-} \leq s \leq 1 / x^{+}$and

$$
\operatorname{dim}\left(G, 1 / x^{*}\right)=g-1-\left(\text { the multiplicity of the root } x^{*}\right)
$$

where $x^{*}=x^{-}$or $x^{+}$. For other values of $s, \operatorname{dim}(G, s)=g-1$.

$s=\frac{1}{2}(+\sqrt{5}-1)$

$s=\frac{1}{2}(-\sqrt{5}-1)$

Figure 1
2. A theorem for isometric embeddings. We shall recall a theorem in distance geometry ([2], Ch. IV). Let $S=\left\{p_{0}, \ldots, p_{k}\right\}$ be a finite semimetric space with distance function $d$. The determinant

$$
\left|\begin{array}{ccccc}
0 & 1 & \cdot & \cdots & 1 \\
1 & 0 & d_{01} & \cdots & d_{0 k} \\
\cdot & d_{10} & 0 & & \cdot \\
\vdots & \vdots & & \ddots & \vdots \\
1 & d_{k 0} & \cdot & \cdots & 0
\end{array}\right| \quad d_{i j}:=d\left(p_{i}, p_{j}\right)^{2}
$$

is called the Cayley-Menger determinant of the semimetric space $(S, d)$, and is denoted by $D(S)$ or by $D\left(p_{0} \cdots p_{k}\right)$. Note that the value of the determinant does not depend on a labeling (ordering) $p_{0}, \ldots, p_{k}$ of the points of $S$.

If $S=\left\{p_{0}, \ldots, p_{k}\right\} \subset R^{n}, n \geq k$, then we denote by $\operatorname{Vol}(S)$ the $k$-dimensional volume of the simplex (perhaps degenerate) spanned by $S$. In this case, $\operatorname{Vol}(S)$ and the Cayley-Menger determinant of $S$ are related as follows:

$$
\operatorname{Vol}(S)^{2}=\frac{(-1)^{k+1}}{2^{k}(k!)^{2}} D(S)
$$

For details, see Blumenthal [2], p. 98.

A semimetric space $S$ is said to be irreducibly embeddable in $R^{n}$ provided that it is isometric to a subset of $R^{n}$ but not isometric to any subset of $R^{n-1}$.

Theorem (Blumenthal [2]). A semimetric space $S$ is irreducibly embeddable in $R^{n}$ if and only if
(i) $S$ contains an $(n+1)$-tuple $p_{0}, \ldots, p_{n}$ such that

$$
\operatorname{sign} D\left(p_{0} \cdots p_{j}\right)=(-1)^{j+1} \quad(j=1, \ldots, n)
$$

(ii) for every pair $x, y$ of points of $S$,

$$
D\left(p_{0} \cdots p_{n}, x\right)=D\left(p_{0} \cdots p_{n}, y\right)=D\left(p_{0} \cdots p_{n}, x, y\right)=0
$$

3. The Cayley-Menger polynomial of a graph. A regular embedding of a graph $G$ with parameter $s$ is called, briefly, an s-embedding of $G$. To apply Blumenthal's theorem let us define a distance function $d_{s}$ on the vertex set $V(G)$ of $G$ by

$$
d_{s}(u, v)= \begin{cases}0 & \text { if } u=v \\ (1-s)^{1 / 2} & \text { if } u \text { and } v \text { are adjacent } \\ 1 & \text { otherwise }\end{cases}
$$

Then the Cayley-Menger determinant of the semimetric space $\left(V(G), d_{s}\right)$ is a polynomial in $s$, which we shall call the Cayley-Menger polynomial of $G$ and denote by $\mathrm{CM}(G ; s)$. For example, $\mathrm{CM}\left(K_{n} ; s\right)=(-1)^{n} n(1-s)^{n-1}$, and $\operatorname{CM}\left(\bar{K}_{n} ; s\right)=(-1)^{n} n$, where $K_{n}$ denotes the complete graph of order $n$.

Since there is a 0 -embedding of $G$ in a Euclidean space as a regular simplex of side-length 1 , we can restate Blumenthal's theorem in the following way. For any two graphs $G$ and $H$, let $H \subset G$ mean that $H$ is an induced subgraph of $G$.

Theorem 1. There exists a t-embedding $(t<1)$ of a graph $G$ in $R^{n}$ if and only if there is $a G_{0} \subset G$ with $g_{0}(\leq n+1)$ vertices such that
(i) for any $F \subset G_{0}$, $\operatorname{sign} \mathrm{CM}(F ; t)=\operatorname{sign} \mathrm{CM}(F ; 0)$;
(ii) for any $G_{0} \subsetneq H \subset G, \mathrm{CM}(H ; t)=0$.

In this case, $\operatorname{dim}(G, t)=g_{0}-1$.
Let $s^{+}(G)$ be the minimum positive root of the polynomial $\mathrm{CM}(G ; s)$, if it exists, and $\infty$ otherwise. For example, $s^{+}\left(K_{2}\right)=1$, and $s^{+}\left(\bar{K}_{n}\right)=\infty$. Let $s^{-}(G)$ be the maximum negative root of $\mathrm{CM}(G ; s)$, if it exists, and $-\infty$ otherwise.

Lemma 1. For $H \subset G, s^{-}(H) \leq s^{-}(G)<s^{+}(G) \leq s^{+}(H)$.
Proof. We shall only show that $s^{+}(G) \leq s^{+}(H)$. Let $s_{0}$ be the minimum value of $s^{+}(F)$ for $F \subset G$. It is sufficient to show that $s_{0} \geq$ $s^{+}(G)$. If $s_{0}=\infty$ then clearly $s_{0}=s^{+}(G)=\infty$. Suppose $s_{0}<\infty$ and $\operatorname{CM}\left(F_{0} ; s_{0}\right)=0$ for some $F_{0} \subset G$. In this case, $s_{0} \leq 1$, because $s^{+}\left(K_{2}\right)=1$. Since $\operatorname{sign} \operatorname{CM}(F ; s)=\operatorname{sign} \operatorname{CM}(F ; 0)$ for $F \subset G$ and for $0 \leq s<s_{0}$, it follows from Theorem 1 that for every $0 \leq s<s_{0}$, there is an $s$-embedding $f_{s}: G \rightarrow R^{n}$ of $G$ where $n+1 \geq g:=|V(G)|$, the cardinality of the vertex set $V(G)$ of $G$. Since $\operatorname{Vol}\left(f_{s}\left(V\left(F_{0}\right)\right)\right)^{2}$ is the product of $\operatorname{CM}\left(F_{0} ; s\right)$ by a constant, and $\operatorname{CM}\left(F_{0} ; s_{0}\right)=0$, we have

$$
\operatorname{Vol}\left(f_{s}\left(V\left(F_{0}\right)\right)\right) \rightarrow 0 \quad \text { as } s \rightarrow s_{0} .
$$

Hence we have

$$
\operatorname{Vol}\left(f_{s}(V(G))\right) \rightarrow 0 \quad \text { as } s \rightarrow s_{0} .
$$

Then by the continuity, $\operatorname{CM}\left(G ; s_{0}\right)=0$, and hence $s_{0} \geq s^{+}(G)$.
Note that if $G$ contains at least one edge, then $s^{+}(G) \leq 1$.
Theorem 2. For every $s^{-}(G)<s<\min \left(s^{+}(G), 1\right)$, there is an $s$-embedding of $G$, and $\operatorname{dim}(G, s)=g-1$. If $-\infty<s^{*}(G)<1$ then there is an $s^{*}(G)$-embedding of $G$, where $s^{*}(G)=s^{-}(G)$ or $s^{+}(G)$.

Proof. We shall only prove the existence of an $s^{+}(G)$-embedding of $G$, provided that $s^{+}(G)<1$. Let $H$ be a maximal induced subgraph of $G$ such that $\operatorname{CM}\left(H ; s^{+}(G)\right) \neq 0$. Then
(i) if $F \subset H$ then $s^{+}(G)<s^{+}(H) \leq s^{+}(F)$, and hence

$$
\operatorname{sign} \mathrm{CM}\left(F ; s^{+}(G)\right)=\operatorname{sign} \mathrm{CM}(F ; 0) ;
$$

(ii) if $H \subsetneq F \subset G$, then $\mathrm{CM}\left(F ; s^{+}(G)\right)=0$ by the maximality of $H$. Hence there is an $s^{+}(G)$-embedding of $G$, by Theorem 1 .
4. Calculation of $\mathrm{CM}(G ; s)$. Let $\mathbf{I}_{r}$ and $\mathbf{J}_{r}$ denote, respectively, the identity $r \times r$ matrix and $r \times r$ matrix each entry of which is 1 . (In the following, the subscripts are often omitted.) Put $\mathbf{K}_{r}=\mathbf{J}_{r}-\mathbf{I}_{r}$ and

$$
\mathbf{B}(G)=\left[\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & \mathbf{A}(G) & \\
0 & &
\end{array}\right],
$$

where $\mathbf{A}(G)$ is the adjacency matrix of $G$, and put $g=|V(G)|$. Then, by
the definition of $\operatorname{CM}(G ; s)$,

$$
\mathrm{CM}(G ; s)=\left|\mathbf{K}_{g+1}-s \mathbf{B}(G)\right|=|s \mathbf{K}|\left|(1 / s) \mathbf{I}-\mathbf{K}^{-1} \mathbf{B}(G)\right|
$$

Since $\mathbf{K}^{-1}=(1 / \mathrm{g}) \mathbf{J}-\mathbf{I}$,

$$
\begin{aligned}
\mathbf{K}^{-1} \mathbf{B}(G) & =(1 / g) \mathbf{J B}(G)-\mathbf{B}(G) \\
& =\left[\begin{array}{cccc}
0 & d_{1} / g & \cdots & d_{g} / g \\
\vdots & & & \vdots \\
0 & d_{1} / g & \cdots & d_{g} / g
\end{array}\right]-\mathbf{B}(G),
\end{aligned}
$$

where $d_{i}$ is the sum of entries in the $i$ th column of $\mathbf{A}(G)$. In the matrix $x \mathbf{I}-\mathbf{K}^{-1} \mathbf{B}(G)$, by subtracting the top row from other rows, we have

$$
\left|x \mathbf{I}-\mathbf{K}^{-1} \mathbf{B}(G)\right|=\left\lvert\, \begin{array}{cccc}
x & -d_{1} / g & \cdots & -d_{g} / g \\
-x & & & \\
\vdots & & x \mathbf{I}+\mathbf{A}(G) & \\
-x & & &
\end{array}\right.
$$

On the right-hand side, adding to the top row the product of the $i$ th row by $1 / g, i=2, \ldots, g+1$, we have

$$
\begin{aligned}
& \left|x \mathbf{I}-\mathbf{K}^{-1} \mathbf{B}(G)\right|=\left|\begin{array}{cccc}
0 & x / g & \cdots & x / g \\
-x & & x \mathbf{I}+\mathbf{A}(G) & \\
\vdots & &
\end{array}\right| \\
& =-x^{2} / g\left|\begin{array}{ccc}
0 & 1 & \cdots
\end{array} \quad 1\right| \\
& =-x^{2} / g\left\{\begin{array}{cccc}
x & 1 & \cdots & 1 \\
1 & & & \\
\vdots & & x \mathbf{I}+\mathbf{A}(G) & -x|x \mathbf{I}+\mathbf{A}(G)|\} \\
1 & &
\end{array}\right\} \\
& =-x^{2} / g\left\{\left|x \mathbf{I}_{g+1}+\mathbf{A}\left(G+K_{1}\right)\right|-x|x \mathbf{I}+\mathbf{A}(G)|\right\}
\end{aligned}
$$

(where $G+K_{1}$ is the join of $G$ and $K_{1}$, defined by $\overline{G+K_{1}}=\bar{G} \cup \bar{K}_{1}$ )

$$
\begin{aligned}
&=-x^{2} / g\left\{(-1)^{g+1}\right.\left|(-x) \mathbf{I}-\mathbf{A}\left(G+K_{1}\right)\right| \\
&\left.\quad+(-1)^{g+1} x|(-x) \mathbf{I}-\mathbf{A}(G)|\right\} \\
&\left.=(-1)^{g} x^{2} / g\left\{\phi\left(G+K_{1}\right) ;-x\right)+x \phi(G ;-x)\right\}
\end{aligned}
$$

Using Cvetković's theorem ([3], p. 57):

$$
\begin{aligned}
\phi\left(G_{1}+\right. & \left.G_{2} ; x\right) \\
= & (-1)^{g_{2}} \phi\left(G_{1} ; x\right) \phi\left(\bar{G}_{2} ;-x-1\right) \\
& +(-1)^{g_{1}} \phi\left(G_{2} ; x\right) \phi\left(\bar{G}_{1} ;-x-1\right) \\
& -(-1)^{g_{1}+g_{2}} \phi\left(\bar{G}_{1} ;-x-1\right) \phi\left(\bar{G}_{2} ;-x-1\right), \quad g_{i}=\left|V\left(G_{i}\right)\right| .
\end{aligned}
$$

After a brief calculation, we have

$$
\left|x \mathbf{I}-\mathbf{K}^{-1} \mathbf{B}(G)\right|=(-1)^{g} x^{2} / g\left\{\phi(G ;-x)-(-1)^{g} \phi(\bar{G} ; x-1)\right\}
$$

Since $\left|(1 / x) \mathbf{K}_{g+1}\right|=(-1)^{g} g(1 / x)^{g+1}$, we have the following:

## Theorem 3.

$$
\mathrm{CM}(G ; 1 / x)=(1 / x)^{g-1}\left\{\phi(G ;-x)-(-1)^{g} \phi(\bar{G} ; x-1)\right\}
$$

5. Bounds on the parameter $s$. Put

$$
\Phi(G ; x)=\phi(G ;-x)-(-1)^{g} \phi(\bar{G} ; x-1)
$$

where $g$ is the number of vertices of $G$. Then Theorem 3 says

$$
\mathrm{CM}(G ; s)=s^{g-1} \Phi(G ; 1 / s)
$$

Note that $s_{0} \neq 0$ is a root of $\operatorname{CM}(G ; s)$ if and only if $1 / s_{0}$ is a root of $\Phi(G ; x)$. Thus we have the following theorem:

Theorem 4. The polynomial $\Phi(G ; x)$ has a positive root if and only if $s^{+}(G)<\infty$. In this case, $1 / s^{+}(G)$ is the maximum root of $\Phi(G ; x)$. The polynomial $\Phi(G ; x)$ has a negative root if and only if $s^{-}(G)>-\infty$. In this case, $1 / s^{-}(G)$ is the minimum root of $\Phi(G ; x)$.

Now let $V(G)=\left\{v_{1}, \ldots, v_{g}\right\}, g \geq 2$, and put

$$
G_{i_{1} \cdots i_{k}}=G-v_{i_{1}}-\cdots-v_{i_{k}}, \quad k \leq g-1
$$

## Lemma 2.

$$
\frac{d^{k}}{d x^{k}} \Phi(G ; x)=(-1)^{k} k!\sum_{\left\{i_{1} \cdots i_{k}\right\}} \Phi\left(G_{i_{1} \cdots i_{k}} ; x\right)
$$

where the summation extends over all $k$-subsets of $\{1, \ldots, g\}$.

Proof. Since

$$
\frac{d}{d x} \phi(G ; x)=\sum_{i=1}^{i=g} \phi\left(G_{i} ; x\right)
$$

(see [6], p. 331), we have

$$
\begin{aligned}
\frac{d}{d x} \Phi(G ; x) & =\frac{d}{d x}\left\{\phi(G ;-x)-(-1)^{g} \phi(\bar{G} ; x-1)\right\} \\
& =-\sum\left\{\phi\left(G_{i} ;-x\right)-(-1)^{g} \phi\left(\bar{G}_{i} ; x-1\right)\right\} \\
& =-\sum \Phi\left(G_{i} ; x\right)
\end{aligned}
$$

Differentiating repeatedly, we have the lemma.
Lemma 3. If $-\infty<s^{*}(G)<\infty$, and the multiplicity of the root $x^{*}=1 / s^{*}(G)$ of $\Phi(G ; x)$ equals $k+1$, then

$$
\Phi\left(G_{i_{1} \cdots i_{i}} ; x^{*}\right)=0 \quad \text { for } j \leq k,\left\{i_{1}, \ldots, i_{j}\right\} \subset\{1, \ldots, g\}
$$

where $s^{*}(G)=s^{-}(G)$ or $s^{+}(G)$.
Proof. Since $\Phi^{(j)}\left(G ; x^{*}\right)=0$ for $j \leq k$ it follows from the above lemma that

$$
(-1)^{j} j!\sum \Phi\left(G_{i_{1} \cdots i_{j}} ; x^{*}\right)=0
$$

Since there is an $s$-embedding of $G$ for every $s^{-}(G)<s<s^{+}(G)$, it follows by the continuity that

$$
\operatorname{sign} \mathrm{CM}\left(G_{i_{1} \cdots i_{j}} ; s^{*}(G)\right)=(-1)^{g-j} \text { or } 0
$$

Since $\operatorname{CM}\left(G_{i_{1} \cdots i_{i}} ; s^{*}(G)\right)=s^{*}(G)^{g-j-1} \Phi\left(G_{i_{1} \cdots i_{i}} ; x^{*}\right)$, it follows that the non-zero term of the left-hand side of (\#) must have the same sign, which is impossible. Hence $\Phi\left(G_{i_{1} \cdots i_{j}} ; x^{*}\right)=0$.

Theorem 5. If there is a $t$-embedding of $G$ then

$$
s^{-}(G) \leq t \leq s^{+}(G)
$$

Proof. It is clear that the theorem holds true for graphs with fewer vertices than three. Assume that there exists a graph for which the theorem does not hold, and let $H$ be one of such graphs which is minimal in the number of vertices. Then there is a $t$-embedding of $H$ such that
$t<s^{-}(H)$ or $s^{+}(H)<t$. Suppose that $s^{+}(H)<t$. (The case $t<s^{-}(H)$ is similar, and is omitted.) Let $V(H)=\left\{v_{1}, \ldots, v_{h}\right\}$, and put $H_{i}=H-v_{i}$, $i=1, \ldots, h ; x^{+}=1 / s^{+}(H)$. Then $x^{+}$is the maximum root of $\Phi(H ; x)$ and $1 / t<x^{+}$. By the minimality of $H, t \leq s^{+}\left(H_{i}\right), i=1, \ldots, h$.

Now we show that $x^{+}$is a simple root of $\Phi(H ; x)$. If $x^{+}$is a multiple root, then $\Phi\left(H_{i} ; x^{+}\right)=0$ by Lemma 3 , which implies that $s^{+}\left(H_{i}\right)=$ $s^{+}(H)<t$, a contradiction. Thus $x^{+}$must be a simple root of $\Phi(H ; x)$.

Since $\Phi(H ; x)$ changes sign when $x$ passes through $x^{+}$, a simple root, $\mathrm{CM}(H ; s)$ also changes sign when $s$ passes through $s^{+}(H)$. Since $\operatorname{sign} \mathrm{CM}(H ; t)=\operatorname{sign} \mathrm{CM}(H ; 0)$ or $\mathrm{CM}(H ; t)=0$ (because there is a $t$-embedding of $H$ ), and $s^{+}(H)<t$, there must be a root $s_{1}$ of $\mathrm{CM}(H ; s)$ such that $s^{+}(H)<s_{1} \leq t$. Thus $\Phi(H ; x)$ has a root $x_{1}=1 / s_{1}$ such that $1 / t \leq x_{1}<x^{+}$. Then, by Rolle's theorem, there is a $\xi, x_{1}<\xi<x^{+}$, such that $\Phi^{\prime}(H ; \xi)=0$. But since $1 / \xi<1 / x_{1} \leq t \leq s^{+}\left(H_{i}\right)$, there is a $(1 / \xi)$ embedding of $H_{i}$, and $\Phi\left(H_{i} ; \xi\right)$ is non-zero and has the same sign for every $i$. This contradicts the fact that $0=\Phi^{\prime}(H ; \xi)=-\Sigma \Phi\left(H_{i} ; \xi\right)$.
6. The dimension of a critical embedding. Let $G$ be a graph with vertex set $V(G)=\left\{v_{1}, \ldots, v_{g}\right\}$, and put

$$
G_{i_{1} \cdots i_{j}}=G-v_{i_{1}}-\cdots-v_{i_{j}}, \quad j<g
$$

Theorem 6. If $-\infty<s^{*}(G)<1$, and the multiplicity of the root $x^{*}=1 / s^{*}(G)$ of $\Phi(G ; x)$ equals $k$, then

$$
\operatorname{dim}\left(G, s^{*}(G)\right)=g-k-1
$$

where $s^{*}(G)=s^{-}(G)$ or $s^{+}(G)$.

Proof. Since

$$
0 \neq \Phi^{(k)}\left(G ; x^{*}\right)=(-1)^{k} k!\sum_{\left\{i_{1} \cdots i_{k}\right\}} \Phi\left(G_{i_{1} \cdots i_{k}} ; x^{*}\right)
$$

there is a $\left\{j_{1}, \ldots, j_{k}\right\}$ such that $\Phi\left(G_{j_{1} \cdots j_{k}} ; x^{*}\right) \neq 0$. By Lemma 1 , it follows easily that if $F \subset G_{j_{1} \cdots j_{k}}$ then

$$
\operatorname{sign} \operatorname{CM}\left(F ; s^{*}(G)\right)=\operatorname{sign} \operatorname{CM}(F ; 0)
$$

Using Lemma 3, it follows that if $G_{j_{1} \cdots j_{k}} \subsetneq H \subset G$ then $\mathrm{CM}\left(H ; s^{*}(G)\right)=$ 0 . Hence $\operatorname{dim}\left(G ; s^{*}(G)\right)=g-k-1$, by Theorem 1 .
7. On regular graphs. If $G$ is a regular $\rho$-valent graph with $g$ vertices, then by Sachs' theorem ([6], p. 56),

$$
\phi(\bar{G} ; x)=(-1)^{g} \frac{x+\rho+1-g}{x+\rho+1} \phi(G ;-x-1) .
$$

Hence we have

$$
\Phi(G ; x)=\frac{g}{x+\rho} \phi(G ;-x) .
$$

Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{g}$ be the eigenvalues of $\mathbf{A}(G)$. Then $\lambda_{1}=\rho$ is a simple root of $\phi(G ; x)$, and $\lambda_{g}<0$. Therefore

$$
s^{+}(G)=-1 / \lambda_{g}
$$

and

$$
s^{-}(G)= \begin{cases}-1 / \lambda_{2} & \text { if } \lambda_{2}>0 \\ -\infty & \text { otherwise }\end{cases}
$$

Example. Let $G$ be the Petersen graph. The characteristic polynomial of $G$ is $(x-3)(x-1)^{5}(x+2)^{4}$. Hence $s^{+}(G)=1 / 2, s^{-}(G)=-1$, and

$$
\operatorname{dim}(G, s)= \begin{cases}4, & s=-1, \\ 5, & s=1 / 2, \\ 9, & -1<s<1 / 2\end{cases}
$$

Acknowledgement. I thank Timothy F. Havel of the University of California for informing me of several literature references and for interesting me in the study of distance geometry.

## References

[1] B. Alspach and M. Rosenfeld, On embedding triangle-free graphs in unit spheres, Discrete Math., 19 (1977), 103-111.
[2] L. M. Blumenthal, Theory and Applications of Distance Geometry, Chelsea, New York (1970).
[3] D. Cvetkovic̀, M. Doob and H. Sachs, Spectra of Graphs, Academic Press, New York (1980).
[4] P. Erdős, F. Harary and W. T. Tutte, On the dimension of a graph, Mathematika, 12 (1965), 118-122.
[5] F. S. Roberts, On the boxicity and cubicity of a graph, in Recent Progress in Combinatorics (ed. by W. T. Tutte) Academic Press, New York (1969), pp. 301-310.
[6] A. J. Schwenk and R. J. Wilson, On the Eigenvalue of a Graph, in Selected Topics in Graph Theory (ed. by L. W. Beineke and R. J. Wilson), Academic Press, New York (1978).

Received September 10, 1981.

Ryukyu University
Naha, Okinawa, Japan

