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WHEN Tor(Λ, B) IS A DIRECT SUM
OF CYCLIC GROUPS

PAUL HILL

Necessary conditions are given in order that Tor(Λ, B) be a direct
sum of cyclic groups for abelian groups A and B. Sufficient conditions
are also given that compare with the necessary conditions. They are only
slightly stronger if at all, and the two are equivalent for groups of
cardinality not exceeding K2*

Due to the complexity of the problem, these conditions are not
absolute, but constitute a reduction to smaller cardinality. The results
generalize earlier results of R. Nunke.

What is known of the structure and properties of Tor(^4, B) for
abelian groups A and B is primarily due to R. Nunke. The main results
appear in [4], [5], and [6]. Contributions of other authors, however, were
manifested in [2] and [3]. This note generalizes the results of Nunke
published in [4] and [6] concerning a basic question: When is Tor(^4, B) a
direct sum of cyclic groups? Nunke has provided a completely satisfactory
answer when neither the cardinality of A nor B exceeds 8j and in certain
other cases, as well, allowing A and B to be arbitrarily large. However, the
general case where A or B has cardinality greater than #λ was deferred. In
this paper, we settle the question for cardinality X2. For the general case,
we give necessary conditions in order that Ύoτ{A, B) be a direct sum of
cyclic groups, and \γe also give sufficient conditions that are very close to
the necessary ones, but the gap is not bridged completely.

Since Tor(^4, B) is not affected by the nontorsion portions of A and
5, we can assume without loss of generality that A and B are torsion.
Further, we can specialize, as usual, to the case that A and B are both
/7-primary. Therefore, all groups are assumed to be/^-primary. The follow-
ing three theorems summarize the major known results concerning the
question of when Tor(^4, B) is a direct sum of cyclic groups. Following
[6], we say that G is Σ-cyclic if G is a direct sum of cyclic groups.

THEOREM A {Nunke [4, Corollary 3.5]). If pωA φ 0, then Tor(^, B) is
Σ-cyclic only if B is Έ-cyclic.

The preceding result also appears in [6] as Theorem 12(i).
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THEOREM B (Nunke [6, Theorem 15]). // A and B have the same

uncountable cardinality m and each of A and B has the property that every

subgroup of cardinality less than m is Σ-cyclic, then Tor(A, B) is Σ-cyclic.

THEOREM C {Nunke [6, Corollary 16]). If pωA = 0 = pωB and the

cardinality of neither A nor B exceeds Άx, then Tor(^4, B) is Σ-cyclic.

In this paper we shall generalize the preceding results. It is perhaps of

some interest, too, that the proofs herein are not dependent upon the

above results. In particular, an alternate proof of Theorem A is estab-

lished that does not require, for example, the pω+ ^purity of a /?ω-high

subgroup nor anything similar.

Since purification can be accomplished without changing the cardinal-

ity of an infinite subgroup, we shall deal almost exclusively with pure

subgroups. Repeatedly used will be the result of L. Fuchs [1, Theorem

63.2] that if A >-> B -+* C is pure exact then so is

, X) -*» Tor(C, X).

This leads to the following theorem, which will be one of our main tools.

THEOREM 1. Let Ao and Bo be pure subgroups of A and B, respectively.

Then the following are true.

(i) Tor(v40, Bo) is a pure subgroup of Toτ( A, B).

(ii) Tor(yl0, Bo) is a direct summand of Toτ( A, B) if, in addition to the

purity ofA0 and Bo, both Tor(^4/yί0, Bo) andToτ(A, B/Bo) are Σ-cyclic.

(iii) //, in addition to the preceding hypotheses, Tor(^40, Bo) is Σ-cyclic,

then Ύoτ(A, B) is Σ-cyclic.

Proof, (i) The purity of Tor(A0, Bo) in Tor(^4, B) follows immediately

by transitivity of purity since Tor(^40, Bo) is pure in Tor(^4, Bo) and since

Tor(^, Bo) is pure in Tor(^, B). (ii) If we specify that Ύoτ(A, B/Bo) is

Σ-cyclic, the pure-exact sequence

Tor(Λ, £ 0 ) ^ T o r ( , 4 , B) -+> Ύoτ(A, B/Bo)

must split due to the pure projectivity of the Σ-cyclic group Tor(^4, B/Bo).

Therefore, Tor(^4, Bo) is a direct summand of Tor(A, B). Similarly, if

Toτ(A/A0, Bo) is Σ-cyclic, the pure-exact sequence

, Bo) -~ Tor(^/^ί 0 , Bo)
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must split. Thus Toτ(A0, BQ) is a direct summand of Tor(^4, Bo) and

therefore of Tov(A, B). (iii) The last assertion follows from the observa-

tion that, under the still more comprehensive hypothesis,

Tor(Λ, B) s Ύoτ(A/A0, BQ) θ Tor{A0, Bo) θ Ύoτ(A9 B/Bo),

and is Σ-cyclic.

For the purpose of this paper we employ the following technical

definition of a tower of a group G.

DEFINITION. By a tower of a group G we mean a chain of pure

subgroups {(/α}α<λ, indexed by some ordinal λ, satisfying the following

conditions whenever a and β are less than the index ordinal λ.

(l)GaQGβiίa<β.
(2)Gβ= Uα <^Gαifi8isalimit.
(3) G = U Λ < λ G β .
It is to be emphasized that herein a tower is always pure, that is, the

subgroups Ga must be pure. If Ga is either zero or G for each a < λ, the

tower {Ga}a<:λ of G is said to be trivial, whereas if

(4)\Ga\<\G\

is satisfied for all a < λ the tower is said to be proper. For example, a

countably infinite group without elements of infinite height has a proper

tower consisting of finite subgroups because such a group is Σ-cyclic. But

a finite group or a countable group having elements of infinite height can

have no proper tower. The next proposition shows that these are the only

exceptions; compare Lemma 14 in [6].

PROPOSITION 1. Every uncountable group has a proper tower.

Proof. Suppose that | G \ — m > N o and let λ denote the cofinality of

m, cof(m) = λ. By the choice of λ, there are subsets Ha of G having

cardinality less than m such that G = Ua<cλHa. Assume that γ < λ and

that pure subgroups Ga of G have already been chosen for a < γ so that

conditions (1), (2), and (4) are satisfied whenever a,β<y. Further,

assume that Ga+ιD Ha whenever a + 1 < γ. If γ is a limit, define

Gy — U Λ < γ G α . Since purity is an inductive property, Gy is pure in G.

Moreover, | Gy | < m, for otherwise m — suρ{mα}α < γ where ma = | Ga | <

m. But this contradicts cof(m) = λ since γ < λ. Now we turn to the case

that γ is not a limit. Since \Gy_λ\<m and since | H λ | < m, there is a

pure subgroup Gy of G containing both Gy_ι and Hy_λ and having
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cardinality less than m\ purification can be accomplished without chang-
ing the cardinality [1, Proposition 26.2]. Hence the induction survives, and
the pure subgroups Ga, a < λ, form a proper tower; condition (3) is
satisfied because Gα + 1 D Ha.

We shall now present necessary conditions for Tor(^4, B) to be a
direct sum of cyclic groups. The fact that cardinalities are reduced (in the
interesting cases) makes the following theorem a valid reduction formula.

THEOREM 2. Necessary conditions for Toτ(A, B) to be Σ-cyclic are that
A and B have towers {Aa}a<λ and {Ba}a<λ, respectively, such that, for all
a < λ, the following hold.

(a) Ύor(Aa+{/Aa, Ba) is Σ-cyclic.

(*) (b) Ύoτ(Aa,Ba) is Σ-cyclic.

(c) Ύoτ(Aa, Ba+X/Ba) is Σ-cyclic.

If A and B have the same uncountable cardinality, then both towers are to be
made proper. If not, but the larger group is uncountable then its tower is to
be made proper and the tower of the smaller group is to be made trivial.

Proof. Assume that Tor(^4, B) is Σ-cyclic; let

Ίor(A,B)= Σ (*,).
16/

Since Tor(^4, B) — Ίoτ{B, A) and since (*) is symmetrical, we may as-
sume without loss of generality that \A | < | B | . If | B | < S o , the state-
ment of the theorem is essentially vacuous because A and B both are
permitted trivial towers, which satisfy the conditions of (*) trivially.
Therefore, we shall assume that B is uncountable and that A ΦQ, for
A — 0 leads to a triviality, too. Thus we can assume that Ύoτ{A, B) is
uncountable. Consequently, the index set / is uncountable used in the
decomposition Tor(A, B) = Σi^I{xi).

We shall first consider the case | 4 | = | f i | = / n (where m > S o).
Temporarily, let C denote Tor(A, B). If / is any subset of /, let Cj be the
subgroup of C defined by

For the case being considered, each of A, B and C has cardinality m. Let
cof(m) = λ. According to the proof of Proposition 1, there exist proper
towers {Aa}a<:λ, {Ba}a<:λ and {Cα}α<λ of A, B and C, respectively.
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However, this is not enough. We need proper towers with the following

additional property

(5) Ίor(Aa9 Ba) = Ca9 where Ca = CJ{a)

for some subset /(a) of /. We shall presently argue the existence of proper

towers that satisfy the aforementioned condition (5). For convenience of

reference, let A — U α < λ F α and B = ]Ja<λWa where Va and Wa are subsets

of A and B, respectively, having cardinality less than m. Assume that

γ < λ and that pure subgroups Aa and Ba of A and B, respectively, have

already been chosen when a < γ so that condition (5) is satisfied and so

that each of the chains of subgroups {^4α}α<γ and {Ba}a<Ύ satisfies (upon

the appropriate notational change) conditions (1), (2), and (4). Also, as

part of the induction hypothesis, assume that Aa+X'D Va and that Ba+X D

Wa whenever a + 1 < γ. As usual, there are two cases to consider in the

effort to extend the chains {Aa}a<:y and {Ba}a<y.

Case 1. γ is a limit. Let Ay = Ua<yAa and By = Ua<yBa. With the

exception of condition (5), everything needed to be verified for the

extended chain has already been established in the proof of Proposition 1,

namely, the purity of Ay and By as well as condition (4) for each one.

Conditions (1) and (2) are obviously still valid for α, β < γ. Hence we

turn our attention to (5) and observe that if J(γ) — U α < γ / ( α ) then, in

fact, (5) holds for a — γ.

Case 2. γ is not a limit. Since Ay_x and By_ x have cardinality less than

ra, there exist pure subgroups AyX and Byl of A and B having infinite

cardinality k < m and satisfying Ayλ D (Ay_λ, Vy_λ) and Byλ D

(By_x, Wy_x). Since Ύoτ{Ay x, ByX) has cardinality k, there exists a subset

/(γ, 1) of / having cardinality k such that Tor(^lγ 1? ByX) C C J ( γ xy In

turn, there exist pure subgroups Ay2 D AyX and By2 D ByX having cardi-

nality k such that Tor(^4γ 2 , By2) D Q ( γ > 1 ); see, for example, Proposition 8

in [6]. Continuing in the familiar manner, we obtain ascending sequences

{Ay n) and [By n} of pure subgroups of A and B and an ascending

sequence {/(γ, n)} of subsets of /, all having cardinality k, such that

Tor{Ay^ Byn) c C/(γ>l l) C Ίor{Ayn^ By^x).

Upon setting Ay — UAy n, By — U5 γ > Λ , and/(γ) = U/(γ, «), we obtain

groups of cardinality k <m that satisfy condition (5).
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We have shown that if | 4 | = | 2? |=m where m > N 0 there exist
proper towers {Aa}a<:λ and {Ba}a<:λ of A and B, respectively, satisfying
condition (5). If | A \ <| B | = m (where m > Ko) then we can take Aa= A
for each a and focus our attention entirely on B. Everything goes exactly
as before as far as B and C = Tor(^4, B) are concerned. Thus, in this case,
a trivial tower {Aa}a<λ of A and a proper tower {Ba}a<:X of B are
constructed so that condition (5) is still satisfied. To finish the proof of
the theorem, we show that the conditions of (*) are satisfied whenever
Tor(^4, B) is Σ-cyclic and {Aa}a<cλ and {Ba}a<:λ are towers of A and B
satisfying condition (5). Condition (b) of (*) is immediate since
Toτ(Aa, Ba) is a subgroup of Ύor(A, B). From the inclusion

Tor(Λα + 1, Ba)/Ύor{Aa9 Ba) C T o r U β + I , Ba+x)/Ύσt(Aa9 Ba)

and the fact that

TorU β + 1, Ba+x)/Ίor(Aa, Ba) = Σ <*,),
i^J{a+\)-J{ά)

we conclude that Tor(^4α+1, Ba)/Ίoτ(Aa, Ba) is Σ-cyclic. Hence the ex-
actness of the sequence

Tor(Λβ, * β ) ~ T o r U β + 1 , Ba) * Ύor(Aa+ι/Aa, Ba)

implies that Tor(Aa+λ/Aa, Ba) is Σ-cyclic. Therefore, condition (a) is
satisfied. Likewise, by symmetry, condition (c) is satisfied, and Theorem 2
is proved.

COROLLARY l.If\A\tio<\B\ , then Tor(Λ, B) is Σ-cyclic if and only
ifB has a proper tower {Ba}a<x such that Toτ(A, Ba) and Ύoτ{A, Ba+λ/Ba)
are Σ-cyclic.

Proof. The necessity of the tower follows directly from Theorem 2
because the tower for A is trivial and that of B is proper. The sufficiency
follows from the fact that the pure-exact sequence

TorU, i?J ^ T o r U , Ba+X) -» Tor(A Ba+ι/Ba)

splits for each a since Tor(^4, Ba+X/Ba) is Σ-cyclic.
Due to the significance of Theorem A we outline here a new and

simple proof of it based on the preceding corollary. Suppose that Tor(^4, B)
is Σ-cyclic and that A has elements of infinite height. Our aim is to show
that B must be Σ-cyclic. We may assume that A is countable since A has a
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countable (pure) subgroup with elements of infinite height. Since

Ύoτ(pωA, pωB) = pωΊor{A, B) = 0

and pωA ¥= 0, it follows at once that pωB = 0. Thus if B is countable it is
Σ-cyclic. Assume that B is uncountable. Corollary 1 asserts that B has a
proper tower {Ba}a<λ such that Toτ(A, Ba) and Ίor(A, Ba+X/Ba) are
Σ-cyclic. Since the tower of B is proper, we conclude by induction on the
cardinality of B that both Ba and Ba+X/Ba are Σ-cyclic. This implies that
B, itself, is Σ-cyclic since Ba splits out of 2?α+1. The proof of the following
is similar and is therefore omitted.

COROLLARY 2. Suppose that A has a subgroup of cardinality K x that is
not Σ-cyclic. IfΎoτ(A, B) is Σ-cyclic, then B has a tower {Ba}a<λ such that
Bo — 0 and Ba+X/Ba is a group of cardinality < ttx without elements of
infinite height.

In connection with Corollary 2, we perhaps should remark that a
tower of Ba+X/Ba can be used to refine the original tower {Ba}, if
necessary, to obtain \Ba+x/Ba\< ttx. We now turn to sufficient condi-
tions for Toτ(A, B) to be Σ-cyclic.

THEOREM 3. Sufficient conditions for Tor(^4, B) to be Σ-cyclic are that
A and B have towers {Aa}a<λ and {Ba}a<λ, respectively, such that, for all
a < λ, the following hold.

(a) Ίoτ{Aa+x/Aa, Ba) is Σ-cyclic.

(**) (b) Ίoτ(Aa,Ba) is Σ-cyclic.

(d) Ύor(Aa+ x, Ba+ {/Bj is Σ-cyclic.

Proof. Letting Aa+X and 2?α+1 play the role of A and B in Theorem 1
and letting Aa and Ba play the role of Ao and Bo, we conclude that

Tαr(Λβ + 1, Ba+ι) = Ύoτ(Aa, Ba) θ Q,

where

Ca s Ύoτ(Aa+ι/Aa, Ba) θ Tor(Λα + 1, Ba+X/Ba)

is Σ-cyclic. In view of conditions (l)-(3) on a tower, it follows that

Tor(Λ, B) = τoτ(A0, Bo) θ 2 Q.

Therefore, Tor(^4, B) is Σ-cyclic, and Theorem 3 is proved.
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Observe that Theorem B (as well as its corollary Theorem C) can be

deduced quickly from Theorem 3 as follows. First, according to Proposi-

tion 1, both A and B have proper towers {Aα}α < λ and {Ba}a<λ (indexed

by the same ordinal λ since | A \ = \ B |). Under the hypothesis of Theorem

B, the subgroups Aa and Ba must be Σ-cyclic for each a. Hence the

sufficient conditions of (**) are satisfied, and Tor(^4, B) is Σ-cyclic.

Notice that there is apparently only a small gap between the necessary

conditions (*) and the sufficient conditions (**) under which Tor(^4, B) is

Σ-cyclic with the difference between the two being the difference between

condition (c) and the slightly stronger condition (d). Our next result

eliminates this distinction for groups of cardinality not exceeding S 2 .

THEOREM 4. If A and B have cardinality not exceeding K2, condition (*)

is necessary and sufficient in order that Tor(^4, B) be Σ-cyclic.

Proof. All that is needed is the verification that condition

(c) Tor(,4α, Ba+X/Ba) is Σ-cyclic,

for each α, implies the stronger condition

(d) Tor(Λ f t + 1, Ba+X/Ba) is Σ-cyclic.

Crucial to the argument is the simple fact that if {Aα}α < λ is a tower of A

then so is {Aa}β<a<λ for any β<λ. Technically speaking, the index

ordinal for the new tower is μ, where β + μ = λ. Now, choose β < λ so

that Aβ fails to be Σ-cyclic if any Aa is not Σ-cyclic. In fact, choose β so

that Aβ has elements of infinite height if A does. The idea is to let Aβ and

A be as close as possible in regard to certain standard features. Claim: if

condition (c) is satisfied, then so is condition (d) whenever a >: β. The

claim may be verified by examining the different cases. For example,

suppose that BaJrX/Ba has elements of infinite height. Then Aa must be

Σ-cyclic, which implies that Aa+X is Σ-cyclic according to the choice of β.

If, on the other hand, Ba+X/Ba is Σ-cyclic, then (d) is certainly valid no

matter what Aa+X is. Having disposed of the case where Ba+X/Ba has

elements of infinite height and the case where Ba+X/Ba is Σ-cyclic, we

turn to the interesting case where neither of these is true. We shall make

strong use of the fact that | Ba+X/Ba | < #λ\ either | B | < Kj or the tower

{Ba} of B used in (*) is proper because \A | < K2

 a^so- Likewise, \Aα | <

\Aα+λ | < Kj. Therefore, becausepω(BO ί + x/Bα) = 0 the only way that (d)

can fall while (c) stands is for Aα+X to have elements of infinite height

while Aα has none. This, however, is precluded by the choice of β. Thus

the claim is fully supported, and condition (d) holds for the new tower

{Aα}β<α<.λ- Therefore, (*) is sufficient.
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REMARK. Whether (*), in the context of Theorem 2, is always suffi-
cient or not we leave open. If it is, a more general approach than that used
in the proof of Theorem 4 apparently will be required for the proof.
Nevertheless, we venture the following.

Conjecture. If A and B are groups of cardinality not exceeding Sω,
then condition (*) of Theorem 2 is necessary and sufficient for Tor(^4, B)
to be Σ-cyclic.

We close with the following interesting observation.

PROPOSITION 2. In the following, the groups A, B and X are all without
elements of infinite height,

pωA = pωB=pωX=0.

If Ύor(A, X) is Σ-cyclic whenever | - Y | < K and if | 5 | < K , then
Tor(Tor(,4, B), X) is Σ-cyclic whenever \ X\< K.

Proof. If I B | < N, the conclusion follows trivially because Tor(^4, B)
is Σ-cyclic. Likewise, if | X \ < X, the conclusion follows immediately from
the commutativity and associativity of Tor, which yields

Tor(Tor(^, B)y X) = Tor(Tor(^, X), B).

Thus we may assume that both B and X have cardinality S. Obviously we
may assume that N > Ko. We shall prove that Tor(^,Tor(5, X)) is
Σ-cyclic. Let {Ba}a<λ and {Xa}a<\ be proper towers of B and X. Consider
the pure exact sequence

{Ba, Xa)

Since Ύor(Ba+λ/Ba, Xa) and Tor(£α + 1, Xa+λ/Xa) are without elements
of infinite height, Tor(2?α+1, Jfα+1)/Tor(2?α, Xa) can have no elements of
infinite height, and it has cardinality less than N. Consequently,

Tor(Λ,Tor(2?α+1, Xa+x))/Ίov{A,Ύor(Ba, Xa))

is Σ-cyclic, for each α, and so is Tor(^4,Tor(2?Λ, Xa)). Therefore, it follows
that Tor(Λ,Tor(£, X)) is Σ-cyclic.
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