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THE DUAL OF THE NILRADICAL
OF THE PARABOLIC SUBGROUPS

OF SYMPLECTIC GROUPS

THOMAS A. FARMER

For an arbitrary parabolic subgroup P of the real or complex
symplectic group, let N be the nilradical. Using Kirillov theory, a subset
of the dual of N is found, whose complement has Plancherel measure
zero. It is shown how these representations extend by combining with the
oscillator representation of a lower rank symplectic group. A result is
obtained concerning the commuting algebra of the restrictions to P of
the principal series representation of the symplectic group induced from
a unitary character of the opposite parabolic.

Introduction. In [6] and [2] there are irreducibility theorems for
principal series representations of symplectic groups induced from unitary
characters of certain maximal parabolic subgroups. Such a representation
can be realized to act in the ZΛspace of a nilpotent subgroup, the
nilradical of the opposite parabolic. The irreducibility results are obtained
in two stages. In the first stage the representation T is restricted to the
opposite parabolic and the commuting algebra of the restriction is com-
puted using nilpotent harmonic analysis. Since these parabolics are maxi-
mal subgroups, the full symplectic group is generated by the opposite
parabolic together with a single element, say p. The commuting algebra of
T is, therefore, the subalgebra of the commuting algebra of the restriction
consisting of operators that commute with T(p). The second stage is the
difficult determination of which operators these are. For arbitrary para-
bolic subgroups of the symplectic groups, even for arbitrary maximal
ones, it appears that the second stage of this program is not feasible and
the irreducibility theorems must come from more powerful methods in
semisimple representation theory. However, the first stage can be carried
out in full generality, and it is of interest for the way in which the
oscillator representation occurs and because of the computations involved
in the nilpotent harmonic analysis. This is the topic of this paper.

To be more specific, let P be a parabolic subgroup of the symplectic
group Sp(«, F), where F — R or C. It is known that the principal series
representation T of Sp(w, F) induced up from a unitary character of P
can be realized to act in L2(N), where TV is a nilpotent subgroup of
Sp(«, F) and N Π P is trivial. Let M be the normalizer of N in P, then
the semidirect product NM is a parabolic subgroup conjugate to P (NM is
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the opposite parabolic) and N is the nilradical of NM. These groups are
further described in §1. In §2, the theory of Kirillov is used to compute,
except for a set of measure zero, the dual object of the nilradical of an
arbitrary parabolic subgroup of Sp(w, F). Denote by 91 the Lie algebra of
the nilradical N and let 91* be the real vector space dual of 91. Suffi-
ciently many coadjoint orbits in 91* are found so that the complement of
their union has measure zero in 91*. The irreducible representations
corresponding to these orbits are computed and they form a subset of the
dual object of N whose complement must have Plancherel measure zero.

Let F = C, to simplify the remainder of this introduction, and let λ be
an element of the dual of N9 acting in a space L2(V). Define Mλ to be the
subgroup of M consisting of all m E M such that the representations
z -» λ(m~λzm) and λ are unitarily equivalent. Depending on the choice of
P, we will see that M is isomorphic to a direct product of the form

Sp(>20,C) X Gl(nl9C) X XGl(n r,C).

where n — n0 + nλ + +/ιr, n0 is nonnegative and nl9...,nr are posi-
tive. It turns out that Mλ is isomorphic to

Sp(/ιo,C) X O(nl9C) X XO(nr9C).

In §3, we extend λ to a unitary representation of NMλ acting in the same
Hubert space L2(V). For this we need a representation Dλ of Mλ acting in
L2(V) and satisfying

\{m-χzm) = Dλ(m)~lλ(z)Dλ(m) (z <ΞN,m<Ξ Mλ).

The operators Dλ(m) are given in terms of the oscillator representation of
Sp(fl0, C) and a certain natural representation of O(nl9 C)

Finally, in §4, we indicate that there is a *-isomorphism between the
commuting algebras of T \NM and Dλ. Throughout the paper we give the
analogous results for the real field, which are more complicated to state.

1. Definitions. In this section, we define some of the groups and
introduce some of the notation that will be used throughout the paper.

Let F be the real field or the complex field, R or C. We choose to
define the symplectic groups over F as is done in [5] in order to have the
most appealing treatment of the parabolic subgroups. Because of this
choice, a notation for "secondary transpose" becomes very useful. For
any positive integer/?, let

Γ
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be the p X p matrix with ones along the secondary diagonal and zeros
elsewhere. The subscript can be omitted when the context determines the
dimensions of Jp. If x is a/? X q matrix and x* denotes the usual transpose
of x9 let the secondary transpose xs be defined by

It is easily verified that (xsy = (x'y and, in the case of invertible
matrices, (xs)~λ = (x~ι)s. Thus, we can write xst~λ for ((xsY)~ι without
confusion. Also, (xy)s = ysxs whenever x and y are compatible for multi-
plication.

Fix a positive integer n and define the symplectic group

t —(1.1) Sp(n, F) = \g G t — . g\ τ n" g =
0 ~
Λ 0

Another way of expressing (1.1) is the following: denote the elements of
Fιx2n by [xy] with x, y G FlXn. Then Sp(w, F) is the subgroup of
Gl(2«, F) consisting of all linear transformations of Fιx2n which leave
invariant the bilinear form

(1.2) B([xιyι]9 [x2y2]) =yιχ'2-χιyi.

The parabolic subgroups of Sp(w, F), up to conjugacy, can be worked
out from (1.2) as in [8] (§8). Let

{ n l 9 n 2 , . . . , n r , 2 n 0 , n r , n r _ l 9 . . . 9 n x }

be any sequence of integers with the indicated symmetry and satisfying
the conditions that ni is positive for i = 1,... ,r, n0 is nonnegative, and
n — no + nλ + - - - +nr. Consider the blocking scheme for In X In
matrices in which the diagonal blocks have dimensions

72j X W j , A I 2 X W 2 > . > W r X W Γ , 2 W Q X 2 / 2 Q , Π r X A 7 r , . . . , / l j X W j ,

respectively, from upper left to lower right. Corresponding to this block-
ing scheme we have

(1.3) P = {g E Sp(«, F): g is upper block-triangular}.

That is, g E P if and only if g G Sp(«, F) and, with respect to the
blocking scheme, the blocks in g below the block-diagonal are zero. As
defined by (1.3), P is a parabolic subgroup of Sp(π, F). Moreover, each
conjugacy class of parabolics in Sp(«, F) contains exactly one member of
this form.

Also associated with the above blocking scheme are the subgroups of
Sp(«, F) called N and Λf, which we now describe. First, denote by W the
subgroup of Gl(w — n09 F) consisting of all matrices that are lower
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block-triangular with identity blocks along the block-diagonal; here the
blocking scheme for (n — no)X (n — n0) matrices has diagonal blocks of
dimensions

nr X nr,...,n2 X nl9nλ X nλ9

respectively, from upper left to lower right. Define N to be the subgroup
consisting of all lower block-triangular elements of Sp(«, F) with identity
blocks along the diagonal. Using (1.1), a matrix computation shows that

: w E W; x9 y(1.4) N - •
-Xs

ί

1

ws~ι

0

0

y

0

0

0

0
0

w

wts — tws = j x 5 — xys

We will abbreviate the notation for elements of N by using (/, y9 x, w).
The multiplication law for N can then be written as

(1.5) (tl9 yl9 xλ9wx)(t29 y29 x2,w2)

-y\*2

Let M be the block-diagonal subgroup of Sp(π, F). If we denote by
Gl(wr, F) X XGl(nλ9 F) the subgroup of Gl(n - n09 F) consisting of
block-diagonal matrices

a =

with αz E Gl(«/? F) for / = 1,... ,r, then

\\as'x 0 0
(1,6) M = o 5 0

. 0 0 a

In (1.4), (1.6), and throughout the paper, we use the convention that any
matrix with n0 as a dimension is suppressed if n0 = 0.
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It is easy to verify that NM is a semidirect product with M normaliz-
ing N and that NM is conjugate to P in Sp(w, F). Let χ be a unitary
character of P. The unitary representation of Sp(«, F) induced by χ is a
member of the principal series associated with P. The formula for this
representation T realized to act in L2(N) can be found in [5] (§33.1). We
shall only present, here, the formula for the restriction to NM of the
principal series representations of Sp(«, F). For / G L2(N), z G N9 and
m G M,

(1.7) = Λ(m)-ι/2χ(m)f(m-ιizm)9

where 8(m) = d(mξm~ι)/dξ and dξ is Haar measure on N.

2. The dual of N. Let the nilpotent group N have the form (1.4). In
particular, this means we are fixing a blocking scheme for 2n X 2n
matrices, in which the diagonal blocks have dimensions

nιXnι,...,nrX nr,2n0 X 2no,nr X nr9...9nλ X nl9

respectively, from upper left to lower right. This induces blocking schemes
for the various submatrices of z G N. Notice that if (t, y, x,w) G N then
the blocking scheme induced on t has blocks along the secondary diagonal
of dimensions n1X/i1,...,w rX/i r from lower left to upper right.

In this section we use the method of Kirillov to obtain the dual object
of N (up to a set of Plancherel measure zero). For this we need the Lie
algebra 91, its real vector space dual 91*, and the coadjoint action of N on
91*. The dual of N is taken to be a set of irreducible unitary representa-
tions of N which correspond to the orbits of maximal dimension in 91*
under the coadjoint action of N.

As a linear Lie algebra, 91 is given by

(2.1) 91 =

0
0

0

0
0

0
x\

0
0

0

w

xl9yγ

where 6IS9 the Lie algebra of W9 is the set of (n — n0) X (n — n0) lower
block-triangular matrices with zero blocks along the diagonal. The best
way to express 91* seems to be as a set of equivalence classes in F2nX2n.
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F o r * , Y G F2nX2\ define

(X\ Y)=RetτXYt

(the real part of the trace of XY*). Let two elements, Xf and Y9 of F2nX2n

be equivalent if (X\ X')= (X\ T) for all X G 91. Denote the equiva-
lence class of X' by c( X% then

(2.2) 9 1 * = • «

-wx

-x\

y\

h

0

0

0

y\

0

0

0

X,

0

0

0

w.

s

: wι E lΆ, tx — t\

The adjoint (left) action of iV on 91 is given by Ad z(X) — zXz ι

9 for
z G TV and X G 91. Thus, the coadjoint (right) action of # on 91* is

(2.3) Ad*z(c(X')) = cίz'JTz'-1).

This follows since, for X G 91, we have

(X\Ad*z(c(X'))) = (Adz(X)\c(X'))

using properties of the trace. If X' is lower block-triangular then ztXίzt λ

is generally not lower block-triangular and this explains the need for
equivalence classes.

For brevity, denote the elements of 91* by (tl9 yx, xl9 wx), keeping in
mind that (tX9 yλ9 xλ9 wx) = (t29 y29 x29 w2) if and only if tx = t29 yx = y29

xx — x29 and wx is identical with w2 below the block-diagonal. By comput-
ing the matrix product z'X'z*'1, with z = (/, y9 x9 w) G N and X' =
(t\, yX9 Xχ9 wx) G 91*, we find the formula

(2.4) Ad*z(X') = (w%wst

9 w'(yx + txx
st),

wt(xx - txy
st), wt(wx - xxx* - yxy* - txt

stw')w'~l).

Letting z vary in N9 (2.4) gives the orbit of X' in 91* under the coadjoint
action of N. In general, the orbit is very complicated but a considerable
simplification occurs if tx has the property that each submatrix t[k\ with
nx + - + nk rows and columns, in the lower left corner of tx (k = 1,... ,r)
is non-singular, Let us call this property secondary block-diagonalizable
(SBD) as suggested by the following matrix fact. Let Λ be the set of all
(n — nQ) X (n — n0) matrices

λ =
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with λi = λ* E Gl(« y > F ) ( / = l , . . . , r ) along the second block-diagonal
and zero elsewhere.

LEMMA 2.1. With respect to the blocking schemes indicated earlier, the
matrix tx = t{ is SBD if and only if tλ = w'λwst for some λ E Λ
w E W. Moreover, λ αwd w are unique in this case.

Proof. A statement proved in [5] (p. 59) can be applied to txJ — (txJY
to yield this lemma.

The next result gives the maximal orbits in 91* under the coadjoint
action of N.

THEOREM 2.2. For i— 1,2 let (ti9 yi9 xi9 wt) E 91* and suppose tx is
SBD, tx = w'λ^ 5 ' , w G J f , λ , E Λ . ΓΛew (a) (r1? J Ί , JC15 wx) is in the same
orbit as (λ 1 ? 0,0,0), and (b) (tx, yx, xl9 wx) is in the same orbit as
(t2, y2, x29 w2) if and only if t2 — v'\xv

st for some υ E W.

Proof. First we show that (tX9 yx> xX9 wx) is in the same orbit as
(tX909 0,0) by constructing a suitable z E N. Recall that z — (/, y9 x9 w) E
N provided wts - tws = yxs - xys. It follows that (T - yxs, y9 x91) E N
for any T = Ts. According to (2.4), to have

A d * ( Γ - yx\ y9 x, I)(tl9 yl9 xx,wx) = (tl9 0 , 0 , 0 ) ,

we must setyx + txx
st = 09xx- txy

st = 0 and find T = Ts so that

(2.5) wx - xxx* - yλy' - tx(T - yxs)st » 0.

where = means these two matrices agree below the block-diagonal. Thus,
let x = t[~xys

x andy — -t\~xxs

x (since tx is SBD, it is invertible) and note
that (2.5) is equivalent to

(2.6) txr^wx+yxx\tx\

We claim that txA = B always has a solution A—As when tx is SBD. The
proof is a recursive construction of the block-columns of A. Here, A and B
have a blocking scheme with diagonal blocks of dimensions nx X nx,...,nr

X nr from upper left to lower right. Let AU) denote they th block-column
of A. We will write A{J) = Bu) when these block-column submatrices of A
and B agree below the block-diagonal position. To begin, let

Y 0

0

be a solution to txX\λ) = 2?(1). Such a solution exists since tx is SBD and
hence t\r~l] is invertible. Define Ax = Xx + Xs

x then Ax = A\ and txA\l) =
txX\λ) = B(l\ Suppose for some k (1 < A: < r - 1) we have ^ = yl£ and
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= 1,...,*:). Let

0

0
.0
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Y

0
0

0

0
0.

Where Xj^ = [ J] and Y is the (nλ+n2 + - +nr_k) X /ιΛ + 1 subma-
trix of -X£+~ϊl) above the secondary block-diagonal. Since /j1""*1 is invert-
ible, there is such a matrix Xk+λ satisfying txX

{k+X) ss j?(*+1> - ^ Λ + 1 >
Let

then

and, for 1 <j <k,

The matrix 4̂ — Ar_x is the desired solution. We have proved that (2.6)
has a solution T with T — Ts and it follows that (/1? j>1? x1? wx) is in the
same orbit as (tv 0,0,0). Clearly, (0,0,0, w) G N and

Ad*(0,0,0, *;)(*,,0,0,0) = (^,0,0,0)

by (2.4) so (tl909 0,0) is in the same orbit as (λ1 ? 0,0,0) and (a) is proved.
The proof of (b) is straightforward.

If tλ is SBD then we say that the orbit of (/1? yλ, xλ9 wx) G 9L* is an
SBD orbit. By Theorem 2.2 the SBD orbits are in 1:1 correspondence
with the set Λ. Next, we will show that SBD orbits are orbits of maximal
dimension. Let m denote the number of entries below the block diagonal
in a blocking scheme corresponding to n — no = n{ + - - +nr so that
dim W = m.

THEOREM 2.3. (a) Each SBD orbit is an algebraic surface in %* having
dimension over F equal to 2m + 2no(n — «0). (b) The SBD orbits are orbits
of maximal dimension in 91*.

Proof, (a) Let O be an SBD orbit represented by (λ, 0,0,0) with
λ G Λ. Then O consists of all (*„ yl9 xl9 wλ) G 91* such that tx = w'λwst

for some w G W. By the uniqueness part of Lemma 2.1, tx can be
parameterized by w G W. Thus, dimO = m + no(n — n0) + no(n — n0)
+ m. (b) The complement of the union of the SBD orbits consists of all
elements (tl9 yl9 xl9 wx) G 91* with det t\k] = 0 for some k— 1,... ,r.
Thus, the union of the SBD orbits is a Zariski open set. It is known that
the union of the orbits of maximal dimension is also a Zariski open set. If
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the SBD orbits were not of maximal dimension we would have two
disjoint Zariski open sets, which is impossible.

REMARK. We have not proved that there could not be an orbit of
maximal dimension which is not SBD.

Now that we have isolated the SBD orbits, we will present the
corresponding irreducible unitary representations of N. Recall that a
subalgebra % of the Lie algebra 91 is said to be subordinate to X' G 91*
provided ([X, Y] \ X') = 0 for every I J e l For fixed X' G 91* let %
be a subordinate subalgebra of maximal dimension and let U = exp Gll.
Define a unitary character on ί/by setting χ(u) = exp 2π/(log u | X'), for
u E: U. The desired irreducible unitary representation of N is the one
induced from χ.

It happens that there is a maximal subalgebra subordinate to every
X' G 91*. In fact, define % = {(tl9 yl9090) G 91}, then % is an abelian
subalgebra of 91 and it can be verified that

d i m R % = (dimR9l) - (dimRθ)/2,

for an SBD orbit θ, to show that % has maximal dimension.
For I 6 % we have X2 = 0, which implies that exp X = / + X. Let

U = exp %, then £/={(*, y9 0, /) G N}. U is an abelian subgroup of N
with group operation

(/, y,0,1)(t\ /,0, /) = (* + /', y+y',0,1).

Also, define V = {(0,0, x, w) G N}, then Fis a subgroup of N with group
operation given by

(0,0,x,w)(0,0,x'9w') = (0,0, x + wx'9ww').

Elements of Λ̂  can be uniquely expressed in the form z = uv, with u G U
and v G V. In fact,

(2.19) (/, ̂ , x, w) - (tws + yx\ y9 0, 7)(0,0, x, w ) .

Also, V normalizes U since

(2.20) (0,09x9w){t9y909 /)(0,0, x9 w)~l

It follows that JV = UV is a semidirect product and representations of N
induced from characters of U can be realized to act in L2( V).

Fix λ G Λ, let X' = (λ, 0,0,0) G 91*, and consider the unitary
character of Udefined for u = (t, y, 0, /) G [/by

(2.21) χ λ(iι) = exp2ίri( logiι |Z / )=exp2ir/(ί |λ>,
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where ( ί | λ > = RetrtX. The irreducible unitary representation of JV,
denoted λ, induced by χ λ and acting in L2(V) is then given by
λ(uovo)φ(v) = χλ(vuov-ι)<t>(υvo\ for u0 G(/,t) 0 G V9 and φ E L\V\

Let X be the additive group F(n no)x«o. Choose as independent
parameters for the elements (0,0, x9 w) E V the matrices ξ = w~ιx E JΓ
and μ — w ELW. The Haar measure of V is d£ dμ, where dξ and dμ
denote the Haar measures of X and W9 so we have an identification of
L 2( F ) with L\ X X W). In terms of ξ and μ, the formula for λ is

(2.23) Ht9yfx9w)φ(ξ9μ)

= exp2τ7/ (λ I μ(ξy* + />v5 + yxs + yξs)μs)φ(w'ι(ξ + x), μw),

for (/, y9 x9w) GJV and φ G L 2 ( I X W).
To summarize this application of the theory of Kirillov we state

THEOREM 2.4 (i) For λ E Λ, (2.23) defines an irreducible unitary
representation λ ofN. (ii) The mapping from A to the dual object ofN which
sends λ to the unitary equivalence class of λ is injective, preserves Borel
structure, and the complement of the image is a null set with respect to
Plancherel measure,

3. The action of M on the dual of N. Since M normalizes N9 the map
z -> m~xzm is an automorphism of N for each m E M. It follows that
z -> λ(m~ιzm)9 for λ E Λ, is an irreducible unitary representation of JV
unitarily equivalent to (m λ) for some m λ E: A. We now investigate
this action (m, λ) -» m λ of M on Λ.

Denote the elements of M, defined in (1.6), by m = (s, α), with
5 E Sp(w0, f

1) and α E Gl(« r, F ) X X G l ^ , F). Express s in terms
of n0 X n0 submatrices by writing

s\\ s\2

and recall that a is regarded as an (n — n0) X (n — n0) block-diagonal
matrix. Let z = {t9 y9 x9 w) E JV. Since y9 x E X = Fin~n°)Xn°, we can
form the (n — n0) X 2n0 matrix [yx]. It will be convenient to define

(3.1)

Matrix multiplication now gives the following expression for m~ιzm:

(3.2) m~xzm = (a~ιtas~\ a~ι(ysu + xs2l)9 a~\ysX2 + xs22), a~λwa).
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Let λ E Λ and φ GL2(XX W\ then (3.2) together with (2.23) yields

(3.3) λ{m-ιzm)φ{£, μ)

= exp2ίi7 (λ I μ(ξ(ysu + xs2λ)
sas~ι

+ a'\tws + g([yx]s))a'-1 + a'\ysιx + xs2l)ξ')μ')

'φ(a'ιw-χa(ξ + a'\ysn + xs22)), μa~ιwa).

Since the representation z -> λ(m~ιzm) is unitarily equivalent to
(m λ) , there exists a unitary operator Dλ(m) on L2(XX W)9 for each
m G M and λ E A, such that

(3.4) \{m-λzm) = Dλ(m)-ι(m λ)~(z)Dλ(m),

for all z E JV. The operator Dλ(m) is unique up to a scalar factor in
J = { α G C : | α | = l } , because (m λ) is irreducible. Also, for ml9

m2 E M,

21(m^1zm1)m2) = λ((m1m2)~ z(mxm2))

implies that m, (m2 λ) = (mxm2) λ, from which it follows

(3.5) Dλ(mλm2) = α(λ, m l 9 m2)Dm2mλ(mλ)Dλ(m2)9

for some α(λ, m1? m2) E ?Γ.
The way to describe the operators Dλ(m) and the action (m, λ) -> m λ

is to work separately with the following obvious subgroups of M:

and

i4 = {(/, a): a E Gl(n r, F) X XGl(nu F)}.

Fix λ E Λ. It is easy to see from (3.2) that A normalizes the subgroup
V = {(0,0, JC, w) E N} of TV. Therefore, the formula

Dλ(m)φ{υ) = γ(m) 1 / 2 φ(m-W)

(m E 4̂, φ E L2(F)), where γ(m) = d(m~ιυm)/dυ, defines a unitary op-
erator on L2(V). If m = (/, a) E 4̂ then, in terms of the parameters
(I, μ), the formula becomes

(3.6) D λ(J, α)φ({, μ) - γ(7, fl)1/2φ(α"ί, a
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for φ E L2(X X W). A simple computation shows

LEMMA 3.1. For m = (/, a) E A andλ E A,

λ(m-ιzm) = Dλ(myι(a<-'λasί-ι)~(z)Dλ(m),

for allz E N9 Dλ(m) defined by (3.6). Thus,m λ = a'^λa3'-1.

If w0 = 0 then M — A and we are done, so assume in the discussion
of S that follows that n0 φ 0. Now let m = (s, /) E 5. In order to
describe Dλ(s9 /), we need to parallel Weil's construction of the oscillator
representation (cf. [4] 2.3). Fix λ E Gl(n - /i0, F) and let X be the vector
space F{n~"o) X n0 over i\ The dual of the additive group of X is
identified with X using the bicharacter

(3.7) (x9 y)λ = exp2ττ/(λ \xys +yxs)= χλ(xys +yxs).

For each (y, x) E X X X, let t/χ(> ,̂ x) denote the unitary operator on
L2(X) defined by

(3.8) U{(y9

The family of operators

Uλ(y9 x, a) =

forms a group, denoted >4λ( JΓ), whose composition law is

Uλ(yι,xι,aι)Uλ(y29x29a2)

There is an isomorphic group Aλ(X) = XX XX ?Γwith composition law

t/λ: ^x(^) ~^λ(^0 i s Λe unique irreducible unitary representation of
Aλ(X) which leaves the center, {0} X {0} X ?Γ, pointwise fixed, in the
sense that ί/λ(0,0, a) — al.

Let Bλ(X) denote the group of automorphisms of Aλ(X) which leave
the center pointwise fixed and let σ E Bλ(X). Then there exists a unitary
operator rλ(σ) of L2(X), unique up to a scalar factor in ?Γ, such that

(3.9) ί/λ((j;, x, α)σ) = r x(a)- !l/ x(^, x, α)rλ(σ).

The mapping σ -> rλ(σ) determines a projective representation of Bλ(X)
called the Weil representation.

Let 5 E Sp(/ι0, F) and define/5λ: I X I ^ ?Γby

(3.10) / 5 , λ ( j , x) - X λ(g([^x]5) - g(lyx])9
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where g([yx]) ~yxs. Then the pair (s,fsλ) determines an element of
Bλ(X) defined by

(3.11) (y, x9 a)(s, fsΛ) = ([yx]s9 fStλ(y9 x)a),

for (y9 JC, a) G ̂ λ ( ^ ) , as a computation shows. Morever, the set {($, /5 λ ) :
5 G Sp(«0, F)} together with the operation

> 4,λ) = (S1S2> Λlί2>λ)

forms a subgroup of Bλ(X) isomoφhic to Sp(w0, F). For each s G
Sp(«0, F), use σ = (5, /Jfλ) in (3.9) to define

(3.12) Φ) = rλ(s,f8tλ).

The mapping s -> rλ(s) determines a projective representation of
Sρ(n0, F); this is the oscillator representation.

In order to make use of rλ in the context of the representation λ of N
acting in L\X X W\ we identify L2(XX W) with L2(W, L2(X)). That
is, the function φGL2(XX W) is identified with the L2(X)-valued
function

defined for μ e W. Recall that an operator Q on L\W, L2(X)) is called
decomposable if (βφ)μ = β(μ)Φμ for φ G L2(PF? Z,2( J%Γ)), where Q(μ) is an
operator on L\X) for each μ G W. In this case we say Q — jwQ{μ) dμ.
If we define Nx = {(/, j , x, /) G iV}, then iVj is a subgroup of JV and the
operators λ(/, y, x91) are decomposable. For λ G Λ and μ G fF, we will
use the notation

(3 13)
| ( λ ) ( / , x, /) =

Then (2.23) and (3.8) imply

(3.14) λ(/, y, x,I) = f {\-μ){t, y, x, I) dμ
Jw

The relationship between λ and the oscillator representation is given by
the following sequence of results:

LEMMA 3.2. Let λ e Λ, μ e W, (t, y, x, I) e Nu and s e Sρ(n0, F),
then

(3.15)
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Proof. Here is an outline of the proof. (1) Define τ λ . μ: Nλ -> Aλ. μ( X)

by the formula

τλ.μ(t,y9χ,I) = (y9χ,χλ.μ(t+yx3)),

then τ λ μ is a homomorphism and λ μ = Uλ.μτλ.μ. (2) Denote by (s, I)
the automorphism of Nx given by

(t9y,x,I)-*(t,[yx]s,l).

Then the following is a commutative diagram:

is, I)

Tλ μi

(3) Denote by r λ . μ ( s ) the automorphism of Aλ.μ( X) given by

Uχ.μ(y, x, a) -» rλ.„( j)"1 £/ λ.M(j, x, a)rλ.μ(s),

then the following is a commutative diagram:

τΛ W y / ' " ^ — λ μ

which completes the proof.

LEMMA 3.3. For μ E W, define a unitary operator l(μ) on L2(X) by
= ψ(μ-'ί). Then, for s G Sp(«0, F),

w/7 /6> a 5 cα/αr factor in ?Γ.
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Proof. First, note that for ψ G L2(X) and (t, y, x, I) G Nx,

That is,

(3.16) l(μ)-lλ-l(μtμ°, μ[yx], i)l(μ) = λ-μ(t, y, x, I).

It follows that

l(μ)-lrλ(s)-Ί(μ)λ-μ(t, y, x, I)l(μyXrλ(s)l(μ)

= l(μr\λ(s)-lλ l(μtμ\ μ[yx], I)φ)l(μ)

= l(μ)-1λ-l(μtμ*,μ[yx]s,l)l(μ)

= λ μ(t,[yx]s,l),

using (3.16) and (3.15). Since rλ.μ(s) is the unique unitary operator (up to
scalar factor in 9") with this property, we have the desired result.

THEOREM 3.3. For (s, I) G 5, define the unitary operator Dλ(s) on
L2(W,L2(X)) by setting

Dλ(s)=f
'w

Then,

X{(s, iy\t, y, x, w)(s, I)) = Dx(s)-]X(t, y, x, w)Dλ(s),

for every (t, y, x, w) G N.

Proof. For (t, y, x, w) G N, we have

λ(/, y, x, w) = λ(tws, y, x, /)λ(0,0,0, w)

and, hence,

Dλ(Sy
ιλ(t,y,x,w)Dλ(s)

= Dx(s)-lX(tws, y, x, l)Dx(s)Dλ(Sy'X(0,0,0, w)Dx(s).
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But, for φ<=L2(W,L2(X)),

(Dλ(Sy
ιλ(tw°, y, x, I)Dλ(s)φ)μ(ξ)

= /(μ)-'rλ(JΓ!/(μ)X μ(W, y, x, l)l(μylφ)l(μ)φμ(ξ)

= rλ.μ.(syiλ μ(tws,y,x,l)rx.μ(s)φμ(£)

= λ-μ{(s,iy\tW\y,x,l)(s,l))φμU)

by Lemma 3.3 and (3.15). Also, from (2.23), we have

(3.17) (λ(0,0,0, w)φ)μ(ξ) = φμw{w-ιξ) = l(w

Thus,

(Dλ(s)-iλ(0,0,0,w)Dλ(s)φ)lι(ξ)

= l(μ)-lφ)-il(μ)l(w)l(μw)-lφ)l(μW)φμw(ξ)

that is, λ(0,0,0, w) commutes with Dx(s). Combining these facts yields

Dλ(Sy
ιλ(t,y,x,w)Dλ(s)

= DάsY^itw', y, x, /)λ(0,0,0, w)Dλ(s)

= Dλ(sYlλ(tws, y, x, l)Dλ(s)λ(0,0,0, w)

= λ((s, iY\tw\ y, x, I)(s, 7))λ(0,0,0, w)

= λ(tw\[yx]s,l)λ(0,0,0,w)

= λ(t, [yx]s, w) = λ((s, I)'\t, y, x, w)(s, I)).

In summary, we have the result:

THEOREM 3.4 (a) The action of M on Λ is given by

(3.19) ( j ,α) λ = β'~1λέi"-1 for(s,a)(ΞM,λEA.

(b) With Dλ(s, a) = Dλ(s, I)Dλ(I, a) for λ E Λ and (s, a) G M, we
have

λ{(s, aYλz{s, a)) = Dλ(s, ay\a'-ιλas'-ι)~(z)Dλ(S, a),

for all z<ΞN.
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Next, we investigate the orbits in Λ under the action of M. Since
(3.19) is correct for n0 = 0 as well as for n0 =£ 0, the results here hold in
both cases. For any λ G A, let λ = (λ ( 1 ),.. . ,λ ( r )), where λ<*> = (λ(*>)5 is
the non-singular, nkX nk submatrix of λ in the /cth position (k = 1,... ,r)
along the secondary block-diagonal of λ (counting from lower left to

upper right). For (s9 a) G M, let a = (α
( 1\ where a(k) G

Gl(nk, F) is the submatrix of a in the kth position along the block-diago-
nal (counting from lower right to upper left). In terms of this notation, the
action of M on A is given by

(3.20) m λ = (a(l)ί~ιλ(l)a(l)st~ι,... ,a(r)t~ιλ(r)a(r)st~ι).

A variant of Sylvestor's Law can be applied to each component to prove
the following result:

THEOREM 3.5. For F — C, the action of M on A is transitive. For
F = R, there are (n{ + l)(n2 + 1 ) (nr + 1) orbits in A under the action
of M. Each orbit is represented by an element (λ ( 1 ),. . . ,λ ( r )) such that, for
k— 1,... ,r, λ w has the secondary diagonal form

-1

-1

1

with mk entries of 1 in the lower left positions and nk — mk entries of -I in
the remaining positions {mk — Q, \,.. .,nk).

4. The commuting algebra of T restricted to NM. Corresponding to
a certain blocking scheme for In X In matrices, we have defined a
parabolic subgroup P of Sp(w, F), the opposite parabolic NM, and the
principal series representation T induced from a unitary character on P
and acting in L2(N). Next, we obtain theorems concerning the commut-
ing algebra of T \NM generalizing results in [6], [2], and [1]. Proofs will be
omitted here; they are similar to what can be found in the papers just
mentioned.

Let Λ 1 ? . . . ,Λ7 denote the orbits in A under the action of A and let
λι,...,λι be orbit representatives (see Theorem 3.5). Define the stability
subgroup of λ iάn A:

for i = 1,...,/. The subgroup Ai is uniquely determined by the orbit, up to
conjugate subgroups in A. We are also interested in the stability subgroup
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of λ, in M. This turns out to be SAi9 as is easily seen. Consider, now, the
restriction of Dλj to SA(. By (3.5), this is a multiplier representation of SAt

acting in L2(XX W). The two theorems below describe the stability
subgroups and Dλ^SAr

Analogous to the notation Jn m of Theorem 3.5, we have

(m = 0,1, . ..,w),

where Im and In-m denote identity matrices. The (pseudo) orthogonal
groups are defined by

O(m, n-m,F)={a(= Gl(n, F): alnma' = /„„,}.

If m - 0 then O(0, n - 0, F) = O(n, F) is the usual orthogonal group.

THEOREM 4.1. Let F—C The single orbit Λ, = Λ is represented by
λ, = (/„,,.. ,Jn) = Jn-no andAλ is isomorphic to

O ( « , , C ) X ••• XO(nr,C).

Ifno = 0, then SAλ = Aλ andDλ^SAι is given by

for φ E L\W) and a G O(n,,C) X • XO(n r ,C). If n0 φ 0, then SAX is
isomorphic to

Sp(πo,C) X O(n,,C) X XO{nr,C)

a n d DX,\SAI

 is given by

forφ £L2(W,L2(X)),s E S p ( « 0 , C ) , and a E O ( n , , C ) X ••• X O ( « r , C ) .

REMARK. The description of Ax is due to the following: for a —
( α ( 1 ) , . . . , o ( r > ) 6 G 1 ( « , , C ) X ••• X G l ( n r , C ) ,

α ' - ' / α " " 1 = J ** a(k)'-λJna
(k)s'-λ = JΠk for allfc = 1,... ,r.

But multiplying both sides of this equation by JΠk on the right results in
α(*)f-iα<*)-i _ 7^_ x h ^ ( 7 > α ) e y ί j i f and o n l y if Λ(*)»-i G O ( W f c ? Q f o r

all A; = 1,... ,r. This means a(k) E O(nA, C) for all k.

THEOREM 4.2. Let F= R. Le/ Λ, fe /Ae orWί represented by λ, =
i w isomorphic to

O(mλ, nx - w,,R) X X 0 ( m r , n r - w r , R ) .
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Ifn0 = 0, then SAX = Ax andDx^SAχ is given by

forφ EL2(W)anda G O(w,, «, - muK) X ••• X0(mr, nr - mr,R). If
« 0 ^ 0, then SAX is isomorphic to

Sp(no,R) X 0{mx, n, - m,,R) X XO(mr, nr - mr,R)

and Dλι{SAι is given by

{Dλι(s, a)*)μ(ξ)

Corresponding to the orbit representatives λ,,...,λ/5 let έE,' =
'̂(• λ̂isΛ ) denote the commuting algebra of the multiplier representation

of SAi(i = 1,...,/). Let L, G β;, then

for (/, a) GA,isa well-defined map from Λ, into £(L2(K)). For suppose
(/, a) λ, = (/, a') λ,, then (/, fl')"'(/, «) = (/, β") e ^, and (/, a) =

D λ | (/, a)LtDxμ, a)'1 - Z>λj(/, β')^λ((/, a")L,Dxμ, a"YλDχμ, α')"'

= P λ ( (/, a')L,Dλμ, a'T'

since L; commutes with Dλ(I, a").
We can now state the main results regarding the commuting algebra

&'(T\NM). Let <5P: L2(N) -> L2(Λ, HS(L\V)), dm(λ)) be the Plancherel
transform of L2(N) defined as in [6]. Let f = s p ^ 1

THEOREM 4.3. Let F = C. Let λu Ax, and P λ i &e as in Theorem 4.2.
77ι<? mapping from &'{DHSAύ to t(L2(A, HS{L2(V)), dm(λ))) defined by

JΛ

wfl *-isomorphism between the von Neumann algebras &'(Dλ >SA )
f | ) ΓΛ # ' ( F | M ) w *-isomorphic with &'(DHSA).

Proof. This follows from [3] (Theorem 6) along with Theorem 4.1.
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Similarly, we have

THEOREM 4.4. Let F=R. Let λl9...9λι be the orbit representatives
given in Theorem 3.5, where I — (nx + 1) •••(«,.+ 1). Let At and Dλ

(i = 1,...,/) correspond to A, as in Theorem 4.2. The mapping from
&'x® θ # ; to e (L 2 (Λ, HS(L\V)\ dm(λ))) defined by

/ 9 a)~λ ® Idm((I, α) λ,)>

w Λ *-isomorphism between the von Neumann algebras &\
/ffi'(f 1 ^ A , &'(T\NM) is *-isomorphic with &'(Dλ {SA )
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