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CHARACTERIZATIONS OF COMPLETELY
NONDETERMINISTIC

STOCHASTIC PROCESSES

PETER BLOOMFIELD, NICHOLAS P. JEWELL AND ERIC HAYASHI

A discrete weakly stationary Gaussian stochastic process {x(t)}9 is
completely nondeterministic if no non-trivial set from the σ-algebra
generated by {x(t): t > 0} lies in the σ-algebra generated by {x(t): t ^
0}. In [8] Levinson and McKean essentially showed that a necessary and
sufficient condition for complete nondeterminism is that the spectrum of
the process is given by \h\2 where h is an outer function in the Hardy
space, 772, of the unit circle in C with the property that h/h uniquely
determines the outer function h up to an arbitrary constant. In this paper
we consider several characterizations of complete nondeterminism in
terms of the geometry of the unit ball of the Hardy space Hx and in
terms of Hankel operators.

1. Introduction. In [10] Sarason defines a property of a discrete
weakly stationary Gaussian stochastic process, {x(t)}> which he calls
complete nondeterminism. This condition is that no set from the future of
the process (i.e. the σ-algebra generated by the random variables x(t) for
/ > 0) lies in the past (i.e. the σ-algebra generated by x(t) for t < 0),
except for null sets and the complements of null sets. In the spectral
representation this condition becomes the following. Let m be the spectral
measure of the process and let 9 denote the span in L2(m) of the
exponentials eιnθ with n < 0 where functions are defined on T, the unit
circle in C. Let ^denote the span in L2(m) of the exponentials einθ with
n > 0. Then complete nondeterminism is equivalent to the condition that
9 Π S r= {0}. It is clear that this condition reflects a certain kind of
independence (in a statistical sense) of the past, Φ, and the future, ^

It is of interest to characterize those measures m on T which lead to
completely nondeterministic (end) processes. In [10] a necessary and
sufficient condition for complete nondeterminism was stated as the mea-
sure m being absolutely continuous with respect to Lebesgue measure, dθ,
with log (dm/dθ) integrable. Unfortunately this characterization is incor-
rect. In [8, p. 105] Levinson and McKean essentially describe a partial
characterization of end processes which we discuss in §3. This paper
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continues an investigation into the problem of characterizing spectral
measures of end processes.

In §2 we examine the relationship between complete nondeterminism
and some other familiar kinds of independence of ^ and f.

In §3 we restate the question in several ways which yield answers in
terms of exposed points of the unit sphere of Hλ and certain Hankel
operators.

In §4 we define fc-step completely nondeterministic processes and
provide the characterization of these processes in terms of end processes.

The authors are grateful to D. E. Sarason for some helpful correspon-
dence on the topics of this paper.

2. Complete nondeterminism. A Gaussian process is called de-
terministic if its past determines the future, i.e., for each t > 0, x(t) is
measurable with respect to the past. This is translated in the spectral
representation to the property that ty — L2{dm). A necessary and suffi-
cient condition for this to occur is that log (dm/dθ) be not integrable.
Conversely the process is indeterministic if log (dm/dθ) is integrable. A
stronger restriction than indeterminism is that the process is purely
indeterministic or regular. This an asymptotic independence condition
which, in the spectral representation, is equivalent to Γ[^=λ^k— {0}
where ^k is the span in L2(m) of the exponentials eιnθ with n>k. This
condition is often referred to by saying that the process has trivial remote
future. Results of Szego [11], Kolmogorov [6] and Krein [7] show that
{x(t)} is regular if and only if m is absolutely continuous with respect to
Lebesgue measure and log (dm/dθ) is integrable. First we give an
example of a process which is regular but not completely nondeterminis-
tic, thereby showing that the characterization in [10] is incorrect. We will
use the following notation. I) (resp. L2) is the space of integrable (resp.
square integrable) functions on T. L°° is the space of essentially bounded
functions on T. We shall often regard functions in L1 as extended
harmonically into the open unit disc D = {z: | z | < 1} by means of
Poisson's formula. We let Hλ denote those functions in I) which have
analytic extensions into the disc. We define H2 and H°° similarly. H2 is a
Hubert space with orthonormal basis {zn: n — 0,1,2,...}. For standard
results on the Hardy spaces we refer to [5].

For a regular process we can write dm = wdθ =\H\dθ =\h\2dθ
where H is an outer function in Hx and h is an outer function in H2. w is
known as the spectral density of the process.
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PROPOSITION 1. There is a regular process which is not completely
nondeterministic.

Proof. Let w(eiθ) = | 1 + eιθ |2 = | 1 + z |2 and put dm = wdθ. Since
log I 1 + z \2 E U this process is regular. However (1 + z)"1 E <•? Π $".
This follows since 1 + z is outer. For we have

lim ί |1 - Λ ( l +z)\2dz = 0

for some sequence/^ of polynomials in z;

hence

ί 1(1 + Z ) " 1 - z / 7 J 2 | l + z\2 dz ->0 asπ -> oo
•V '

=> / 1(1 + z)~ι — zp\ | l + z | dz ^ 0 a s w ^ o o ;

i.e. (1 + z)"1 E f. Similarly

j\(l+z)-ι-pn\
2\\+z\2dz

= / |l — ^ ( 1 + z)| dz -» 0 as « -> oo;

i.e. (1 +Z)" 1 E<3\
We next obtain a simple necessary and sufficient condition for

complete nondeterminism. It is straightforward to see that if m is singular
with respect to Lebesgue measure then 9 f l f ^{0}. This, together with
earlier comments means that in considering end processes we can restrict
our attention to regular processes.

We wish to rephrase our question in terms of L2 rather than L2(m).
We have dm~\hγ dθ. Consider the mapping T: L2(m) -» L2 given by
Tf — hf. It is easily verified that T is an isometry of L2(m) onto L2. Also
T mapsjf onto H2 = {/ E H2: /(0) = 0}, and T maps 9 onto (h/h)H2

where H2 = {/:/E//2}.

PROPOSITION 2. A process is not end // and only if h/h — a(F/F)
where F E H2 is outer and a is inner with α(0) = 0.
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Proof. Using the isometry T we see that ? Π f ^ { 0 } if and only if
there are non-zero functions gl9 g2 in H2 such that

zgλ = (h/h)g2

~ z(gx/h) - {g2/h ) and z(g2/h) = {gλ/h)

Hence *P Π fV= {0} if and only if there exists a function G G H2 such
that zG/h = G//Γ. If we use the inner-outer factorization of G then this
equality becomes

zφF/h — φF/h where φ is inner and F £ H2 is outer,

=» A/Λ = α( JF/F) and α(0) = 0.

Conversely

h/h = a(F/F)9 α(0) = 0

=>(h/h)F=z(βF) where α = zβ

=> *P Π ̂ φ {0} by the above.

The same reasoning yields the following result for k > 1:

Φ Π % φ {0} ** h/h = <x(F/F) where F € if2 is outer and α is inner

with α having a zero at the origin of order at least k.

Another strictly stronger property than regularity is that of minimality.
Introduced by Kolmogorov [6] this property says that a process is minimal
if the value of the random variable x(0) cannot be predicted without error
from the values of the random variables {x(t): t Φ 0}. In other words a
process is not minimal if it is possible to perfectly interpolate any value of
the process from knowledge of the remaining values of the process.
Kolmogorov [6] proved that a process is minimal if and only if w"1 is in
L\

It is immediately of interest to examine the relationship between
minimal processes and completely nondeterministic processes.

PROPOSITION 3. If the process {x(t)} is minimal then it is completely
nondeterministic. On the other hand there exist completely nondeterministic
processes which are not minimal.

Proof. Suppose {x(t)} is minimal. Then by Kolmogorov's theorem
h~ι E H2. Using Proposition 2 we argue by contradiction. For suppose
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{x(t)} is not completely nondeterministic. Then (h/h) = <x(f/f) where/
is outer and a isjnner with α(0) = 0. This equahty implies///Γ = α(//Λ).
The LHS is in Hλ and the RHS is in HQ which forces both sides to be zero
and thus / = 0 which is a contradiction. This proves the first statement of
the proposition. An example of a process which yields the second state-
ment is given by w = | 1 + z | . In this case h = (1 + z) 1 / 2 and h/h — zλ/1.
By Kolmogorov's criterion this process is not minimal. On the other hand
suppose h/h — a(f/f) for/outer, a inner with α(0) = 0. Then

zi/2 = α ( f/f )=zφ(f/f) with φ inner

The LHS is in HQ and the RHS is in Hι. Again this forces both sides to be
zero and hence / = 0 which gives a contradiction. Thus the process with
w = I 1 + z I is completely nondeterministic.

Let 9k be the span in L2(m) of the exponentials einθ with n < k. A
minimal process is one for which the function 1 does not belong to the
closed linear span of % and ^ i.e. 1 £ ^ V ^ j . There is a similar
restatement of the condition of completely nondeterminacy. Let 9{ + Ψλ

= {/ G L2(m):f= g + h with g G % h G <5λ).

PROPOSITION 4. A regular process is completely nondeterministic if and
only if \ G9X + Φv

Proof. Assume / is a non-zero element of P̂ Π ̂ . Then, for some
k > 1, / G % but / £ ^ + ! (since Π^= t ^ = {0}). Hence / = aeikθ + fλ

where a φ 0 and/ 6 f H I . This implies

Conversely assume that l G ^ + ^i τ h e n ι = /i + Λ w i t h f\^%Ji^
Φ. Hence e*/i = e/<? - e^/2 G ^ . But e^/i G <3\ Hence e^/ G ^ Π ^ .

3. Exposed points of the ball in Hx and Hankel operators. It is well

known (see [2]) that the extreme points of the unit ball of Hλ are given by
the outer functions F in Hι with || FII j = 1. It is also well known that an
Hλ function F of unit norm is not determined by its argument.

In [8, p. 205] Levinson and McKean showed that for continuous
processes the dimension of 9 Π % = 1 if and only if h/h determines the
outer function A up to a constant. In this section we consider this
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approach which is closely related to the results of §2 and consider this
characterization in geometrical terms.

In their study of extremum problems in Hλ deLeeuw and Rudin
introduced the following sets of Hι functions indexed by unimodular L00

functions. Let φ G L°° with | φ | = 1 almost everywhere and define

Sφ = {F G Hx: \\F\\λ = 1, F/\F\ = φ almost everywhere}.

Geometrically Sφ is the intersection of the ball of Hλ and the hyperplane
{F G Hλ: jφFdθ = 1} and so Sφ is a convex set (which may be empty, in
general). When Sφ contains exactly one function F, the hyperplane touches
the ball of Hλ only at F which means that F is an exposed point of the
ball of Hλ. (In fact the definition of Sφ we have given corresponds to Sφ as
defined as deLeeuw and Rudin.)

PROPOSITION 5. Let w = | H \ — \ h |2. Without loss of generality assume
that I wdθ = 1. The following statements are equivalent:

(1) {x(t)} is completely nondeterministic,
(2) Sh/;; contains exactly one function,
(3) h2 — H is an exposed point of the unit ball in Hλ.

Proof. Note that Sh/{; always contains A2, so that our comments above
show the equivalence of (2) and (3). Now suppose that {x(t)} is not
completely nondeterministic. By Proposition 2, h/h — a(F/F) where a is
inner and α(0) = 0 and F G H2 is outer. Hence aF2/\ aF2 | = aF2/\F\2

= aF/F- h/h. Thus a positive multiple of aF2 is in Sh/ς. But a(aF2)
i^h2 for any a > 0 since a has a zero at the origin. Hence Sh/^ contains
more than one function. Conversely suppose Sh/f; contains more than one
function. Then, by Theorem 9 of [2] Sh/ς contains a function / with
/(0) = 0. Write / = bF2 where b is inner, b(0) = 0, and F G H2 is outer.
Now / G SΛ/Λ" implies that h/h = bF/F which, by Proposition 2, shows
that {x{t)} is not completely nondeterministic.

A similar result is given in the following proposition for k > 1.

PROPOSITION 6. P̂ Π % Φ {0} if and only if there is a function f G 5Λ/Λ-
where f has k zeros (counting multiplicities) in the open unit disc.

Proof. By Proposition 2 , 9 n ϊ ^ {0} implies that A/A = zkφ(F/F)
where φ is inner and F G //2 is outer. As in the proof of Proposition 5 it
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follows that zkφF2 G Sh/£. Conversely if / G Sh/{; and /(z,) =/(z 2 ) =
• = f{zk) — 0 where zy G ΰ ( l <y < A:) then it is easy to verify that a
positive multiple of

g(z) = **/(*) Π U - ^ O - v ) ' 1

is in SΛ/Λ~ Factorize g as g = z^W7 where £ is inner and F G i/ 2 is outer.
Since αg G SA/Λ~ for some 0 > 0 it follows that h/h — zkbF/F showing
t h a t ^ Π %Φ{0}.

Note that Proposition 5 yields the version of the Levinson and
McKean result as applied to end processes: namely, a process is end if
and only if arg(h/h) is the argument of a unique Hx function.

Since we have expressed the characterization of completely nonde-
terministic processes in terms of an extremum problem it is not suprising
that there is a version of the problem in terms of the norms of Hankel
operators, which are closely related to extremum problems onH1.

Let P be the orthogonal projection of L2 onto H2. Recall that the
Hankel operator with symbol φ E L00 is the bounded operator from H2 to
L2 θ H2 defined by

Hφ(f) = (I - P)(φf) (f^H2).

The norm of Hφ is given by || Hφ II = d(φ, H°°) = inf/e7/« IIφ - f II„. It is
straightforward to show from first principles that the process {x(t)} is not
end if and only if Hf;/h attains the norm of 1 on the unit sphere of H2. In
fact more is true.

In [1] it is essentially shown that Hφ attains its norm on the unit
sphere on H2 if and only if φ = f + λφ where/ G #°°, λ > 0 and | ψ | = 1
a.e. on T with ^containing more than one function. Also if IIΦIIoo — 1
then Hφ attains the norm 1 if and only if | φ | = 1 a.e. on T and S£ contains
more than one function [1]. There is another result of this type which does
not seem to have appeared in the literature.

PROPOSITION 7. ll#φll < llφllw =*<f> = / + λ ψ where f^H00, λ > 0
and I ψ | = 1 a.e. on T with Sj; containing exactly one function.

Proof. Without loss of generality we assume that llφll^ = 1. Suppose

|| Hφ || < L Then by [3] there exists ψ E L 0 0 such that (i) φ - φ G H°° and

(ii) φ = F/\F\ for some F G H\ F φ 0. Now (i)=>Hφ = Hφ and so

II Jϊψll < 1. So there exists g G i/°° such that \\(F/\F\) - gW^ = a<\

which gives that | arg(gF) \< b < π/2. Hence (gF)~ι G Hι (since gF φ 0
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on D and if G is analytic on D and | arg G \ < b < π/2 then G E_HP for all
p < <n/2b). Thus g(gF)'1 G Hλ => F'x G H\ Now F/\ F\= ψ so that a
positive multiple of F is in S£. Then i7"1 E i/1 implies that 5^ contains
one and only one function (if G G Sβ and G~x G i/1 then 5Jg = (G)-see
[2, Theorem 8] and use the fact that positive Hx/1 functions are constant).

Note however that SJ; containing exactly one function does not
necessarily imply that lli/ψll < IIΨII oo- For example if h = (1 + z) 1 / 2 , and
we take ψ = h/h it can be shown that \\H^\\ = 1 but, as we saw in the
proof of Proposition 3, | h \2 corresponds to a end process so that ιSΛ/Λ~ =
{h2}.

4. &-Step completely nondeterministic processes. The Helson-Szego
theorem gives an elegant characterization of the spectral densities of
processes where <? and ^ are at positive angle i.e. sup{| (/, g) | : / G unit
ball of <3\ g G unit ball of f } < 1. See [10] for a discussion of this result.
Note that such processes are necessarily end. In the course of characteriz-
ing processes with <? and ^k at positive angle Helson and Sarason [4]
showed that the spectral density of such a process, w, is given by
w — \p \2w] where wx is the spectral density of a process with 9 and F̂, at
positive angle and p is a polynomial of degree less than k with zeros all on
T.

In this section we show that there is a similar theory relating processes
with ? Γl fΛ = {0} and end processes. We call a process k-step completely
nondeterministic (λ -cnd) if <3> Π <$k = {0} but ^ n f ^ ^ f O } (k > 1).
For simplicity we let Mk denote the image of P Π fΛ in L2 under the
isometry T. Thus Mk = {0} if and only if 9 Π ̂  = {0}.

PROPOSITION 8. Suppose that w —\p |2w0, wΛere /? w α polynomial of
degree k with all k zeros on T, and w0E Lι. Then 9 Π <$k φ {0}.

Proo/. We show that
(i) 1/p G ̂ P: without loss of generality we can assume that

7 = 1

n

— Σ Qn - i(^)( ! ~ ^ / ζ ) "' where qn_λ is a polynomial.
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Now (1 — z/ξj) nJ can be approximated by polynomials in z in L2(m). In
fact

jί (i - m,P - {i + ^ { vζ) + i ^ ( i / ζ ΐ

w{θ)dθ

v2(θ)dθ

where w2 = w/\l - z/ξ]['

0 as n -> oo by Lebesgue's dominated convergence theorem.

9 = zk/zkp = zk
Hence

(ii) 1/p G <^: l/j9 = zk/zkp = zk/qk where ^ = zkp is also a poly-
nomial of degree kin z. The same construction as in (i) shows that \/qk

can be approximated by polynomials in z in L2(m). Hence \/qk E % and

REMARK. This proposition implies that if we restrict our attention to
end processes then the strong mixing condition implies the property that
^ and % be at positive angle; (see [4], [10, p. 77] for definitions). For if
the angle between 9 and % is converging to π/2 as n -> oo then, for some
/c, <? and % are at a positive angle which implies by [4] that w —\p γwλ

for some trigonometric polynomial/? where wx is the spectrum of a process
for which P̂ and ^ are at a positive angle. If the process is end then
Proposition 5 implies that p must have zero degree. In general the strong
mixing condition does not imply that 9 and $, are at positive angle (e.g.
take h = 1 + z).

PROPOSITION 9. Let k > 1. Suppose Mk = {0} fewί AfΛ_j φ {0}.
kxF/ \ \2= zk~~x

F/F where F is outer and \ F\2 corresponds to a end process.
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Proof. 9 Π <$k_λ φ {0} implies that A/ft = zk~ιa(F/F) where F E
H2 is outer, a is inner. Suppose that a is non-constant. Then we can find
constants a, b such that 0 ¥= aF + b(aF) E i/0

2. Then

zk~\aF+ baF)/h =(aaF+ bF)/h.

Then LHS E % and the RHS E <3\ Hence 9 nΦkΦ{0}. This contradic-
tion implies that a is a constant λ, which can then be absorbed into F.
Mk = {0} implies that i^must correspond to a end process.

PROPOSITION 10. Let k>0. If Mk = Mk+λ then Mk = {0}.

Proof. Observe that Mk = [(h/h)H2 + z*" 1// 2]- 1. Thus

(*) Mk = Mk+λ =>zkG (h/h)H2 + zk-ιΉ~2.

This gives

zk+λ e {h/h)zH2 + zk~H~2Q {h/h)H2 + zk~llP by (*).

Similarly zk+2, zk+z,1^ belong to (h/h)H^ + zk~ιH2. But this implies
that L2 = V " , zk+m2 C Λ # . Hence Mk = {0}.

THEOREM 11. The spectral density w is the spectral density of a k-cnά
process if and only if w — \p \2w0 where p is a polynomial of degree k — \
with all of its zeros on T and w0 is the spectral density of a end process.

Proof. Suppose w — \ ft |2 corresponds to a &-cnd process. Since
ά\m.(Mf+λ/Mf) < 1, it follows from Proposition 10 that dim(MJ_]/MJ)
= 1 for 7 = Li_ ,k. Thus dim Mo = k. Now Mo = (h/h)H2 Π_H2 =
[(ft/A)if0

2 + z i/V . Also Proposition 9 shows that ft/ft = zk~λF/F where
w0 = I F | 2 is the spectral density of a end process. It is easy to check that
zJF(ΞM0 for 7 = 0,...,A: - 1. Hence Mo = V{JF, zi%... ,z*~1.F}. But
ft E Mo and so ft = /ji7 where /? is a polynomial of degree k — 1. It is clear
that since | ft |2 is /:-cnd /7 must have exactly k — \ roots on T counting
multiplicities. Conversely, if w —\p \2w0 where/?, w0 are as in the theorem,
then Proposition 8 shows that ? n ^ _ j ^ { 0 } . The fact that w0 corre-
sponds to a end process gives ? n f ^ = {0}.

REMARK. There are some intriguing questions concerning Sh/f; which
are related to the work of this Section. In [2] it was shown that Sh/^= {ft2}
implies that A is strong outer, i.e. h/(z — λ) $ H2 for all λ E T. It would
be of interest to construct a strong outer function ft with Sh/^¥= {ft2}. In
such a case P̂ Π ®sk is infinite dimensional for all k > 1. This follows since
if 0 φ dim Mx—n<oo then, by the reasoning in the proof of Theorem
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11, I Λ |2 — I/? |2>vo where p has n zeros on T which contradicts the strong
outer property of h. Thus dim M, = oo, and dim Mk+X > άim{Mx) — k
— oo for all k > 1. This, together with [2, Lemma 4.6], provides evidence
for the following conjecture: if Sφ contains more than one function one of
which is strong outer, then Sφ contains a function with an inner factor
which is not a finite Blaschke product. Note that it is easy to construct
examples of processes for which P̂ Π ®jk φ {0} for all k > 1. The spectral
density w = | 1 + B |2 is such an example if B is an inner function which is
not a finite Blaschke product.

The authors would like to thank the referee for pointing out an error
in an earlier version of the paper.
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