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ON THE BEHAVIOR NEAR A TORUS

OF FUNCTIONS HOLOMORPHIC IN THE BALL

PATRICK AHERN

If / is bounded and holomorphic in the unit ball in C" then it has
radial limits at almost all points of the boundary of the ball. More is true;
for example,/will have limits almost everywhere with respect to arclength
on any arc that forms part of the boundary of an anlaytic disc. Motivated
by these considerations we consider an ^-dimensional torus in the
boundary of the ball and ask if there are growth conditions less restric-
tive than boundedness that imply the existence of radial limits on this
torus. We show that the answer is no for some of the standard function
classes. For example, we show that there is holomorphic function of
bounded mean oscillation in the ball that has a finite radial limit at no
point of the torus.

Let Bn denote the unit ball in Cn and let σn be Lebesgue measure on
its boundary, dBn, normalized so that σn(dBn) = 1. If/is a holomorphic in
Bn, we say that/ E Hp(Bn\ 0 < p < oo, if

= sup / iΛ'Or **.(«)<«;P =
0<r<l

2/we say/E H"{Bn) if II/!!„ = s u p ^ J / ( £ ) |< oo. If / E H\Bn) we say
that / G BMO(£J if 3 a constant C such that for all F E H\Bn) we
have I fdBn Ffdσn \<C\\F\\X. Then BMO(Bn) serves as the dual of H\Bn)
and we have H°°(Bn) C BMO(Bn) C Hp(Bn), 0 <p < oo. For a more
intrinsic description BMO(Bn), see [1].

Next we describe some function spaces in the open unit disc U in the
complex plane. If μ is a positive measure on U then Ap(dμ) will denote
the space of holomorphic functions in Lp(dμ), 0 < p < oo. When dμ(r, θ)
= (1 - r)adrdθ, a > -1, we use the notation Ap{dμ) = Ap. Finally we
say that g is a Bloch function, g E ®(t/), if

l l g l l f t = s u p ( l - | 2 | ) | g ' ( z ) | < o o .
|z|<l

We have a mapping TΓ: Cn -> C given by ττ(z,,... ,zπ) = ww / 2Πy= 1 zy .
It is easily checked that π(Bn) = I/, π(Bn) = U, and that π~\dU) = Tn

= {(z,,... ,zπ): I Zy | = n~λ/1J — 1,...,«}. In this paper it is shown that if
g E Λfπ_3)/2 then g o TΓ E Hp(Bn), and that if g E $ ( t / ) then g o TΓ E
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The following remarks are intended to motivate the results of this
paper. It is known, see [8], for instance, that if / E Hp{Bn) then / has
radial limits almost everywhere (dσn). If / E H°°(Bn), then more can be
said; for example, / has radial limits almost everywhere with respect to
arclength on the curve Γ = {(0,... ,0, eiθ): 0 < θ < 2ττ). Of course σrt(Γ)
= 0. A. Nagel and W. Rudin [5] have generalized this to certain other
curves in dBn. The following question arises: are there growth conditions
less restrictive than boundedness that still imply the existence of radial
limits on sets of zero Lebesgue measure? It is natural to look for the
existence of radial limits on submanifolds of dBn that are nowhere
complex tangential. One such submanifold with the largest possible di-
mension is the torus Tn9 described above. This torus is the distinguished
boundary of the poly disc Dn — {(zl9... ,zπ): \zj\< n~ι/2J = 1,... ,n) C
Bn. It is known that if/is holomorphic and of bounded characteristic in
Dn, then/has radial limits almost everywhere on Tn, see [7]. It has already
been noted that ir~~ι(3ϊ/) = Tn; so that if g manifests a certain property
near 3£/, g ° π will manifest that same property near Tn. So the results of
this paper show that a function in Hp(Bn) can be expected to behave no
better near Tn than a function in A^n_3)/2 can be expected to behave near
31/. A similar statement can be made about the spaces BMO(Bn) and
®(£/). It is known [6] that there is a function g E ®(E/) that has a finite
radial limit at no point of dU. It follows that the function G — g © TΓ is in
BMO(Bn) but has a finite radial limit at no point of Tn9 in particular the
restriction of G to Dn cannot have bounded characteristic.

If we let D = {(z, z,... ,z): \z\< n~]/2} C Dn C Bn, then it follows
from [8] and [4] that Hp(Bn) and Hp(Dn) have the same restriction to D.
That is to say, even though the restriction of Hp{Bn) to Dn contains
functions of unbounded characteristic, Hp{Bn) and Hp(Dn) have the same
restriction to the diagonal D.

1. The first result is a calculation upon which the results of this
paper are based. We point out that the case n = 2 of Theorem 1 is
computationally much simpler than the general case. Moreover, the proof
shows that w2(r) = 2r(l — r 2 ) ~ ι / 2 . A formula for wn(r), n>?>, is not
obvious.

THEOREM 1. For each integer n > 2, 3wn: (0,1) -> [ 0, oo) 3
(ϊ) ti wn(r) dr < oo,

(ϋ) 0 < H m ^ , wn(r)(l - r ) ( 3 ~ n > / 2 < oo.
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(iii) Ifg is a continuous complex valued function defined on U then

f goπdon=j2"f
J<SBn

 J0 J0

Proof. The proof proceeds by induction. We assume the result is true
for n — 1, n > 3. If G is a continuous function defined on dBn, then we
have, [8],

/
JdBn n λ

where vn_x denotes Lebesgue measure on Cn~\ normalized so that
vn_λ(Bn_x) — 1. Next we introduce polar coordinates, see [8], then the
right hand side of (1.1) becomes,

(1.2) 2(1, - ! ) / > - / J2"G((rU-r>)l/2e«)£don_M)dr.
o

Now we fix r and θ and look at the integral over dBn_{ in (1.2) in the case
G — g o 7r; we obtain

n-\

(1.3) / g ana-iλ{\ - r 2) 1 / 2r«-VV. Π ^ don_λ{z),
Jw^ \ j=λ ηj=λ

where an — nn/2.
By the induction hypothesis, (1.3) is equal to

(1.4)

Inserting (1.4) into (1.2) and changing the order of integration we arrive
at,

(1.5) f g°πdσn

—
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Next replace θ + ψ by 0, integrate out ψ, and interchange the order of
integration again and we have

(1.6) j g°πdon

na-\r»-\\-rψ2peiθ)
n n— i v β r j

'r2n~3drdpdθ.

Let h(r) — ana~\χr
n~x{\ — r 2 ) 1 / 2 ; from elementary calculus it follows

that A is increasing on the interval [0, bn] and decreasing on the interval
[bn,1], where bn = [(n - \)/n]x/1. Moreover, A(0) = A(l) = 0 and h(bn)
— 1. We also see that A' vanishes to order n — 2 at 0, to order —1/2 at 1,
and to order 1 at bn. We break the innermost integral in (1.6) into two
pieces, the integral from 0 to bn, and the integral from bn to 1. In each of
these we make the substitution / = A(r). If λ denotes the inverse function
of A (in either case) then each of the two integrals takes the form

(1.7) j\{tPe
iβ)λ{ty(n-\h'{\{t))Vdt.

We are interested in the behaviour of the "weight" w(t) =
λ(tyin~l)[h'(λ(t))Γι, when t is near 1. First note that λ(l) = bn. Next we
may calculate that h\λ{t)) vanishes like (1 — t)λ/1 when t approaches 1.
Now if we substitute (1.7) back in for the inner integral in (1.6) we get,

(1.8) ί goπdσn= [^ΊXwn_λ{p)Cg{tpeiθ)w{t)dtdpdθ,
JdBn

 J0 J0 J0

where w(t) = (cx + o(\))(\ - t)~x/1 as / -> 1, c, > 0. (We have absorbed
the constant 2{n — 1) into w.) Finally, in the inner integral in (1.8) we
make the substitution r — tp, and then interchange the order of integra-
tion to obtain

(1.9) ί goπdσn=ί271flg(reiθ)wn(r)drθ,
JdBn

 J0 J0

where

We now check that wn has the right properties. First of all

f wn{r)dr= f w(r)drί wn_λ(r) dr < oo,
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so (i) is satisfied. Now we know that w(r/p) = (cx + o(l))(l — r/p) 1 / 2 ,
as r/p -> 1, and wn_{(p) = (c2 + o(l))(l - p ) ( l l " 4 ) / 2 , as p -> 1. It follows
that

= (c + o(l)) jf'(p - r Γ 1 / 2 ( l - p ) ( " " 4 ) / 2 </p as r -> 0,

for some c > 0. In this integral we make the substitution

we arrive at

wH(r) = (c + o

To complete the proof we should check that the theorem is true for n — 2.
This is done by the same method as the induction step given above.
Indeed, it is somewhat simpler and the details will be omitted.

Now if g is continuous on U we may apply Theorem 1 to the function
I g Ϋ and conclude that

/ \Tg\Pdσn=f\g\
Pdμn,

where Tg = g ° π9 and dμn(r, θ) = wn{r) drdθ. It is now clear that T
extends uniquely to be an isometry of Lp(dμn) into Lp(dσn). If g is
holomorphic, then it is obvious from Theorem 1 that g E Lp(dμn) if and
only if g G A£n_3)/2. Also if g is holomorphic, then so is Tg. We may
conclude with

COROLLARY 1. T is a bounded, linear, one-to-one map of A^n_3)/2 into

2. In this section we show that if g EL%{U) then Tg — g o π E
BMO(Bn). To do this it is sufficient to show that if g E %(U) 3 constant
C 3 if F is a holomorphic polynomial in /ί variables then

1/Fg°πdσn <CJ\F\dan.
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To do this we proceed as follows. Since F E L2(dσn) we have

JFTgdσn=jT*Fgdμn

where Γ* is the adjoint of the isometry T: L2(dμn) -» L2(dσn). The proof
is then accomplished in two steps. The first is to show that if F is a
holomorphic polynomial in C" then Γ*Fis a holomorphic polynomial in
C and / | T*F\ dμn ^f\F\ don. The second step is to show that if
g G ®(ί/) then 3 constant C B for any holomorphic polynomial h of one
variable we have

fhgdμn<CJ\h\dμn.

The first step is quite easy. The second is slightly trickier than it may
appear.

LEMMA 2.1. // F(z) — ΣFaz
a is a holomorphic polynomial then

(T*F)(z) = Σ t e 0F(k,..,k )n~n k / 2zK Moreover f \ T*F\ dμn<f\F\ don.

Proof, To prove the first part we show that T*za — 0 unless ax = a2

= — - = an, and then we show T*z\ z% = n~nk/1zk. Because of the
rotational invariance of on, the integral Ia = /zag(π(z)) dσn(z) is un-
changed if zk is replaced by zke

iθ and z7 by zte~iθ. Since g © TΓ is also
unchanged by these substitutions we see that Ia = ei(ak~a')θIa, for any β. It
follows that Ia — 0 unless αα = αz for all k, I = 1,...,«. If α = (/:,... ,&)
then

zn)
kg(n"/\

where h(z) — zkg(z). By Theorem 1 (iii) we see that

Since T: Lp(dμn) -> Lp(dσn), 1 < ^ < oo, is an isometry it follows that
Γ*: L\don) -> L\dμn\ 1 < ^ < oo, has norm at most 1. So if F is a
holomorphic polynomial in n variables

f\T*ϊ\'dμn*f\F\qdon
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for each q > 1. Now we let q -» 1, by the bounded convergence theorem

f\F\qdσn^f\F\dan and f\T*F\9dμn^ j\T*F\dμn.

Next we want to show that if g (Ξ $((/) 3 a constant C 3 for every
holomorphic polynomial h in one variable we have

\fhgdμn <cf\h\dμn.

In other words, the mapping hπ> f hg dμn is continuous on A\dμn), the
closure in L\dμn) of the holomorphic polynomials. We have already
observed that since wn(r) behaves like (1 — r)

(n~3)/2 as r -> 1, Aι(dμn)
and yl|π_3 ) / 2 have the same elements. Now Λ^ has another name in the
literature, it is called Bp wherep - 1/(2 + α). The dual of Bp (and hence
of 4̂̂ ) is known to be a certain space of Lipschitz function depending on
/?, see [3]. However, the duality is effected by an integral over the
"boundary" of U rather than by an integral over U itself. We seem to be
saying that the dual of Bp is 9>(U)9 for all /?, if we use the area pairing.
This can be seen as follows: by results from [3] any two Bp spaces are
isomorphic by means of fractional derivatives. In particular Bp is isomor-
phic to Bλ/1. From [3] we know that the dual of Bλ/1 is the Zygmund class
Λ*. By a theorem of Zygmund, [2] Λ* is the set of indefinite integrals of
%(U). However, rather than following this tortuous path we prefer to give
a simple direct proof of what we need.

LEMMA 2.2. If α > - 1 and gG<$>(U) then 3 a constant C 3 for every

holomorphic polynomial h we have

- r) < Cf\h(reiθ)\(\ - r)adr.

Proof. If / is holomorphic in [/, fk will denote its fcth Taylor coeffi-
cient. We then calculate that

1 r2πh(reiθU^)dθ(l -rydr = 2πy2hkgk[
lr2k(\ - r)adr

0 J0 J0
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Also we see that

f j2ηth(reiβ)reiβg'{reiθ)dθ{\ - r)a+x dr

(2k + l)Γ(α + 2)

l)Γ(α

« + 2)
_ T(2k + l)Γ(α + 1) k

g

(α + l)(o + 2) v-22k+

k8

a

k

+2fr
2k(\-r)adr.

In other words

(Ί2\{reiθ)g{reiβ)dθ{\ - r)adr
Jo Jo

(α
^V^) dθ{\ - r)a+x dr

Using the fact that g E <$>(%), the first term above has modulus at most

Using the fact that | gk | < C| |g | |Φ for some constant C, the modulus of
the second term is at most

\ f>(\ - r)adr.

The proof will be finished if we show that there is a constant C such that
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for any holomorphic polynomial h. To see this we apply the well known
inequality of Hardy and Littlewood [2] on a circle of radius r < 1 to
obtain

and hence

Now we just integrate on r from 0 to 1.
Next we want to show that Lemma 2.2 remains true if the measure

(1 — r ) ( w ~ 3 ) / 2 dr dθ is replaced by the measure dμn. Since A\n_3)/2 and
A\dμn) are the "same" it may seem obvious that they have the "same"
dual. A little reflection shows that we need more information to draw this
conclusion. It turns out that we do know enough about μn to get the result
we want.

LEMMA 2.3. // n > 2 and g e %(U) are given, 3 a constant C 3 for
every holomorphic polynomial h we have

jhgdμn<CJ\h\dμn.

Proof. The idea is to show that / hg dμn and j hg{\ - r)
(n^)/2 dr dθ

differ by a manageable amount and then to apply Lemma 2.2. As before
we calculate that

C (2\(reiθM^(\ - r)("-3)/2dθdr
Jo Jo

o
- Γ(2* + l)Γ(Qι -
S

On the other hand,

jhgdμn = j j mh(reiθ)g{reiθ)dθwn{r)dr
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To calculate /J r2kwn(r) drwe use Theorem 1, (iii);

[

Γ[l(rel>n(r)drdθ, where g(z)=\z\2\

So, by Theorem 1 (iii) we see that

(\2kwn(r)dr

2π T{nk + n) '

here we have used the formula found in [8]. So we conclude that

We will use Stirling's formula:

Γ(x + 1) = (2^)I/2(f p / [ l + θ(i)], asx - oo.

We have

T(nk + n)

Γ \'/2/r -\\k+l/2\»
) (A:g } I ! + o ί l

+ n+l)e- 1 )"* + "" l / 2 1 U

h.nk + n/2

J 1 + Onk + n— 1(nk)nk+n 1/2(1 + (n - \)/nk) i)]
i)]

where Cn, C'n depend only on n, not on k. Next note that

(1 + (n - \)/nk)nk = e"-χ[\ + O(l/k)].
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We may conclude that

+ i ) " i L ((Ml

where Co depends only on AZ, not on k. A similar calculation shows us that

T{2k+ l + (/i- l)/2) *A:(" '

for some constant C\. We may conclude that

for some constant C. By Lemma 2.2 the first term above has its modulus
at most a constant times

f\h\(l-r)(n-3)/2drdθ

which is in turn bounded by a constant times f \ h \ dμn. The second term
is bounded by a constant times

which is again bounded by a constant times

v \hk\

by Stirling's formula. This last expression, as was seen at the end of the
proof of Lemma 2.2 is at most a constant times / | h \ (1 — r ) ( " ~ 3 ) / 2 drdθ,
which is, finally, majorized by / | h \ dμn. This completes the proof.
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