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Z^-BOUNDEDNESS OF THE MULTIPLE HILBERT
TRANSFORM ALONG A SURFACE

JAMES T. VANCE, JR.

For an appropriate surface o in R'\ we prove that the multiple
Hilbert transform along a is a bounded operator on Lp(Rn), for p
sufficiently close to 2. Our analysis of this singular integral operator
proceeds via Fourier transform techniques—that is, on the "multiplier
side"—with applications of Stein's analytic interpolation theorem and
the Marcinkiewicz multiplier theorem. At the heart of our argument we
have estimates of certain trigonometric integrals.
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I. Introduction. The present work continues that of Fabes, Nagel,
Riviere, Stein, and Wainger on singular integral operators associated with
curves or surfaces in Rn. For an appropriate curve y: R -» Rn we define
the Hilbert transform H along y by the principal value integral Hf(x) =
P-v./!£>/(* - y(t))dt/t, xSR\fe C™(Rn). In the papers [1] of Fabes;
[11] and [12] of Stein and Wainger; [2] and [3] of Nagel, Riviere, and
Wainger; and [5] of Nagel and Wainger, it has been shown that for a
variety of curves y, the operator H is bounded on L2(Rn), or on Lp(Rn)
for some or all p in the range 1 < p < oo; on the other hand, there are C00

curves y for which H fails to be bounded even on L2(Rn).

Nagel and Wainger [6] have introduced the multiple Hilbert trans-
form along a, defined for/ G Cc°°(i?") and x G Rn by

(1) Tf(x) = lim T^Nf(x) = lim / • • • f f(x - a(t))^- • • • y * .
/v—* oo /v—* o o I /I

Here, a is the /:-surface in Rn given for t = (tl9.. .9tk) G Rk by o(t) =
(*!,... ,/*, y,(0, . • • ,7/(0) where n = k + l and y / 0 - IIf=1 | *,. |<V Nagel
and Wainger showed that T is bounded on L2{Rn) if the exponents atj

are appropriately restricted. Our proof that Tis bounded on Lp{Rn) for/?
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sufficiently close to 2 proceeds under somewhat more stringent conditions
on the exponents.

What is the interest in the operators H and T1 They occur in the
study of certain singular convolution operators Kf=%*f. If the kernel
% is odd and satisfies a one-parameter homogeneity condition—the
simplest being %(tx) = t~n%(x) (x E Rn, t> 0)—then H arises when
one decomposes K by an appropriate variant of the Calderon-Zygmund
"method of rotations", and one sees that Lp inequalities for H imply the
same for K. In [6], Nagel and Wainger impose a multiple-parameter
homogeneity condition upon % and are led to T via the method of
rotations. Again, bounds on T imply bounds on K. Moreover, in this case
the kernel % may fail to be locally integrable at a set of points of positive
dimension—e.g. along a line in Rn; this stands in contrast to previously
studied singular convolution operators in which the kernel could be
non-integrable only at the origin and at infinity. For a more detailed
discussion, one should see [6] and Part I of [12].

This paper incorporates substantially the author's Ph.D. thesis (1980,
Wisconsin). The author wishes to express his deep appreciation to Profes-
sor Alexander Nagel, the thesis advisor, for his patient guidance in this
work; and also to Professor Stephen Wainger, whose lectures in Fourier
analysis initiated the author's interest in the subject.

II. Outline of the argument. Our first observation is that for each
/ E C™(Rn), lim^o^^ooT^fix) exists for every x <ERn. Thus, the a
priori inequality \\Tf\\p < Cp \\f\\p for/ E C™(Rn) will follow via Fatou's
lemma from the same inequality for the truncated operators Te^N provided
the estimates are independent of e and N. We therefore fix e > 0 and
N > 0 and study TBtN for this and the following two sections.

Notice that TeNf is well-defined by (1) for a wide variety of functions
/ , for example/E \Jx<.p^Lp{Rn), and that TBfN is bounded on Lp(Rn)
for 1 </? < oo, but with a bound which could depend on e and N. One
sees easily also that for/ E Ux<p<2L

p(Rn), we have (Te Nf) = mf where
denotes the Fourier transform and m is given by

m = meN(x,y) = j '•• jexpi
k I

2 x,t, + 2
h

for x E Rk andy E Rl. (We write x = (xl9... ,xk)\ likewise fory.)
Our approach to the desired Lp estimates for TeN is by Stein's

analytic interpolation theorem [13, pg. 205]. We thus define multipliers
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e,N,z by

(2)
k I

i = l y = l

X + 2 UY,(0) 3 dtL

for x E Rk, y E Rl, and z E C. Of course, me ^0 = meN, so we taken z in
a certain vertical strip {z EC: -a < Re(z) < 6}, where <z > 0 and b > 0
are to be determined by the exponents atj and the dimensions A: and /.
Our application of Stein's theorem is akin to its use in proving Lp

inequalities for Hilbert transforms along curves in [12, Theorem 11, pg.
1271], [3, Theorem l,pg. 397], and especially [5, Theorem 3.1, pg. 243];
precedents are also found in the study of related maximal functions, as in
[4], [9], and [12, Theorem 12, pg. 1276].

In §111 we study mE N^z for Re(z) >: 0. In spite of the growth of the
factor [1 + 2^-=1(jyy/f)) JZ> w e shall see that these "worsened multipliers"
will be bounded on Rn uniformly in e and N, so long as Re(z) is not too
large. In estimating certain trigonometric integrals, we shall apply in a
crucial way results of Nagel and Wainger from their L2 study [6].

In Section IV we consider the meNz for Re(z) < 0. If Re(z) is
sufficiently large negative, then the decay of [1 + S^^^-y//))2]2 will
enable us to show that these "improved multipliers" satisfy the hypothe-
ses of the Marcinkiewicz multiplier theorem [10, pg. 109], with estimates
uniform in e and N. The technique employed here is elementary but
cumbersome, requiring many integrations by parts.

At this point we can define operators 7 ^ z by

(Tt,NJ)~=mttNJ for/GL2(i?»).

Section III shows that T^NiZ is bounded on L2(Rn) if Re(z) is not too
large. Section IV shows that'7; ̂  z is bounded on Lp(Rn) for 1 <p < oo if
Re(z) is sufficiently large negative. Stein's analytic interpolation theorem
thus shows that T^N — TeNQ is bounded on Lp(Rn) for certain/? near 2.
Section V contains the details of this argument. We also comment on the
limitations of our method and cite some related questions about maximal
functions associated with the surface a.

III. The worsened multipliers: me N z for Re(z) >: 0. In this section,
we shall prove that if Re(z) is not too large, then rnE N z will be bounded
on Rn.
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1. Preliminaries. Our inequalities depend on the following three
results, proven by Nagel and Wainger in their development of the L2

theory for T:

THEOREM A [6, Theorem 3.1, pg. 768]. Let ax < a2 < - • • < aw, and
suppose that ay > 0 for some fixed index j . Then ifXj — 1, and xl9...9xn are
otherwise arbitrary real numbers, we have

jc,fa> + • • • +xnt
a»] dt < c[\ + b<l-"J/n)]

where c = c(au... ,«„) > 0 is independent of the xX9... 9xn9 and b.

COROLLARY B [6, Cor. 3.6, pg. 772]. Let al9...9anER. Suppose a} =£
l,y = l,29... ,N and a > 1. Then

s:exp x
N

as+ 2 J'/"

c = c ( a , , . . . j a ^ ) > 0 I J independent of t h e real variables y X 9 . . . , y N ,

dt.

B> 1,

LEMMA C [6, Lemma 3.7, /?g. 773].

edtn dt,
e - ^ - L <c» for every e>0.

ln l\

Nagel and Wainger employed a Van der Corput Lemma technique to
prove A and B. C is elementary.

2. An estimate of a trigonometric integral Our central tool in estimat-
ing the worsened multipliers will be the inequality given in the following

and
MAIN LEMMA, (i) Suppose 0 < b}^ 1 for 1 <y* < /; bj ¥= bi if j =£ j ;

o< u<

Then there are constants C < oo and K > 0, depending only on the above
parameters, such that //Re(z) < [/, >> E i?7, a > 1, and N > 1

exp t
7=1

+ 2
7=1
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(ii) The same estimate holds for the integral

225

I exp t as+ 2 yMl + (as)2 + J (^ / ] I f .
7=1 7 = 1

Proof. We give the proof of (i) only, that for (ii) being virtually
identical.

Let /, bj, z, y, a, and N be as above. Let 8 = Re(z). $ will denote the
integral to be estimated; b will be max(6,, . . . ,b,); b' will be min(£>,,... ,bt).

Case A. Suppose | _yy. | < a for ally. Let <J> be defined by

*r= - / expiU+
7=1

4L
t

Integration by parts then shows that % = BT — IT, where

7 = 1

and

IT =/"•(»)•
7=1 7=1

A change of variables in the integral defining <£ gives

exp x
7=1

d^
t

and we see by Corollary B that there is a constant c0, depending only on /
and the exponents bJ9 such that

\<}>(s)\<c0

Thus we have

Notice that the exponent upon a is negative, due to our restriction on U.
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Likewise, we estimate IT by

+ 2 (&
7=1

U-\ I

7=1

ids

/

•2'
7=1

C is given by

and is finite since, by our choice of U, 2bU — 1 — 1/(1 + 1) < - 1 . Note
also that the exponent upon a is negative. This gives the required estimate,
and Case A is completed.

Case B. Suppose that

(3) ,...9\yt\)> a.

Let a be chosen so that (/ + \)/b' <a< 1/(2(76); say, let a be the
average of these two numbers. This is possible by our choice of U.
Replacing s by sa in $ gives us

(4)
- ^

NV«
exp t as

7=1 7=1

Now let <J> be defined by

•<*) = - r
The change of variables t — \ yr

p

exp i ata + 2 //°6'
7=1

dt.

|-V(«*r) . T gives us

/

7=1 y



L^-BOUNDEDNESS OF THE MULTIPLE HILBERT TRANSFORM 227

where/? = \yr\
l/(abr)s mdq =\yr\

l/(abr)Nl/a. In the last integral notice that
(a) the exponents on T in the exponential are positive and distinct,
(b) the coefficient corresponding toy = r is ± 1, and
(c) the exponent on T corresponding to j = r, aZ?r, satisfies 1 —

abr/(l + 1) < 0, by choice of a.
Now (a) and (b) show that the hypotheses of Theorem A are satisfied,

and (c) shows that the conclusion of this theorem implies that

(5) | 4>\s) |— C • \yr I

where C depends only on the dimension / and the exponents a and abj,
hence only on /, £/, and the b..

Now in (4) we integrate by parts in the way indicated by our
definition of <£.

By (3) and (5), the boundary term BT satisfies

7 = 1

<aC- ( / + \)'\yr\
2u~l/{ab^^a-C' (1+ \)-\yr\

lu'x/{ab)

where we note that the exponent upon a is negative, by choice of a.
There are two integrated terms, IT I and IT2. We have, again using

(3) and (5), that

IT\\ = +
z-\ I

-2a 2 i
J=I

<2a2Cb\z
/

i + 2
7=1

u-\

i(yjs
ab>)2s-2ds

7=1

<2a2Cb\z\ -\yr\-
XAab) r\\ + 2

Jl i 7=1

<2a2Cb\z\ -\yr\-
l/(ab)(l+ l)\yr\

2'

u
s'2ds

•~2ds

<\la2Cb{l+ .a2t/-l/(o6)>
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Notice that the constant preceding | z | is finite since, by choice of a,
2abU — 2 < — 1, and likewise that the power on a is negative.

The second integrated term IT2 satisfies

1/771 = a[NVa<p(s)- 2 {yj •s-2ds

\u

7=1

< aC\yr\-
X/(ab) 0 + 1) \yr\

2uf 2abus-2s-2dS

and we thus see that IT2 is bounded in the desired way. This completes
Case B, and the lemma is proven, with

K = min(2C/ -1/(1+ I), W - 1 / (ab)).

3. Boundedness result for the worsened multipliers. We now can state
and prove our boundedness result for the worsened multipliers.

The needed assumptions on the exponents a, y are the following:

(6)
1 ¥= aUj > 0 for 1 < i < k9 1 <y < / and

aitJ * aiA for 1 < i < k9 1 <j < /, 1 < i <

Re(z) must not exceed an upper bound Uo, where C/o is a positive
number satisfying

(v) l)max(l, a,,,,...,«,,, = ^o*-

PROPOSITION 1. Suppose the exponents atJ satisfy (6) and f/0 satisfies
(7). 77*e« /Aere w a /zniYe constant Co, depending only on the dimensions k
and /, the exponents atj, and U09 so that

if Re(z) < J70, x G JR*, j ; E Rl, and 0 < e < N < oo
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Proof. We follow the proof of [6, Theorem 4.1, pg. 774]. The change of
variables tt — xjxst in (2) gives us

k I

(8) exp i 2 *, + 2 yjyji
i=\

L 7 = 1

where et = e | xt | , Nt = N \ xt | , and >>/ = yjV

We now split the region of integration in (8) into three parts:
(i) the region where \st\^ 1 for all /,

(ii) the region where \st\^ 1 for some but not all /, and
(iii) the region where \st\^ 1 for all i.

Region (i). The set S over which we integrate is given by S — {s G Rk:
max(l, et) < | slf | < Nt for 1 < i < / : } . We may assume that for each /,
max(l, e,.) = 1. (For if ez > 1, write [e,, iVJ = [1, Nt] - [1, e,.); then the
integral over S may be written as a sum and difference of at most 2k

integrals over sets of the form {s G Rk: 1 < | st11< Bt for 1 < / < k}.) We
further split S into the /: subregions where | sx \ , . . . , | ̂  | respectively is
the maximum of {| sx \ , . . . , | sk |} . By symmetry we may consider only the
last of these subregions: | sk \ = max(| sx \ , . . . , | sk |). The integral / to be
estimated is therefore given by

(9) / =

where the inner integral 5 is

(10) 9= f expi
•'A/:£l.v.l<=Ar,

+ + 2 (yjyj(s)lf
7 - 1

exp t
7=1

with M = max(| ^ | , . . . , | sk_ x |) and j)y = Mak>jyj.
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Now, viewing ^yy-(j) as (yj][k
i = \ \ st \

aiJ) • | sk |°H and observing that
in view of (9) we have M > 1, we apply the Main Lemma, (i), to (10) and
conclude that | $ | < C(l + | z \)/MK, where C and K depend only on U09

the dimension, and the exponents akj\ in particular they do not depend
on sl9... 9sk_l9 x9 ory. (Note: when applying the lemma we consider 5 for

Thus, since 5 is an even function of sl9... ,sk_l9 we have

where the finite constant Cx is given by
,.00 r<x> I

C, = 2*"1 '"I M

:dsk_x >dsx.

(See Lemma C.) This completes (i).

Region (ii). The set S over which we integrate is {s E i?^: et < | ^ |<-
min(l, N;) for / E fi! and max(l, et) < | jf-1< Â  for i E fi2}, where Q, is a
proper nonempty subset of the indices {1,2,. . . , / :} and S22 is the comple-
mentary set of indices. By symmetry we can take tix to be {1,2, . . . , /}
where ! < / < / : . We need to estimate / , where

/ = exp • dsr and

(12) exp x
k

2
7 = 1

X i + 2
7=1

Since $ is an even function of sl9... ,s~, we may replace exp is,-/?,, by the
bounded function t sin(si)/si in (11), for 1 < / < /. Also in (12) if we view
yjyj(s) as (^11;=, | st |

a^) • 7/(5') where we write

i=l+\
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then we see that (12) is an integral of the type considered in (i), with the
dimension k replaced by k — L Thus we have | $ | < C}(\ + \z\) and
therefore

This completes (ii).

Region (iii). The set S over which we integrate is {s £ Rk: eir < | si | <
min(l, Nt) for 1 < / < / ; } , and the integral / to be estimated is

+ 2
7=1

x
7=>

•dsx

with limits as indicated in S. As in (ii), we may replace exp \si/si by
ishi(si)/sl in the integral (13), for 1 < / < / : , and we thus need only
obtain a favorable estimate for the inner integral $ in (13).

Now, letting A = min(l, A^), we see that

(14)
sing)

exp t 2fy + (

where y}— y'^^l \sxX
ui and Pj — akj. Let ^0 be the unique positive

number such that 2y=i(.fys$)2 — /• (Such a number is unique since the left
side is an increasing function of s0.) The integrand in (14) is bounded by
(1 + l)u° if 0 < s < s0, so, since A < 1, we may assume that s0 < e^. Now
define >̂ by

(15) exp t
d±
t

Then 5 = <f>(s)sin(s) |^ — f£<t>(s)cos(s) ds, so it suffices (again since A <
1) to estimate <£(.?) for ek < s < >4.

In (15) replace / by (f/| ^ |)1//?1 where the index i is chosen so that
| y^ | s$l >: 1. There is such an index by our choice of s0. We obtain

exp t
7=1

X 1+
7=1

Zdt
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In the term corresponding to j = j , the exponent upon / is 1 and the
coefficient is sgn(y{). Also, since s0 < ek9 we have by choice of i that the
lower limit of integration is at least 1. The Main Lemma, (ii), (applied to <J>
if s g n ^ ) = -1) thus shows that <J> is bounded by C(l + | * | ) /T =
C(l + \z |), where C depends only on UQ9 the dimension, and the expo-
nents fij/fii9 hence the exponents atJ. This completes (iii), and Proposi-
tion 1 is proven.

IV. The improved multipliers: meN z for Re(z) < 0. In this section
we shall prove that if Re(z) is sufficiently large negative, then meN z

satisfies the hypotheses of the Marcinkiewicz multiplier theorem [10, pg.
109]. It is clear that meNz G C°°(Rn), so our task is to show that
xXyv' dxty(me,N,z)(x> y)1S bounded on Rn for all ^-dimensional multi-in-
dices X and /-dimensional multi-indices TJ each of whose entries is either 0
or 1. For such X and TJ, a computation shows that for all x G Rk and
y G Rl, we have

(16) xy-a^K^j) = 2

where the sum runs over /-dimensional multi-indices y\' and 77", Cp(z) =
z(z — 1) (z — p + 1), and the integral / is defined by

(17) /=/••• /«pifiv,+ i # | + i
-•• •• L'=» y = i JL J=

n (x,tl) n Uv/o) n
yeo, yeQ2

A = { / : \ , = 1}, Q, = {y: 1,^=1}, Q2 = {y: i,y = 1}.

(Note: for a multi-index X = (A1?... ,Afc), we write | X | for Xx + • • • +Xk,
and if also x G /?*, we write xx for xf! x\k.)

Thus, we need to estimate integrals of the kind in (17). For the case
l — k— 1, Nagel and Wainger have already obtained suitable inequalities
in [5, pg. 244], and extension to / > 1 presents no problem. In the general
case we argue by induction on k. The details of this proof are somewhat
technical, so we relegate the proof to the appendix and present here
instead a rough outline of the argument.

We view a k + 1-fold integral of the form (17) as

expxxk+ltk+]§(xk+ltk+l)
lk+\
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where E can be 0 or 1 according to the index set A and 5 is a &-fold
integral similar to (17). A change of variables reduces us to the case
xk+x = 1, and a computation shows that dS/dtk+l is a sum of &-fold
integrals each of which is again similar to (17), but including an extra
factor of tl\x. Integration by parts (once or twice, according to whether
E = 0 or 1) on tk+x in the k + 1-fold integral (18) thus leads to integrals
of the form /exp \tk+^tl2

+xdtk+x with $ as above. An inductive assump-
tion that /:-fold integrals, such as S9 are bounded then leads to the same
conclusion in the k + 1-fold situation. The interested reader is referred to
the appendix for details. Lemma A2, presented there, shows that if the
exponents atJ are all positive, then the integral / of (17) satisfies

(19) | / | < C - (1 + \z\)2k i f R e ( z ) < L j 5 E - ( / + 2 f c - 1 / 2 )

where C is a finite constant independent of x, y9 z, e, and N. Thus,
referring to (16), we deduce immediately

PROPOSITION 2. / / X and TJ are k- and l-dimensional multi-indices
respectively all of whose entries are 0 or 1, and the exponents <xt are all
positive, then

z/Re(z)<L*

where C, is, a finite constant independent of x E Rk, y E R1, z, c, and N.

V. Conclusion.

1. Lp-boundedness of the multiple Hilbert transform. We know by
Proposition 1 that meNz is bounded on Rn for Re(z) < Uo (see (7)), so for
these z the equation

defines the operator TetNtZ on all of L2(Rn). Since our estimates on the size
of meN z grow at most polynomially in | z | , it follows that the operators
TBfN9Z are an analytic family admissible for the Stein analytic interpolation
theorem [13, pg. 205], defined for z in the strip S = {z G C: L$ < Re(z)
< Uo} where Uo satisfies (7) and L$ is defined by (19). Proposition 1 and
the Plancherel theorem show that if Re(z) = Uo then

where Co is a finite constant independent of z, 6, N9 and / . Proposition 2
and the Marcinkiewicz multiplier theorem [10, pg. 109] show that if
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Re(z) = L$ and 1 <p < oo then

WTe,NJ\\p^Cp-(l + \z\)2k+'-\\f\\p for / £ L2 n L"{R")

where Cp is a finite constant independent of z, e, N, and/.
By analytic interpolation we conclude that

(20) i f 2 ^ ° : g ) < ^ < 2 ( t / ° L » ) then

for all simple functions / o n 2?w, where Cp < oo is independent of e, iV,
and/. An easy limiting argument extends (20) to all / G Lp(Rn), hence to
al l / G Cc°°(iT), our original domain of definition for T and the truncated
operators TeN. We may also let Uo -> C/o* so that (20) holds for

2(E/Q*-L*) 2(E/Q*-L*)
1 f < P <

Finally, letting e -> 0 and JV -> oo, Fatou's lemma gives us our

THEOREM. //*/? satisfies (21) a«d /Ae exponents atJ satisfy (6),
|| 7/H^ < Ĉ  II f\\pforf G Cc°°(iT), wAere Ĉ  fa a finite constant independent
off. (See (7) and (19) /or definitions of C/o* am/ LJ.)

2. 5om^ comments and related questions. It seems clear that the above
range of/? is not best possible; thus, the interest of the theorem is that Tis
bounded on Lp for some p other than p — 2. In the case of k = n — 1,
R. Strichartz [14] has recently shown by methods of Mellin analysis that T
is bounded on Lp(Rn) for 4n/(3n - 1) <p < 4n/(n + 1) or (according
to a condition on the exponents) 4n/(3n — 2) <p < 4n/(n + 2).

For general k9 positive results for a broader range of p might be had
by examining the kernel KejAr>z corresponding to the multiplier meN z. If
one could prove that T8tNtZ is bounded on Lp for arbitrarily small negative
Re(z) and all/?, 1 <p< oo, then interpolation would imply the same for
r. This kind of argument has been successfully carried out in the study of
Lp estimates for Hilbert transforms along curves. For example, see
[12,Thm. 11, pg. 1273]; the "improved operators" considered there are
seen to be bounded on Lp(Rn), 1 <p < oo, by an application of an
extension [8] of the Calderon-Zygmund theory of singular integrals. In the
current situation, however, it seems that the kernels K8tNt2 fail even to be
integrable on the unit sphere in Rn uniformly in e and N9 if Re(z) is small
negative, and thus the Calderon-Zygmund theory does not apply.
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A related operator of some interest is the maximal operator M
associated with our surface a, namely

Mf(x)= sup T l—rfkk'" f V ( * - o(t))\dtx dtk9
hl9...,hk>Q n\ nk J0 J0

x ERn.

No positive L^-boundedness result has been proven (to our knowledge)
for M, even in the case p = 2. However, as others have previously noted,
positive results are readily obtained for the smaller operator Mo for a wide
variety of A>surfaces a in it", where

\f{x-o{t))\dtx dik9 xER"

with 11 [= (tf + - • • +tl)l/2. In fact, when the above integral is written in
polar coordinates, the most elementary estimate yields immediately the
inequality

(22) Mof(x)<f MaJ(x)du.

In (22), 2^_, is the unit sphere 11 \ = 1 in Rk and du is the corresponding
"area" measure. Mau is the maximal operator associated with the curve
yau in JR", given for u G 2^_ x by

MaJ(x) = sup \jh\f{x ~ yaJ
s)) I ds for x G JR»,

h>0 n J0

yau = a(su) GRn fors G R.

(Several L2- and L^-boundedness theorems are known for these maximal
operators associated with curves; see for example the extensive paper [12]
of Stein and Wainger, or more recently the Ph.D. theses [7] and [15] of
Nestlerode and Weinberg.) Thus, if the surface a is such that Lp estimates
are known uniformly for the family of maximal operators {Ma>M}MG2/fe_,»
then (22) shows that an Lp estimate holds for Mo as well. This is the case,
as [12, Theorem 12A, pg. 1275] shows, for the surfaces a considered in this
paper.

APPENDIX

Here we give a detailed proof of the estimates required for the
improved multipliers, meN z for Re(z) < 0, as discussed in IV. To begin
with we have the inequality needed in the case k — 1:
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LEMMA Al. Given an integer F > 0 and « 1 , . . . , a / > 0 , there exists
C<cc so that if(yl9...9y,)eRl

9 6OG{1,2} and j v E (1 ,2 , . . . , /} for
1 < v < F, 0 < e < iV < oo, and Re(z) < - ( F + 1/2) then

/

N
sin(/) -expi + 2 (yj'a<):

7=1

z Vn dtn l .« \t>vui

{Note: we allow j v — j ^ with v ¥= t).
occurs in the case V — 0 means 1.)

empty product 11̂ =1 * * * w/iic/i

Proof. I will denote the integral to be estimated. If F > 0, we have

i + 2 {yr
7=1

v=\

Re(z) J/

n \y^
,dt

^ 2 «;.

Notice that 2{-V - 1/2) + F&o < -1 and Vbv - 1 > 0, for 1 < v < F.
In the case V = 0, we have using integration by parts that

•= / sin(*) -expi 2 (yjtm')2\ * = BT - IT

where

y=i

N
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and

IT= fN- ™
Je t

-expt 2 yjta>- dt,

7 = 1

I

7 = 1

+
7=1

z-\

Notice that |J5r|<4 if only Re(z)<0 and, if Re(z) < -1 /2 then
| # | < 1 , |« |<2^.= 1ay, and | S|< 2 | z | 2^=1ay. Thus, if Re(z) < -1 /2
then

00 1 - cos(/)
dt.

We can prove by induction on k our

LEMMA A2. {Estimate for the improved multiplier and its derivatives)
Given positive integers k and /; atj > 0, 1 < / < / : , 1 <y < / (<zfl<i associ-
ated surface o{t) — (/, y ^ / ) , . . . ,Y/(0) /^ r ^ ̂  ^^5 defined as in §1); integer
V>0; bv G {1,2} owrf^ G {1,2 , . . . , /} , 1 < t; < F; integer p,Q < p < k\
and integers ir, 1 < ij < i2 < • • • < / < A:; ^A r̂e ̂ x/^^ C < oo so that if
Re(z) < -{V+ 2 k - 1/2), 0 < e < TV < oo, (JC1?. . . 9xk) G i?*,

< | | < A T
exp t

/

7 = l "
+

7=1

Proof, We proceed by induction on k.

k— 1 ^ = 0. The integral / to be estimated is given by

fN '

I - 2t / sin(xr)-exp i 2 yj + 2 {y,r>}'
7 = 1

z Vn
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the subscript i having been dropped. We may assume that x — 1, since the
change of variables | x \ t -» s only replaces x by sgn(x), e by | x | e, N by
| x | TV, and j>7 by | x \~ajyj. (Our estimates must be independent of these
parameters.) We see then that Lemma Al gives the required estimate if
Re(z)< -(V+ 1/2).

k = 1, p = 1. The integral / to be estimated is given by

Again we may assume that x = 1, and integration by parts gives us

i

(Al) y /=s in(O-expt ^ / ^
7 = 1

1 + 2(yj
7 = 1

z V

• n
v= 1

- exp t 2 ^ /^
7 = 1

(A2)

where

(A3)

(A4)

+

./„ if 1 < v < V

if t? =

K + l

• n (yjj"*
o = l

= 2z 2 «,• i + 2 (y
i L

z-\ V+\

II (*.>*
where jC j is defined as in (A3) and 6K+1 = 2, and

(AS)
o = l

+ 2 {yp
7 = 1

z Vn
We estimate the boundary terms in (Al) by

This will be at most F, for every t, if Vbv + 2 Re(z) < 0 for 1 < v < F;
i.e. if Re(z) < -F . Lemma Al is used as in the case p = 0 to estimate the
integrated terms in (Al) arising from &,<$>, and 6, and we see that
Re(z) < -{V + 3/2) is required. This completes the case k = 1.
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Now suppose that the lemma holds for fc-fold integrals.
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Induction step, p = k + 1. The integral / to be estimated is given by

(A6)

where the inner fc-fold integral $ is given by

(A7) / = / • • • / exp t 2 xtt, + 2 yjiA
i=\

+ 2 {yjyj(t)f

n
t ? = l r=\

with j5 — p — 1 = k. (Notice that in (A7), / denotes the k + 1-vector
(tl9... ,tk, tk+{).) Just as in the case k — 1, p = 0, we may assume in (A6)
that xk+x = 1. Integration by parts in (A6) then gives us

(A8)
lk+\

tk+\-

The induction hypothesis shows that 5 and therefore the boundary
terms are no greater that C(l + | z \)lk provided that z satisfies Re(z) <
— (V + 2k — 1/2). In applying the induction hypothesis we of course
view jyyy(O as (j>/£$-+

1
ly)' Yy'(O where we write

and thus we obtain an estimate independent of tk+v

To estimate the integrated term in (A8), we first must estimate
3^/9^+i anc* then integrate by parts again. For the former task, we first
observe that for tk+x > 0,

35 r c k

(A9) -^ = t~k\x J - • • J0lk+\
2 *i', + 2

1=1 y = l

*
r = l

&9 %, and 6 are given by

( A I O ) ff = t 2 « * + , . j -

7oJ defined as in (A3), £y+ I = 1;

K + l
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(AII) a = + 2
7=1

z-\ v+\

j v A defined as in (A3), by+] = 2; and

(A12) fi = I 2 bvak
, t > = l

+ 2 {yjYji
7=1

z V

n i
The integrals arising in (A9) from the various terms in $, %, and 6 can be
estimated by using the induction hypothesis. We conclude that

(A13)
dtk+i

\2/fc+l i f R e ( z ) < - ( F + 2 £ + l / 2 )

where C is as in the statement of this lemma and in particular indepen-
dent of tk+v

Integration by parts once again in (A8) yields

(A 14) J^si = (1 - cos(/ t+1))-
k+\

The boundary terms in (A14) are estimated by use of (A13). To estimate
3 2 5/3^ + 1 and thus the integrated term in (A14), we notice that formulas
(A9)-(A12) show that ^+I^ /9*A:+I ^S a linear combination of terms like 5
itself, with z and V possibly replaced by z — 1 and V + 1 respectively; the
number of terms depends only on /; the linear coefficients depend only on
the exponents atJ with the exception that some (see (All)) include a
factor of z. Thus, a repetition of the argument yielding (A 13) shows that

\2k+2 ifRe(z) <-i

The integrated term in (A 14) and therefore / itself is now dominated by
C(l + | z |)2*+2, if Re(z) < -(V + 2k + 3/2). This completes the induc-
tion step in the case p = k + 1.

Induction step, p < k + 1. In this case we may assume that ip< k + 1,
i.e. that xk_hltk^_l does not occur in II{!= !*,./,.. The integral / to be
estimated is given by

Lk+\
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where $ is given by (A7), except that in this case we have p = p < k.
Again we may assume that xk+x = 1, and we integrate by parts of obtain

- fN{\ -

As we observed in the case p = k + 1, 5 and tk+ld$/dtk+l are ap-
propriately bounded, so the required estimate for / follows immediately.
This completes the induction step, and Lemma A2 follows.
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