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THE QUADRATIC NUMBER FIELDS
WITH CYCLIC 2-CLASSGROUPS

PATRICK MORTON

Many authors have considered the divisibility of the restricted class
number h+ (d) of the quadratic field Q — Q(Jd) by 4 and 8, in the case
that the discriminant d of Q, has exactly two prime factors. For such
discriminants the restricted classgroup £ of 12 has a nontrivial cyclic
2-Sylow subgroup, and conditions on d can be given for the existence of
classes in & of orders 4 and 8. The first such results are due to Redei.

In this paper we give criteria for the divisibility of h + (d) by 8 which
are phrased in terms of the splitting of one of the prime factors p of d in
a normal extension of Q depending only on d/p = d0. This simplifies
and unifies the criteria for S\h+(d) existing in the literature, which
depend mainly in the representation of the prime p by certain quadratic
forms, or on the quadratic character of solutions to ternary quadratic
equations.

1. Introduction. We start from the Redei-Reichardt theorem [25],
[20], which asserts that 4 | h+ (d) if and only if d has one of the following
forms:

(a) d — — 4p, or $p,p = 1 (mod 8);
(b)d= -8p,p =±l (mod8);
(c) d=qp*,q=\ (mod 4), p odd, p* = (-l)ip~l)/2p9 and (p/q) =

+ 1.
(p and q are primes.) We then deduce our criteria for 8 \h+ (d) by a
simple application of quadratic reciprocity. Since our theorems are phrased
in terms of the splitting of primes, the Frobenius density theorem gives as
immediate corollaries results concerning the density of p for which
8 | h+ (d). For example, the density of primes p for which 8 | h( — 4p)
is 1/8. (Here h(d) denotes the absolute class number.) Similar tech-
niques are also applicable to fields £2 = Q(]fd) with d a product of any
number of primes. In [21], [22] we use these techniques to simplify and
extend results of Redei [27], [28].

Moreover, as by-products of our proofs we get several known results
in a very simple fashion, among which are a relation between /*+ (8/?),
h(-4p) and h(-Sp) (see Theorem 4), and a result of E. Lehmer [19]
related to quartic reciprocity. The latter result is closely connected with a
certain abelian quartic field, whose rational character occurs naturally in
the discussion of case (c). (See §4.)
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In analogy to the above fact concerning the divisibility of h( —4p) by
8, it appears from computations by several authors [6], [17] that the
density of primes p for which \6\h{ — 4p) is 1/16. This raises the
question: can these primes be characterized by their behavior in some
normal extension of g? The existence of such an extension would explain
the apparent density 1/16. However, Cohn and Lagarias [5], [6] have
shown that this hypothetical field is not to be found easily. More
specifically, they have shown that no field of degree 16 ramified only over
2 can characterize the divisibility of h( — Ap) by 16. Of course the same
question can be asked for other powers of 2. We refer the reader to [5], [6]
for further discussion of the relevant conjectures.

I would like to take this opportunity to express my gratitude to Jeff
Lagarias, who suggested using normal extensions in studying h+(d), and
with whom I have had many stimulating conversations.

2. Preliminaries. Let the prime factors of the discriminant d of
fi — Q(Jd) be/? and q, where q — 2 if d is even. Then by the genus theory
of Gauss the restricted 2-classgroup of fi is cyclic. (Recall that ideal
classes are defined by strict equivalence, so a ~ b if and only if a = (y)b
with Norm y > 0, and that the 2-classgroup is simply the 2-Sylow sub-
group of the resulting classgroup.) Moreover the unique nontrivial class of
order 2 contains one of the ideals p, q, or p q, where

P2 = (p) and q2 = {q).

(We refer the reader to [14] and [20] for details.) Since an ideal a lies in
the square of some ideal class if and only if the common value of the
Hilbert symbols

is one (here N denotes the norm), it follows that 4 divides the restricted
class number h+ {d) exactly when

This is easily seen to happen if and only if d has the form (a), (b), or (c) if
§1.

Henceforth we assume d has one of these forms, and we ask when
8 | h+ (d). Both ideals p and q are now equivalent to squares:

(2) t>~32, q~to2 ,

and g, to generate the classes of order 4. Hence 8 | h+ (d) if and only if

(3)
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The computation of x(g) and x(to) depends on the following lemma. (Cf.
[30].)

LEMMA 1. Let a — p or q, a — Na. If (x, y, z) is a positive primitive
solution of

(4) x2 - dy2 - 4az2 = 0,

then there is an ideal b for which b2 ~ a and Nh — z.

Proof. Let y denote the integer (x + y{d)/2. Then y is primitive, i.e.
divisible by no rational prime, by the primitivity of the solution (x, y9 z)
and the fact that a is square-free. If y' denotes the conjugate of y, it
follows from Ny = yy' = az2 that (y, y') = a, and so

(y) = ab2 ,

But then b2 - b2a2 = a(y) - a . •

We now proceed to evaluate x(i) a nd x(^) *n the various cases (a),
(b), (c), using this lemma.

3. Results for even discriminants. First consider the case d — — 4p,
where p = 1 (mod 8). Here q = 2 and p = {yfz=~p) ~ 1. Thus we need only
compute x(^)- We solve (4) with a — 2 by considering the prime factors
of p in the field Q(j2). This field has class number 1, and so (p) —
with

(5) p = (u + w]fl)9 w > 0, u2 - 2w2 = -p.

This solves (4) with x — 2u, y = 1, z — w9 giving x(^) = (w/p) by (1)
and Lemma 1. (Note p\w, so the Hilbert symbol (w, d/p) equals the
Legendre symbol (w/p).)

To characterize (w/p) in terms of a normal extension of Q we first
note that ((w — u)/p) = 1. For, by the law of quadratic reciprocity and
the fact that p = 1 (mod 8) we have

( w - u \ _ / p \ = I p ~ w 2 + u 2 \ = I w 2 \ = j

\ /7 / \ Ĥ  — W / \ Vt̂  — W / \W — U I

Hence

w \ _ / (w ~ w)/w \ _ / 1 — u/w \ _ I 1 — u/w
pi \ p I \ p I \ »
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where the last symbol is the Legendre symbol in Q(]/2). But from (5),
— u/w = ]/2 (mod£>), so

In other words (see [15], p. 150), x(tt>) — 1 if a n d onty if P splits into 2
primes in the field Q(Je), e = 1 + v^- Note also that

1 - / 2 I /2

and so p and #/ split the same way in Q{4e). This field has the normal
closure K — Q(]/— 1, ]/e), which contains the 8th roots of unity. Hence we
may state:

THEOREM 1. (Cf [1].) If p is an odd prime, then 8 divides the class
number of g(/— 4p) // and only if p splits completely in the field K =
Q{f=~\ i/l +\fl).

Since K is normal over Q of degree 8, the Frobenius density theorem
([8], II, p. 133) immediately gives the

COROLLARY. The density of primes p for which 8 | h (~4p) is 1/8.

By similar methods one may also prove the following theorems. (Cf.
[12], [16].)

THEOREM 2. (i) If p = 1 (mod 8), then S\h(-8p) if and only ifp splits

completely in the field K' = Q{J- 1 ,%2).
(ii) Ifp= — 1 (mod 8), then 8 | h( — 8p) if and only if p splits com-

pletely in the (abelian) field K" = Q(Jl + i/2 ), i.e. if and only ifp~-\
(mod 16).

(iii) The density of p for which 8 | h(-Sp) is 1/4.

THEOREM 3. The restricted class number of Q(ySp) is divisible by 8 //
and only if p splits completely in the field K'K". The density of such primes
is 1/16.

For the proof of Theorem 2 one starts with the formula/? = w2 — 2u2,
and shows that (u/p) = 1 in case (i) and ((w — u)/p) — (—p/(w — u))
= 1 in case (ii). This leads as above to the characterization of x(*°) ~
(w/p) in terms of the fields K\ K". (Note here that pq - ( / - 2p) - 1,
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so x(to) ~ x(3)-) We remark also that K" is the subfield of the field of
16th roots of unity which corresponds in the sense of Galois theory to the
group of automorphisms

H = {tt16 - &). a=±\ (mod 16)}, f16 = e2'"16.

This follows from the formula

Hence a prime p = — 1 (mod 8) splits completely in K" if and only if
p = — 1 (mod 16). The density of p satisfying each of the respective
conditions (i), (ii) is 1/8, giving the total density 1/4.

For Theorem 3 the evaluation of x(3) is accomplished using the
formula

p = z2 + 2y2, where ( - ) = + 1 ,

while the evaluation of x( tv) proceeds from

—p — w2 — 2u2

and the fact that ((w - u)/p) = +1 . We find that

(6) X ( 8 ) = , * , V

where as before {p) — ppf in ^(V^), and the symbols are Legendre
symbols in g(\/I). We note (\/I/^) = (2/p)4, where (fl//^)4 = ±1 is the
Dirichlet symbol, defined for quadratic residues a of p by (a/p)4 =

Theorems 1-3 immediately imply the following curious result. (See
[16].)

THEOREM 4. If p is a prime congruent to 1 (mod 8), then 8 | h+ (8/7) if
and only if 8 | / J ( -4 /> ) a«c? 8 | h(-

Proof. First note that A7T = # ' # " since

Thus /> splits completely in K'K" if and only if p splits completely in K
and #'. •
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While we are at it we also mention the following classical result,
which follows easily from (6).

THEOREM 5. (See [4], p. 107.) The Pell equation

(7) x2-2py2=-\

has a solution in integers if

(8) /? = 9 ( m o d l 6 ) and ( - ) = - 1 .

If p = \ (mod 8) and exactly one (but not both) of the conditions in (8)
holds, then (7) has no solution.

Proof. In ft = Q(]/2p) we have

Thus t>q — 1 if and only if some associate of {2p has positive norm,
which is the case exactly when the fundamental unit of Q(flp) has norm
— 1. If either of the conditions in (8) holds then by (6) and the remarks
following Theorem 3 we have x(l)— —1 or x(to)— —1, so that the
2-classgroup in fi has order 4. Since (5tr))2 — ̂ »q it follows that $q ~ 1 if
and only if x (3^ ) = +1> i-e- if a n d only if x(b) — x ( ^ ) - This proves the
theorem.

This concludes our discussion of cases (a) and (b). We turn now to
case (c).

4, Results for odd discriminants. For case (c) we require the follow-
ing lemma.

LEMMA 2. / / A = 1 (mod4) and y = (x + y{K)/2 is an integer of
which is relatively prime to 2, then y3 = u + v{K, with w, v E Z.

Proof. We may assume x and y are odd. Then the assumptions imply
A = 5 (mod 8), since

x2 — A v 2

= 0 (mod2)

in case A = 1 (mod 8). The assertion now follows easily by cubing and
noting that x2 + 3A>>2 = 3x2 + A>>2 = 0 (mod 8).

Consider first the computation of x(to)> where ro2 — q. This entails
solving (4) with a — q, i.e. solving

(9) - p*y2 = 4z2 - qx'2, x = qxf.
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For this we factor (p) = py/ into conjugate prime ideals of degree 1 in
k — Q(yfq), which is possible since (q/p) — + 1 , and we consider the
principal ideal ph, where h = h(q) is the class number of k. By Lemma 2
(with A = q) we then have

(10) pa* = (Z ' + xV^) , z', x ' G Z , z ' > 0.

Now the fundamental unit in A: has norm — 1, so on taking norms in (10)
we may suppose that

(11) {-p*t = z*-qx".

Moreover h is odd (see [9], p. 566), so that the lefthand side of (11) is
= — 1 (mod4), implying that 2 | z ' ; say z' = 2z. This solves (9) with
y = pOh-1)/2 T h u s b y Lemma 1, (1) and (11) we see that

using the fact that h is odd, and noting (2/p) = ( —
This suffices for the computation of xC^)* However, in order to

characterize the primes p for which x(to) = 1 i*1 terms of a normal
extension of 2? w e compute x(to) in a different way. Write q = a2 + b2,
with fl, i G Z, a? odd, and assume for the moment that p \ b. Then
p \ (z ' — <zx')> and we claim that ((z' — ax')/p) = 1. For z' — ax' is odd
(and w.l.o.g. positive in case p = 3 (mod 4)), so by quadratic reciprocity
(in the form given by Hasse [9], p. 82) we have

\ p J \z'-ax'J \zf-ax'J

_ I(p*f + z'2-a2x'2\ _ ( b2x'2
= 1.

z' -ax' I \ z' - ax'

Therefore, by (1),

:'\l2\(l-a(x'/z>)

PI \Pl\ P

_{2\{\-a{x'/z')

(i)-
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where a — (q + aJq)/2, using —z'/x' = {q (modjp) from (10). Hence
X( to) = 1 if and only if p splits completely in the field

(12) K=Q
+ a{q

In case p \ b and p \ zr — ax\ replace z' — axf in the above argument
by z' + axr. Then p\(z' + ax')9 since p\2ax\ and the computation
shows that x(t°) = (a'/P)> where a! is the conjugate of a. Thus x(to) = 1
exactly when p splits completely in Qiffi) = Q(y/ot) — Kq9 so we may
drop the restriction p\ b.

Now the field Kq is abelian, because the conjugates of integer ffi are
•± y[a\ ± {of = ± 2^a~\ all of which lie in A^, and because the
substitution

is an automorphism of Kq of order 4. Consequently, p splits completely in
Kq if and only if the rational prime/? does.

In particular, if p = 3 (mod4), then £2 = (?(/— pq) is imaginary, and

) x(8) =

Thus we have (cf. [26]):

THEOREM 6. / / q = 1 (mod4) and p = 3 (mod4), then 8 | h(—pq) if
and only if p splits completely in the field Kq defined by (12), where
q — a2 + b2, a odd. This is equivalent to the condition (~p/q)4 — 1.

COROLLARY 1. For a fixed prime q = 1 (mod 4), the set of primes p = 3
(mod4), for which 8 | h(—pq), has a density equal to 1/8.

Proof. This follows easily from Dirichlet's Theorem on primes in
arithmetic progressions, since 1/4 of the residue classes mod q satisfy

a(q-V/4 =(—i)^~'1)/4 (mod q).

COROLLARY 2. For a fixed p = 3 (mod 4), the set of primes q = 1
(mod4), for which 8 | h(—pq), has density 1/8.

Proof. For fixed/?, (—p/q)4 = 1 if and only if q splits completely in
L — Q(yJ— 1 ,v r =7O, which has degree 8 over (X The corollary now
follows from the Frobenius density theorem.
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We mention several special cases of Theorem 6 in

COROLLARY 3. Ifp is a prime = 3 (mod 4), then
(i) 8 | h(-5p) if and only ifp = 19 (mod 20),

(ii) 8 | h(~ Up) if and only ifp = 23, 43, 51 (mod 52),
(iii) 8 | h{~\lp) if and only ifp = 35, 47, 55, 67 (mod 68).

In the final case p = 1 (mod4), the field Q, — Q(]/pq) *s real> a n d /?
and q enter symmetrically. We conclude immediately that

(U) x W = ( f ) , *<•» = ( ? ) . = (?)•
Thus we have (cf. [26]):

THEOREM 7. / b r primes p,q = 1 (mod 4), 8 | /z+ (/?g) z/

s/?/to completely in the field

degree 16 t̂>er g. 77ze density of such primes is 1/16.

Related to Theorem 7 is the following result on the Pell equation

(14) x2-pqy2= - 1 ,

which is proved from (13) by the same argument used to prove Theorem
5.

THEOREM 8. Let /?, q be distinct primes = 1 (mod 4), for which
(p/q) — 1. If(p/q)4 — (q/p)4 — ~~ 1> then equation (14) has a solution in
integers. If (p/q)4 7̂  (q/p)^ then (14) few «<? solution.

As a corollary of our discussion we see that an odd prime p ^ q splits
completely in Kq if and only if ( jp*/?)4 = 1. In the language of classfield
theory this says that Kq is the classfield over Q corresponding to the
rational ideal group

Hq = \u Q: u > 0, (u,2q) = 1, ( | ) =

where ^ is one of the two conjugate quartic characters modulo 4q defined
on quadratic residues of q by \p(u) = (u*/q)4. This character has conduc-
tor / = q or 4 q according as q = 1 or 5 (mod 8). The correspondence of ^
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to Hq may also be deduced using the "rational" Gaussian sum

w(mod/)
W ) l

which has the value ± J(q — a^fq^/l if q = 1 (mod 8) and

±2]/(q + a^)/! if q = 5 (mod8), where q = a2 + b2, a = \ (mod4).
We omit the proof, which proceeds by rearranging the real and imaginary
parts of the usual Gaussian sum

u (mod q)

corresponding to the character \px(u) = (u/q)4. (See also Hasse [10], p.
492.)

We note in addition that the second equation in (13) is equivalent to a
result of E. Lehmer ([19], Theorem 2), according to which

)4(fL=(?)>
where ax = (a + yfq)/2 and the sign of a is chosen so that jp\aY. This has
been derived as a consequence of the arithmetic in the fields S2 = Qd/pq)
and k — Q{yfq), quadratic reciprocity, and equation (1), which is itself a
consequence of the product formula for the Hilbert symbol.
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