A NOTE ON M_1 -SPACES

Kuo-Shih Kao

A mapping $f: X \to Y$ is called quasi-open if the interior of f(U) is non-void for any non-void open subsets U of X. The main result in this paper is that the image of an M_1 -space under a quasi-open, countably bi-quotient closed mapping is an M_1 -space; it follows that the locally finite regular closed sum of M_1 -spaces is an M_1 -space.

In 1961, J. Ceder [4] defined the M_i -spaces (i = 1, 2, 3). From the definitions, it is clear that $M_1 \rightarrow M_2 \rightarrow M_3$. Recently, G. Gruenhage [6] and H. Junnila [8] independently proved that the stratifiable (M_3) spaces coincide with the M_2 -spaces. Whether stratifiable spaces are M_1 -spaces still remains open. Moreover, it is still unknown if the closed image of an M_1 -space is an M_1 -space. It is known that irreducible perfect mappings preserve M_1 -spaces (Borges-Lutzer [2]). The main result in this paper is that the quasi-open (Definition 1), countably bi-quotient closed mappings preserve M_1 -spaces (Theorem 1), which improves the above result as well as the result of R. F. Gittings [5], and from the main result it follows that the locally finite regular closed sum of M_1 -spaces is an M_1 -space which partially answers the problem posed by Ceder [4]. On the other hand, we generalize the theorem of Gruenhage [7], which proves that σ -discrete stratifiable spaces are M_1 .

In this paper, regular, normal spaces are assumed to be T_1 , and all mappings are continuous and surjective. Let \mathfrak{A} be a collection of subsets of X, the union $\bigcup \{U: U \in \mathfrak{A}\}$ is denoted by \mathfrak{A}^* .

A collection \mathfrak{A} of subsets of X is closure preserving if for any $\mathfrak{A}' \subset \mathfrak{A}, \ \overline{\mathfrak{A}'^*} = \bigcup \{\overline{U}: U \in \mathfrak{A}'\}. \ \mathfrak{A}$ is hereditarily closure preserving if for any choice of a subset $S(U) \subset U, U \in \mathfrak{A}$, the resulting collection $\{S(U): U \in \mathfrak{A}\}$ is closure preserving.

A space X is an M_1 -space if X is regular and has a σ -closure preserving base.

DEFINITION 1. A mapping $f: X \to Y$ is called quasi-open if the interior of f(U) (denoted by Int f(U)) is non-void for any non-void open subsets U of X.

Clearly, open mappings are quasi-open and quasi-open mappings are preserved by composition and cartesian products.

DEFINITION 2. A mapping $f: X \to Y$ is called pseudo-open if for any $y \in Y$ and any open subset $U \supset f^{-1}(y), y \in \text{Int } f(U)$.

It is well known that every closed mapping is pseudo-open.

DEFINITION 3. A mapping $f: X \to Y$ is called irreducible if f maps no proper closed subspace of X onto Y.

LEMMA 1. Irreducible pseudo-open mappings are quasi-open.

Proof. Let $f: X \to Y$ be an irreducible pseudo-open mapping. Let U be any non-void open subset of X. Since f is irreducible, $U \supset f^{-1}(y)$ for some $y \in Y$, otherwise f(X - U) = Y would be contrary to the irreducibility of the mapping f. Since f is pseudo-open, $y \in \text{Int } f(U)$. This shows that f is a quasi-open mapping.

LEMMA 2. Let $f: X \to Y$ be a quasi-open closed mapping. Let \mathfrak{B} be a closure preserving collection of open subsets of X. Then $\mathcal{C} = \{ \text{Int } f(U) : U \in \mathfrak{B} \}$ is a closure preserving collection of open subsets of Y.

Proof. Let $\mathfrak{B}' \subset \mathfrak{B}$ and let $y \in \overline{\bigcup \{ \text{Int } f(U) \colon U \in \mathfrak{B}' \}}$. Since $f(U) \supset$ Int f(U), we have

$$f(\overline{\mathfrak{B}'^*}) \supset f(\mathfrak{B}'^*) \supset \bigcup \{ \text{Int } f(U) \colon U \in \mathfrak{B}' \}.$$

Since f is a closed mapping, $f(\overline{\mathfrak{B}'^*})$ is a closed set; therefore

 $f(\overline{\mathfrak{B}'^*}) \supset \overline{\bigcup \{\operatorname{Int} f(U) \colon U \in \mathfrak{B}'\}}.$

It follows $f^{-1}(y) \cap \overline{\mathfrak{B}'^*} \neq \emptyset$. Because \mathfrak{B}' is closure preserving, there exists $U' \in \mathfrak{B}'$ such that $f^{-1}(y) \cap \overline{U'} \neq \emptyset$. Let V be any open neighborhood of y. Then $f^{-1}(V) \cap U' \neq \emptyset$. Since f is quasi-open, the interior of the image of the non-void open set $f^{-1}(V) \cap U'$ is non-void. According to

Int
$$f(f^{-1}(V) \cap U') \subset \operatorname{Int}[V \cap f(U')] = V \cap \operatorname{Int} f(U')$$

 $V \cap \text{Int } f(U')$ is non-void. It shows that any open neighborhood V of y intersects Int f(U'). Therefore $y \in \overline{\text{Int } f(U')}$. Thus we have proved that \mathcal{C} is a closure preserving collection of open subsets of Y.

DEFINITION 4. A mapping $f: X \to Y$ is called bi-quotient if, whenever $y \in Y$ and \mathfrak{A} is a collection of open subsets of X such that $\mathfrak{A}^* \supset f^{-1}(y)$, there exists finite subcollection $\mathfrak{A}' \subset \mathfrak{A}$ such that $y \in \text{Int } f(\mathfrak{A}'^*)$. If \mathfrak{A} is any countable collection of open subsets then the mapping f is called countably bi-quotient.

It is well known that

and all the implications cannot be reversed.

THEOREM 1. The image of an M_1 -space under a quasi-open, countably bi-quotient closed mapping is an M_1 -space.

Proof. Let f be a quasi-open, countably bi-quotient closed mapping from an M_1 -space X onto a topological space Y. Let $\mathfrak{B} = \bigcup_{i=1}^{\infty} \mathfrak{B}_i$ be a σ -closure preserving base for X. Note that if \mathfrak{A} is a closure preserving collection of sets and \mathfrak{A} is the collection of all unions of all subcollections of \mathfrak{A} then \mathfrak{A} is also closure preserving. Therefore we may assume that the union of any subcollection of \mathfrak{B}_i is a member of \mathfrak{B}_i . Moreover, without loss of generality, we also assume $\mathfrak{B}_i \subset \mathfrak{B}_{i+1}$ (i = 1, 2, ...). Put $\mathcal{C} =$ {Int $f(B): B \in \mathfrak{B}$ }. According to Lemma 2, \mathcal{C} is a σ -closure preserving collection of open subsets of Y.

For each $y \in Y$, let V be an open neighborhood of y. Since \mathfrak{B} is a base for X, there exists $\mathfrak{B}' \subset \mathfrak{B}$ such that $f^{-1}(y) \subset \mathfrak{B}'^* \subset f^{-1}(V)$. Put $\mathfrak{B}'_i = \mathfrak{B}' \cap \mathfrak{B}_i$, then $\mathfrak{B}' = \bigcup_{i=1}^{\infty} \mathfrak{B}'_i$, $f^{-1}(y) \subset \bigcup_{i=1}^{\infty} \mathfrak{B}'_i \subset f^{-1}(V)$. According to $\mathfrak{B}_i \subset \mathfrak{B}_{i+1}$ (i = 1, 2, ...), the sequence $\{\mathfrak{B}'_i^*\}$ is increasing. Since f is a countably bi-quotient mapping, there exists a natural number n such that $y \in \text{Int } f(\mathfrak{B}'_n) \subset V$. By hypothesis, there exists $B \in \mathfrak{B}_n \subset \mathfrak{B}$ such that $B = \mathfrak{B}'_n^*$. Therefore Int $f(B) \in \mathcal{C}$ and $y \in \text{Int } f(B) \subset V$. So \mathcal{C} is a base for Y, which is σ -closure preserving. Clearly, Y is regular (closed mappings preserve T_1 and normality). Therefore Y is an M_1 -space.

According to Lemma 1 and the fact that perfect mappings are countably bi-quotient closed mappings, we obtain the following result.

COROLLARY 1 (Borges-Lutzer [2]). The image of an M_1 -space under an irreducible perfect mapping is an M_1 -space.

There exists an open (hence quasi-open, countably bi-quotient), closed mapping which is neither irreducible nor perfect (let X be a countably compact but non-compact space, Y be a space satisfying first axiom of countability and f be the projection of the product space $X \times Y$ onto Y). Therefore Theorem 1 improves Borges-Lutzer's theorem.

COROLLARY 2. The image of an M_1 -space under an open, closed mapping is an M_1 -space.

A mapping $f: X \to Y$ is called k-to-one, if for each $y \in Y$, $f^{-1}(y)$ consists of exactly k points in X.

COROLLARY 3. (R. F. Gittings [5]). The image of an M_1 -space under a k-to-one, open mapping is an M_1 -space.

Proof. Let f be a k-to-one, open mapping from an M_1 -space X onto a space Y. According to Lemmas 1 and 2 of Arhangelskii [1], f is closed, and hence by Corollary 2, Y is an M_1 -space.

D. Burke, R. Engelking and D. Lutzer [3] proved that a regular space X is metrizable if and only if X has a σ -hereditarily closure preserving base. Using the above theorem we may easily obtain E. Michael's elegant theorem which effectively improved the famous theorem of Morita-Hanai-Stone (see [10]).

COROLLARY 4 (E. Michael [9]). The image of a metrizable space under a countably bi-quotient closed mapping is a metrizable space.

Proof. By the same argument in the proof of Theorem 1 we need only prove that if $f: X \to Y$ is a closed mapping, \mathfrak{B} is a hereditarily closure preserving collection of open subsets of X, then $\mathcal{C} = \{ \text{Int } f(U) : U \in \mathfrak{B} \}$ is a hereditarily closure preserving collection of open subsets of Y.

Whenever $S(U) \subset \text{Int } f(U)$ is chosen for each $U \in \mathfrak{B}$, let $R(U) = U \cap f^{-1}(S(U))$. Then $R(U) \subset U$ and f(R(U)) = S(U). Since the collection $\{R(U): U \in \mathfrak{B}\}$ is closure preserving and f is a continuous closed mapping, the collection $\{S(U): U \in \mathfrak{B}\}$ is also closure preserving. Therefore $\mathcal{C} = \{\text{Int } f(U): U \in \mathfrak{B}\}$ is a hereditarily closure preserving collection of open subsets of Y.

THEOREM 2. Let X be a paracompact σ -space. Let $f: X \to Y$ be a quasi-open, closed mapping. If $f^{-1}(F)$ has a σ -closure preserving neighborhood base for each closed subset F of Y, then Y is an M_1 -space.

Proof. Since f is closed, the space Y is a paracompact σ -space. Let F be an arbitrary closed subset of Y, let \mathfrak{B} be a σ -closure preserving neighborhood base of $f^{-1}(F)$. By the Lemma 2, $\mathfrak{C} = \{ \text{Int } f(U) \colon U \in \mathfrak{B} \}$ is a σ -closure preserving collection of open subsets of Y. For any open

subset $V \supseteq F$, $f^{-1}(F) \subset f^{-1}(V)$, there exists $U \in \mathfrak{B}$ such that $f^{-1}(F) \subset U \subset f^{-1}(V)$. Since f is closed, there exists an open subset U' such that $f^{-1}(y) \subset U' \subset U$ and f(U') is an open subset of Y. Hence $f(U') \subset$ Int $f(U) \subset f(U) \subset V$, and $F \subset \text{Int } f(U) \subset V$. Therefore \mathcal{C} is a σ -closure preserving neighborhood base of the closed subset F.

Thus we have proved that every closed subset F of the paracompact σ -space Y has a σ -closure preserving neighborhood base. According to Borges-Lutzer's result (Remark 2.7 of [2]), Y is an M_1 -space.

COROLLARY. Let X be an M_1 -space with every closed subset having a σ -closure preserving neighborhood base. Let $f: X \to Y$ be a quasi-open closed mapping. Then Y is an M_1 -space.

This corollary improves a result of Borges-Lutzer (Remark 3.5 of [2]).

Ceder [4] proved the locally finite closed sum theorem for M_2 and M_3 spaces (Theorem 2.8 of [4]), and asked if this theorem remained valid for M_1 -spaces. In the following, we give two locally finite sum theorems for M_1 -spaces. Theorem 3 improves Ceder's theorem for locally M_1 -spaces (Theorem 2.6 of [4]). Theorem 4 gives a partial answer to Ceder's question.

THEOREM 3. Let X be a normal space. Let $\mathfrak{A} = \{U_{\alpha}\}_{\alpha \in A}$ be a locally finite open covering of X. If each U_{α} ($\alpha \in A$) be an M_1 -space then X is an M_1 -space.

Proof. Let $\mathfrak{B}^{\alpha} = \bigcup_{i=1}^{\infty} \mathfrak{B}_{i}^{\alpha}$ be a σ -closure preserving base for open subspace U_{α} ($\alpha \in A$). By the regularity of X, we may assume $\overline{B} \subset U_{\alpha}$ for each $B \in \mathfrak{B}^{\alpha}$.

By the normality of X, there exists an open covering $\{V_{\alpha}\}_{\alpha \in A}$ of X such that $\overline{V_{\alpha}} \subset U_{\alpha}$ ($\alpha \in A$). Since the open subspace of an M_1 -space is an M_1 -space, V_{α} ($\alpha \in A$) is an M_1 -space, and we may choose

$$\mathcal{C}^{\alpha} = \bigcup_{i=1}^{\infty} \mathcal{C}_{i}^{\alpha}$$

as the base for subspace V_{α} , where

$$\mathcal{C}^{lpha}_i = \left\{ B \colon B \in \mathfrak{B}^{lpha}_i, \, \overline{B} \subset V_{lpha}
ight\}$$

is closure preserving in subspace V_{α} . We are going to prove \mathcal{C}_i^{α} is also closure preserving in space X.

Let $\mathcal{C}' \subset \mathcal{C}_i^{\alpha}$, we need to prove

(1) $\bigcup \{\overline{B}: B \in \mathcal{C}'\} = \overline{\bigcup \{B: B \in \mathcal{C}'\}}.$

Since U_{α} is an M_1 -space, $V_{\alpha} \subset U_{\alpha}$, $\mathcal{C}' \subset \mathcal{C}_i^{\alpha} \subset \mathfrak{B}_i^{\alpha}$, and \mathfrak{B}_i^{α} is closure preserving in subspace U_{α} , therefore

$$\bigcup \{\overline{B}: B \in \mathcal{C}'\} = \overline{\bigcup \{B: B \in \mathcal{C}'\}} \cap U_{\alpha}.$$

According to $\bigcup \{B: B \in \mathcal{C}'\} \subset V_{\alpha}, \ \overline{\bigcup \{B: B \in \mathcal{C}'\}} \subset \overline{V_{\alpha}} \subset U_{\alpha}$. It follows

$$\overline{\bigcup \{B: B \in \mathcal{C}'\}} \cap U_{\alpha} = \overline{\bigcup \{B: B \in \mathcal{C}'\}}.$$

Hence (1) is proved. Since $\{V_{\alpha}\}_{\alpha \in A}$ is locally finite, we can easily prove $\mathcal{C}_i = \bigcup_{\alpha \in A} \mathcal{C}_i^{\alpha}$ is a closure preserving collection of space X. Moreover, it is easy to verify $\mathcal{C} = \bigcup_{i=1}^{\infty} \mathcal{C}_i$ is a base for X. Therefore X is an M_1 -space.

COROLLARY (Ceder [4]). Let X be a paracompact and locally M_1 -space. Then X is an M_1 -space.

THEOREM 4. Let $\mathfrak{A} = \{U_{\alpha}\}_{\alpha \in A}$ be a locally finite open covering of space X. If each \overline{U}_{α} ($\alpha \in A$) be an M_1 -space, then X is an M_1 -space.

Proof. For each $\alpha \in A$, let X_{α} be a copy of $\overline{U_{\alpha}}$ and f_{α} be the homeomorphism from X_{α} onto $\overline{U_{\alpha}}$. Let

$$X^* = \sum_{\alpha \in A} X_{\alpha}$$

be the (disjoint) topological sum of X_{α} 's. Evidently X^* is an M_1 -space. Let $f: X^* \to X$ be the mapping defined as follows: for each $x \in X^*$, $f(x) = f_{\alpha}(x)$, if $x \in X_{\alpha}$. By the local finiteness of $\{\overline{U}_{\alpha}\}_{\alpha \in A}$, it can be easily verified that f is a finite to one, closed continuous mapping. Moreover, f is quasi-open, it is proved as follows. Because of the definition of topological sum, we need only prove that the interior of the image of non-void subset $E (E \subset X_{\alpha})$ which is relatively open in subspace X_{α} is non-void. Since f_{α} is the homeomorphism from X_{α} onto \overline{U}_{α} , $f_{\alpha}(E)$ is relatively open in \overline{U}_{α} . There exists an open subset G such that $f_{\alpha}(E) = G \cap \overline{U}_{\alpha}$. Let $x \in f_{\alpha}(E) \subset G$. There exists an open neighborhood V(x) of x such that $V(x) \subset G$. On the other hand, $x \in f_{\alpha}(E) \subset \overline{U}_{\alpha}$, $V(x) \cap U_{\alpha} \neq \emptyset$. Since $V(x) \cap U_{\alpha} \subset f_{\alpha}(E)$ and $V(x) \cap U_{\alpha}$ is a non-void open set, therefore Int $f_{\alpha}(E) \neq \emptyset$.

Thus f is a quasi-open, finite to one, closed continuous mapping from X^* onto X. According to Theorem 1, X is an M_1 -space.

Subset F of space X is called regular closed, if $F = \overline{\text{Int } F}$. Evidently, F is regular closed if and only if F is the closure of an open subset. By means of this concept, above Theorem 4 may be stated as follows:

126

"Let $\{F_{\alpha}\}_{\alpha \in A}$ be a locally finite regular closed covering of space X. If each F_{α} ($\alpha \in A$) is an M_1 -space, then X is an M_1 -space."

Whether every stratifiable space is an M_1 -space, the partial result in this direction is due to G. Gruenhage [7].

THEOREM (Gruenhage). Every stratifiable space which has a countable covering consisting of closed discrete subsets of X, is an M_1 -space.

Gruenhage's theorem may be stated in a more general form as follows.

THEOREM 5. Every stratifiable space, which has a σ -hereditarily closure preserving covering consisting of closed discrete subsets of X, is an M_1 -space.

The proof of Theorem 5 follows from the following lemmas.

LEMMA 3. Let F be a closed discrete subset of X. Then $\{\{x\}: x \in F\}$ is a discrete collection of subsets of X. If the space X is T_1 , the converse is also true.

LEMMA 4. If X is T_1 space, the subset of a closed discrete subset of X is a closed discrete subset.

LEMMA 5. Let \mathcal{F} be a discrete collection of closed discrete subsets of X. Then \mathcal{F}^* is a closed discrete subset of X.

The proofs of above lemmas are simple and direct.

LEMMA 6. Let X be a T_1 space which has a σ -hereditarily closure preserving covering \mathfrak{F} consisting of closed discrete subsets of X. Then X has a countable covering consisting of closed discrete subsets of X.

Proof. Let $\mathfrak{F} = \bigcup_{n=1}^{\infty} \mathfrak{F}_n$, each \mathfrak{F}_n (n = 1, 2, ...) being a hereditarily closure preserving collection consisting of closed discrete subsets of X. Let $\mathfrak{F}_n = \{F_{n,\alpha_n}\}_{\alpha_n \in \mathcal{A}_n}$, each F_{n,α_n} is closed discrete subset. For each n, put

$$H_n = \mathcal{F}_n^* - \bigcup_{i=1}^{n-1} \mathcal{F}_i^*, \qquad H_{n,\alpha_n} = H_n \cap F_{n,\alpha_n} \quad (\alpha_n \in A_n).$$

By well ordering the index set A_n , put

$$F'_{n,\alpha_n} = H_{n,\alpha_n} - \bigcup_{\beta_n < \alpha_n} H_{n,\beta_n}.$$

Clearly $F'_{n,\alpha_n} \subset F_{n,\alpha_n}$. According to Lemma 4, F'_{n,α_n} is a closed discrete subset. $\mathfrak{F}'_n = \{F'_{n,\alpha_n}\}_{\alpha_n \in \mathcal{A}_n}$ being closure preserving and pairwise disjoint is a discrete collection of closed discrete subsets. Hence, by the Lemma 5, \mathfrak{F}'_n^* is a closed discrete subset of X. Furthermore

$$\bigcup_{n=1}^{\infty} \mathfrak{F}'_{n}^{*} = \bigcup_{n=1}^{\infty} \left(\bigcup_{\alpha_{n} \in \mathcal{A}_{n}} F'_{n,\alpha_{n}} \right) = \bigcup_{n=1}^{\infty} H_{n} = \bigcup_{n=1}^{\infty} \mathfrak{F}_{n}^{*} = X.$$

Therefore $\{\mathcal{F}'_n^*\}$ is a countable covering of X.

Proof of the Theorem 5. The proof follows from Lemma 6 and Gruenhage's theorem.

References

- A. Arhangelskii, Test for the existence of a bicompact element in a continuous decomposition. Theorem on the invariance of weight in open closed finitely multiple mappings, Dokl. SSSR, 166 (1966), 1263–1266.
- [2] C. R. Borges and D. J. Lutzer, Characterizations and Mappings of M_i-spaces, Lecture Notes in Math. No. 375 (Springer-Verlag, Berlin, 1974), 34–40.
- [3] D. K. Burke, R. Engelking and D. J. Lutzer, *Hereditarily closure-preserving collec*tions and metrization, Proc. Amer. Math. Soc., 51 (1975), 483–488.
- [4] J. Ceder, Some generalizations of metric spaces, Pacific J. Math., 11 (1961), 105-125.
- [5] R. F. Gittings, Open Mapping Theory, in Set-Theoretic Topology (Academic Press, 1977), 141–191.
- [6] G. Gruenhage, Stratifiable spaces are M₂, Topology Proc., 1 (1976), 221–226.
- [7] ____, Stratifiable σ -discrete spaces are M_1 , Proc. Amer. Math. Soc., 72 (1978), 189–190.
- [8] H. Junnila, Neighbornets, Pacific J. Math., 76 (1978), 83-108.
- [9] E. Michael, A quintuple quotient quest, General Topology and Appl., 2 (1972), 91-138.
- [10] F. Siwiec, On the Theorem of Morita and Hanai, and Stone, Lecture Notes in Math. No. 378 (Springer-Verlag, Berlin, 1974), 449–454.

Received December 22, 1981 and in revised form May 10, 1982.

Kaingsu Teachers' College Suchow, Kaingsu China