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A NOTE ON M rSPACES

KUO-SHIH KAO

A mapping /: X -> Y is called quasi-open if the interior of f(U) is
non-void for any non-void open subsets U of X. The main result in this
paper is that the image of an M,-space under a quasi-open, countably
bi-quotient closed mapping is an M,-space; it follows that the locally
finite regular closed sum of M,-spaces is an A^-space.

In 1961, J. Ceder [4] defined the Mrspaces (i = 1,2,3). From the
definitions, it is clear that Mx -> M2 -» M3. Recently, G. Gruenhage [6]
and H. Junnila [8] independently proved that the stratifiable (My) spaces
coincide with the M2-spaces. Whether stratifiable spaces are Mx -spaces
still remains open. Moreover, it is still unknown if the closed image of an
M,-space is an M,-space. It is known that irreducible perfect mappings
preserve Af,-spaces (Borges-Lutzer [2]). The main result in this paper is
that the quasi-open (Definition 1), countably bi-quotient closed mappings
preserve Mj-spaces (Theorem 1), which improves the above result as well
as the result of R. F. Gittings [5], and from the main result it follows that
the locally finite regular closed sum of Mx -spaces is an Mx -space which
partially answers the problem posed by Ceder [4]. On the other hand, we
generalize the theorem of Gruenhage [7], which proves that a-discrete
stratifiable spaces are Mx.

In this paper, regular, normal spaces are assumed to be Tx, and all
mappings are continuous and surjective. Let % be a collection of subsets
of X, the union U {U: U E %} is denoted by %*.

A collection % of subsets of X is closure preserving if for any
91/ C %, W* = U {U: U G % ' } . % is hereditarily closure preserving if
for any choice of a subset S(U) C U, U E %, the resulting collection
{S(U): U E %} is closure preserving.

A space X is an Mx -space if X is regular and has a a-closure
preserving base.

DEFINITION 1. A mapping/: X -> 7 is called quasi-open if the interior
of f(U) (denoted by Int /(£/)) ^s non-void for any non-void open subsets
t /ofX

Clearly, open mappings are quasi-open and quasi-open mappings are
preserved by composition and cartesian products.
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DEFINITION 2. A mapping / : X -> Y is called pseudo-open if for any
y E Y and any open subset U D f~ l(y), y E Int f(U).

It is well known that every closed mapping is pseudo-open.

DEFINITION 3. A mapping/: X -> Y is called irreducible if/maps no
proper closed subspace of X onto Y.

LEMMA 1. Irreducible pseudo-open mappings are quasi-open.

Proof. Let/: X -> 7be an irreducible pseudo-open mapping. Let [/be
any non-void open subset of X. Since/is irreducible, U D f~\y) for some
y £ Y, otherwise/(X — U) = Y would be contrary to the irreducibility of
the mapping/. Since/is pseudo-open, y E Int /([/) . This shows that/is a
quasi-open mapping.

LEMMA 2. Lef f: X -> Y be a quasi-open closed mapping. Let % be a
closure preserving collection of open subsets of X. Then Q~ { In t / ( [ / ) :
U E %} is a closure preserving collection of open subsets of Y.

Proof. Le t« ' C » and Xety E U {Int /(£/): £/ E $ '} . Since/(t/) D
Int /((/), we have

/(«'*) D/($ '*) D U {Int/(I/): t / e ® ' } -

Since/is a closed mapping, /($'*) is a closed set; therefore

/($'*) D U {Int/(£/): l /G®'} -

It follows f~\y) n $ '* 7̂= 0 . Because ®r is closure preserving, there
exists Uf E ©' such ihatf~l(y) n U' ¥= 0. Let Fbe any open neighbor-
hood of y. Then f~ \ V) (1 U' ¥= 0. Since / is quasi-open, the interior of
the image of the non-void open setf~\V) n I/' is non-void. According to

\n\f(r\v) n uf) c int[vnf{uf)} = vnintf(U'),

V n Int /((/') is non-void. It shows that any open neighborhood V of y
intersects Int f(U'). Thereforey E Int f(U'). Thus we have proved that G
is a closure preserving collection of open subsets of Y.

DEFINITION 4. A mapping/: X -> Yis called bi-quotient if, whenever
y E Y and % is a collection of open subsets of X such that %* D / " *( j>),
there exists finite subcollection <%L' C % such that y E Int f(%'*). If % is
any countable collection of open subsets then the mapping / is called
countably bi-quotient.
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It is well known that

open -* bi-quotient -> countably bi-quotient -» pseudo-open
T T t

perfect -» quasi-perfect -> closed

and all the implications cannot be reversed.

THEOREM 1. The image of an Mx-space under a quasi-open, countably
bi-quotient closed mapping is an Mxspace.

Proof. Let / be a quasi-open, countably bi-quotient closed mapping
from an Mx-space X onto a topological space Y. Let ® = U*LX ©£ be a
a-closure preserving base for X. Note that if % is a closure preserving
collection of sets and % is the collection of all unions of all subcoUections
of % then % is also closure preserving. Therefore we may assume that the
union of any subcollection of %t is a member of ®z. Moreover, without
loss of generality, we also assume %tC%i+x (i = 1,2,...). Put Q —
{Int f{B): B E ©}. According to Lemma 2, 6 is a a-closure preserving
collection of open subsets of Y.

For each j G 7 , let V be an open neighborhood of y. Since <•© is a
base for X, there exists %' C © such that .TX.y) C ©'* C/" l (F) . Put
%[ = %' n ®f, then $ ' = U~ ! % r\y) C U~ , « '* C f ^ ) .
According to ®t C ®.+ 1 (i = 1,2,...), the sequence {©',*} ^s increasing.
Since / is a countably bi-quotient mapping, there exists a natural number
n such that >> E Int /(©'*) C F. By hypothesis, there exists B G 8 n C 8
such that B = <$'*. Therefore Int f(B) E 6 and7 E Int / (5) C F. So 6 is
a base for F, which is a-closure preserving. Clearly, Y is regular (closed
mappings preserve Tx and normality). Therefore Y is an M^space.

According to Lemma 1 and the fact that perfect mappings are
countably bi-quotient closed mappings, we obtain the following result.

COROLLARY 1 (Borges-Lutzer [2]). The image of an Mx-space under an
irreducible perfect mapping is an Mx-space.

There exists an open (hence quasi-open, countably bi-quotient), closed
mapping which is neither irreducible nor perfect (let X be a countably
compact but non-compact space, Y be a space satisfying first axiom of
countability and/be the projection of the product space X X Y onto Y).
Therefore Theorem 1 improves Borges-Lutzer's theorem.
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COROLLARY 2. The image of an Mrspace under an open, closed
mapping is an Mx-space.

A mapping / : X -> Y is called A:-to-one, if for each y E 7, f\y)
consists of exactly k points in X.

COROLLARY 3. (R. F. Gittings [5]). The image of an Mx-space under a
k-to-one, open mapping is an Mx-space.

Proof. Let/be a A> to-one, open mapping from an M, -space X onto a
space Y. According to Lemmas 1 and 2 of Arhangelskii [l],/is closed, and
hence by Corollary 2, Y is an Afrspace.

D. Burke, R. Engelking and D. Lutzer [3] proved that a regular space
X is metrizable if and only if X has a a-hereditarily closure preserving
base. Using the above theorem we may easily obtain E. Michael's elegant
theorem which effectively improved the famous theorem of Morita-
Hanai-Stone (see [10]).

COROLLARY 4 (E. Michael [9]). The image of a metrizable space under
a countably bi-quotient closed mapping is a metrizable space.

Proof. By the same argument in the proof of Theorem 1 we need only
prove that if /: X -» Y is a closed mapping, % is a hereditarily closure
preserving collection of open subsets of X, then 6 = (Int f(U): U E %} is
a hereditarily closure preserving collection of open subsets of Y.

Whenever S(U) C Int/(I/) is chosen for each UG<$>, let R(U) =
U r\f~x(S(U)). Then R{U) C U and f(R{U)) = S{U). Since the collec-
tion {R(U): t / G § ) is closure preserving and / is a continuous closed
mapping, the collection {S(U): U E <$>} is also closure preserving. There-
fore 6 = {Int /([/): U E ®} is a hereditarily closure preserving collection
of open subsets of Y.

THEOREM 2. Let X be a paracompact o-space. Let / : X -> Y be a
quasi-open, closed mapping. If f~\F) has a o-closure preserving neighbor-
hood base for each closed subset F of Y, then Y is an Mrspace.

Proof. Since / is closed, the space Y is a paracompact o-space. Let F
be an arbitrary closed subset of 7, let § be a a-closure preserving
neighborhood base off\F). By the Lemma 2, 8 = {Int /(£/): U G ®}
is a a-closure preserving collection of open subsets of Y. For any open
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subset V D F,T\F) Cfl(V)9 there exists U G ® such that f~\F) C U
Cf~l(V). Since / is closed, there exists an open subset U' such that

f~\y) C U' C U and /([/') is an open subset of Y. Hence f(U') C
Int /([/) C /([/) C F, and F C Int /([/) C F. Therefore 6 is a a-closure
preserving neighborhood base of the closed subset F.

Thus we have proved that every closed subset F of the paracompact
a-space Y has a a-closure preserving neighborhood base. According to
Borges-Lutzer's result (Remark 2.7 of [2]), Y is an Mx-space.

COROLLARY. Let X be an Mx-space with every closed subset having a
o-closure preserving neighborhood base. Let f: X -» Y be a quasi-open closed
mapping. Then Y is an Mxspace.

This corollary improves a result of Borges-Lutzer (Remark 3.5 of [2]).
Ceder [4] proved the locally finite closed sum theorem for M2 and M3

spaces (Theorem 2.8 of [4]), and asked if this theorem remained valid for
Mx -spaces. In the following, we give two locally finite sum theorems for
M rspaces. Theorem 3 improves Ceder's theorem for locally M rspaces
(Theorem 2.6 of [4]). Theorem 4 gives a partial answer to Ceder's question.

THEOREM 3. Let X be a normal space. Let % = {Ua}a€LA be a locally
finite open covering of X. If each Ua (a G A) be an Mx-space then X is an
Mx-space.

Proof. Let %a = U*LX%" be a a-closure preserving base for open
subspace Ua (a G A). By the regularity of X, we may assume B C Ua for
each B G %a.

By thejnormality of X, there exists an open covering {Va}aGA of X
such that Va C Ua(a EiA). Since the open subspace of an Mx-space is an
Mx-space, Va (a G A) is an Mx-space, and we may choose

as the base for subspace Va9 where

is closure preserving in subspace Va. We are going to prove 8? is also
closure preserving in space X.

Let & C 6", we need to prove

(1) U {B: B G 6'} - U {B: B G S'}.
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Since Ua is an M rspace, Va C Ua9 & C fi? C ®f, and ®f is closure
preserving in subspace Ua9 therefore

{B:BE 6'} = U (5: B G 6'} n t/a.

According to U {B: B G 3'} C Fa, U ( 5 : 5 G 6'} C Fa C C/a. It fol-
lows

'} n £/a =

Hence (1) is proved. Since {Va}a(EA is locally finite, we can easily prove
Q( = Ua(E/i Qf is a closure preserving collection of space X. Moreover, it
is easy to verify 6 = U°l} 6, is a base for X. Therefore X is an Mx -space.

COROLLARY (Ceder [4]). Let X be a paracompact and locally Mx-space.
Then X is an Mx-space.

THEOREM 4. Let % = {Ua}aGA be a locally finite open covering of space
X. If each Ua(a G A) be an Mx-space, then X is an Mx-space.

Proof. For each a G A, let Xa be a copy of Ua and fa be the
homeomorphism from Xa onto Ua. Let

T/'jjj 'VI "*/•
A ~~ Za ^a

be the (disjoint) topological sum of Xa's. Evidently X* is an Mj-space. Let
/ : X* -> X be the mapping defined as follows: for each x G X*9 f(x) =
/ a(x) , if x G Jfa. By the local finiteness of {Ua}aGA, it can be easily
verified tha t / i s a finite to one, closed continuous mapping. Moreover,/is
quasi-open, it is proved as follows. Because of the definition of topological
sum, we need only prove that the interior of the image of non-void subset
E (E C Xa) which is relatively open in subspace Xa is non-void. Since fa is
the homeomorphism from Xa onto Ua, fa(E) is relatively open in Ua.
There exists an open subset G such thai fa(E) — G D Ua. Let x Gfa(E) C
G. There exists an open neighborhood V{x) of x such that V(x) C G. On
the other hand, x G/ t t(£) C Z£, V(x) H Ua¥^ 0. Since V(x) n f / f t C
/ / 2 s ) and F(x) n Ua is a non-void open set, therefore Int /«(£) ¥= 0.

Thus / is a quasi-open, finite to one, closed continuous mapping from
X* onto X. According to Theorem 1, X is an Mx -space.

Subset F of space X is called regular closed, if F — Int F. Evidently, F
is regular closed if and only if F is the closure of an open subset. By
means of this concept, above Theorem 4 may be stated as follows:
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"Let {Fa}aE:A be a locally finite regular closed covering of space X. If
each Fa (a E A) is an Afrspace, then Xis an Mrspace."

Whether every stratifiable space is an Mx -space, the partial result in
this direction is due to G. Gruenhage [7].

THEOREM (Gruenhage). Every stratifiable space which has a countable
covering consisting of closed discrete subsets of X, is an Mx-space.

Gruenhage's theorem may be stated in a more general form as
follows.

THEOREM 5. Every stratifiable space, which has a o-hereditarily closure
preserving covering consisting of closed discrete subsets of X, is an Mx-space.

The proof of Theorem 5 follows from the following lemmas.

LEMMA 3. Let F be a closed discrete subset of X. Then {{x}: x £ F} is
a discrete collection of subsets of X. If the space X is Tu the converse is also
true.

LEMMA 4. If X is Tx space, the subset of a closed discrete subset of X is a
closed discrete subset.

LEMMA 5. Let § be a discrete collection of closed discrete subsets of X.
Then &* is a closed discrete subset of X.

The proofs of above lemmas are simple and direct.

LEMMA 6. Let X be a Tx space which has a a-hereditarily closure
preserving covering (3r consisting of closed discrete subsets of X. Then X has a
countable covering consisting of closed discrete subsets of X.

Proof. Let & = U™=1%, each % (n = 1,2,...) being a hereditarily
closure preserving collection consisting of closed discrete subsets of X. Let
% = {Fn,a )a GA 9 e a c h Fn,an

 ls closed discrete subset. For each n, put

Hn = V ~ Ufr,1 %*, Hnan = Hnn Fn^ («„ e An).

By well ordering the index set An, put

Fn9am
 = Hn9am" U #„,&•
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Clearly Fn' ̂  C Fn ̂ . According to Lemma 4, F'noLn is a closed discrete
subset. ^ ' = { i ^ J ^ e ^ being closure preserving and pairwise disjoint is
a discrete collection of closed discrete subsets. Hence, by the Lemma 5,
<3r'* is a closed discrete subset of X. Furthermore

ur* = u ( u F>A = \jHn= \j%* = x.
n=\ n=\ ^ an^An ' n=l n=\

Therefore {̂ P*} is a countable covering of X.

Proof of the Theorem 5. The proof follows from Lemma 6 and
Gruenhage's theorem.
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