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THE BANACH SPACE JT IS PRIMARY

A. D. ANDREW

It is proved that for every bounded linear operator U on the James9

tree space JT there is a subspace X C JT, isometric to JT, such that
either Uor (I - U) acts isomorphically on Xand either Mf or (I - U)X
is complemented in JT. As a consequence, JT is primary.

1. In this paper we prove that the James' tree space, JT, is primary.
A Banach space X is primary if whenever X = Y © Z, either Y or Z is
itself isomorphic to X. Many of the classical Banach spaces are known to
be primary [1], [2], [3], [4], [5], [9], [10], [13].

The space JT was constructed by R. C. James [8] as an example of a
separable space not containing /, yet having non-separable dual. It has
also been studied by Lindenstrauss and Stegall [11]. Every subspace of JT
contains l2 [8], and JT has many subspaces isometric to the quasireflexive
Banach space / [6], [7]. Here we take the norm on / to be

n=\

To show that JT is primary, we prove that for each bounded linear
operator U on JT, there exists a subspace X such that U (or / — U) acts as
an isomorphism on X, X is isometric to JT, and UX (or (/ — U)X) is
complemented in JT. The space X consists of functions supported on a
certain subtree of the usual dyadic tree. The first part of the argument is a
modification of an idea of Casazza and Lin [4]. That is, that if U is a
bounded linear operator on a space Y with Schauder basis {yn}, then
either (y*9 Uyn)> \ for infinitely many indices or (y*9 (I — U)yn)> \
for infinitely many n. This idea was used also in [2].

In §2 we fix the terminology concerning trees and present some
elementary propositions about JT and trees. In §3 these are used to
construct the subspace X described above. Our notation is standard in
Banach space theory, as may be found in [12]. If A is a subset of a Banach
space, we denote the closed linear span of A by [A], The greatest integer
function is denoted by [ • ]. Standard perturbation arguments concerning
stability properties of Schauder bases (e.g., Proposition l.a.9. of [12]) are
used in several places.
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2. In this section we present the definitions and some properties of
JT as well as propositions guaranteeing the existence of certain subtrees.
We begin with terminology concerning trees.

The standard tree is ?T = {(«, /) : 0 < n < oo, 0 < / < 2n}. The points
(«, i) are called nodes. We say that (n + 1,2/) and (« + 1,2/ + 1) are the
successors of (n, i). A segment is a finite set S = {tl9 t29... ,*„} of nodes
such that for each7, tj+x is a successor of tj. ?Tis partially ordered by the
relation < , with tx < t2 if and only if tx ¥= t2 and there is a segment S
with first element tx and last element t2. If tx < t2 we say t2 is a, follower of
/ j , thus reserving the word "successor" as meaning "immediate follower."
The set {(w, 1): 0 < / < 2n] is called the nth /we/ of ?T. We denote the
level of a node / by lev(/). An n-branch is a totally ordered set
{(ra, /w)}^=w, and a branch is a set which is an n-branch for some n. A
tree is a partially ordered set § which is order isomorphic to 9\ If § and S'
are trees with § ' C § , we say S' is a subtree of §. If § is a tree and \p:
§ -> ?T is an order isomorphism, we may use \f> to carry the above
terminology from 9" to §. In particular, for s E §, we define lev§(s) =

^(5)).

We now define the James' tree space. For each t E^, let

JT is the closed linear span of {x,},e?r with respect to the norm

2] 1 / 2

where the supremum is taken over all finite collections of mutually
disjoint segments Sl9...9Sk. The elements {xni}, in the order x 0 0 , x l 0 ,
xu\> x2j09 *2,\> *2,2> X2^" - f ° r m a boundedly complete basis for JT. We
denote the sequence of biorthogonal functional by {x*>f-}, and shall use
the linear functional and projections defined in the following formulas.
Each is easily seen to have norm one. In these definitions, S is a segment,
B a branch, / a node, and N an integer.

Or \ \ i / s i c \

C 5 J* I ^ \ \ t ' / '

t<ES

/ r \ V / ± \
\ J B > A ' / LJ X - ^ / J - ^ / J

= 2 (x?,x)xt9
t<ES
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t<EB

The argument that shows JT to be primary is based on several
propositions concerning trees and operators on JT.

PROPOSITION 1. (a) For any subtree S 0/5", [{*, : / E §>}] zs isometric to
JT and complemented in JT.

(b) For any branch B C ? , PB JT is isometric to J.

Proof. Part (b), and the fact that [{xt: t E §>}] is isometric to JT
follow directly from the definition of the norm in JT. Let {$},£§ be a
tree-like collection of disjoint segments of ?T such that / E S => t G St and
such that there are no gaps in U r E § Sr By this we mean that if tl9 t2 E §,
and if t2 is a successor in § of f,, then whenever t E ^satisfies /, < t < t29

either / E Sri, or / G St2. Then [{xt: t E §}] is complemented by the norm
one projection

P*= 2 {fsrx)xt-

P R O P O S I T I O N 2 . L e / (7: J T -^ JT be a bounded linear operator, e > 0 , N
an i n t e g e r , S a subtree of ?T and t0 E § . 77ze« ^ e r e e j c z ^ tx £ § , / , > ^0,

\\PNUxt\\<e.

Proof. If no such tx exists, then for any follower t E § of t0, there
exists /', lev(/r) < TV with

(2) | (x? ,P^£7^) |>e / i f ,

where K= 2N+X — 1. Thus, for any L and any collection {*/}f=1 of
followers in § of /0, [L/K] of the /, satisfy (2) for the same node t'. Hence
there is a choice of signs {6t — ±1} such that

(3)
L

l=\
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However, we may choose {f7}f=1 to be mutually non-comparable with
respect to the order on ?T, in which case it follows from (1) that

(4) ]£ /

Since (3) and (4) are contradictory for large L, the proposition is proven.

PROPOSITION 3. Let U: JT -* JT be a bounded linear operator, e>0,N
an integer, § a subtree of $ and t0, tx,...,tk mutually incomparable nodes of
§. Then there exists t > t0, t E § , M E N, and segments S09 Sl9.. .,Skof*5
such that

(*)\\PNUxt\\<B,
(b)\\(I-PM)Uxt\\<e,
(c) For each i, tt E Si9 St ends at level M + 1 of ?T, and there exists

t\ E § with t\ > sfor all s E Si9

(d) For each i, \\PsUxt\\ < e.

Proof. Let K satisfy 2-K^2\\U\\ < e/2, and choose N{ >
max(7V,lev(^)) so that for each /, there are 2K branches of § which pass
through tt and through distinct nodes on the A^th level of ?T. By Proposi-
tion 2, there exists / > / 0 , / 6 § with || PNUxt \\ < e/2. Thus (a) is satisfied.
Select M>N{ so that (b) holds, and for each i, let S}, S?,...,S?K be
segments of ?T containing ti9 passing through distinct nodes of the Nxth
level of ?Tand satisfying (c).For each fixed /, we claim there exists^ so that

\\Ps/{l-PNi)Uxt\\<e/2.

Indeed, if this is not the case, then

j 2 * < 2 \\PS,(I - PN)Uxtf 4(1 - PN)Uxt( < ^
7=1 4

a contradiction. Denoting this S/ by 5,, we obtain

\\PSUxt\\ <||PS ,(/ - PNi)UXl\\+\\PsPNUxt\\

<e/2+\\PNyxt\\<*.

We omit the proofs of the next two propositions. Proposition 5 may
be proved inductively, using Proposition 4 repeatedly.

PROPOSITION 4. Let %be a tree and A a subset o /S. Then there exists a
subtree § ' C § such that either §>' C A or %' C A9 the complement of A.
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PROPOSITION 5. Let f be a bounded real valued function defined on a
tree S. Tften for any e > 0, there exists a subtree S' such that for any branch
Bof%'

(a) l i m ^ ^ e * / ( O = LB exists, and

3. In this section we apply the results of §2 to prove

THEOREM 6. Let U be a bounded linear operator on JT. Then there
exists a subspace X of JT such that

(a) X is isometric to JT,
(b) U\x{or (I — U) \x) is an isomorphism,
(c) UX (or (I - U)X) is complemented in JT.

Proof. We will construct a subtree § C 5 such that either {Uxt}ts$ or
{(/— U)xt}t(E§ is equivalent to {xt} and has complemented span. The
desired subspace is then X = [{X)/e§].

Let V = / - U and 0 < y < \. For each / E ?T, let Bt be a 0-branch
containing /. Then

\ = (fB:,Uxt)+(fBt,Vxt),

so either ( fB, Uxt)> \ or ( /B, FJC,) > £. By standard perturbation argu-
ments we may assume Vxt and Vxt are finitely supported, say that
PNUxt = Uxt and PNVxt = Vxr Denoting by St the segment Bt n {s:
\ev(s)<Nt}, we may assume that for each /, either (fSt9Uxt)>y or
( fst>

 Vxt)> Y- Denote the last element of St by l(t).
We construct a subtree %x C ?T inductively. Let (0,0) E §,, and as-

sume the Hth level of S, is already constructed. The (n + l)st level of §,
consists of all nodes in ?T which are successors of nodes /(/) where /
belongs to the nth level of Sj.

Let 4̂ = {/ E §,: ( ^ , f /^)> y). By Proposition 4 there is a subtree
§2 of §, such that either §2 C 4̂ or §2 C ^4. We shall assume S2 C A9 and
hence shall discuss the operator U9 rather than / — U. For each t E §2, let
yt

 = (fst, Uxt). Then y < yr < l|f/||, so by Proposition 5 we may assume
that for each branch B of §2

(5) Km yt = yB exists,

and

( 6 ) 2 IY, - yB\K

t<=B
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Condition (6) ensures that the multiplier operator T on J defined by
^ satisfies | | / - T\\ < \. Hence T is invertible and \\T~l\\

The desired subtree S = {/(«, /)} C S2 is constructed inductively
using Proposition 3. We will not reproduce the full details, but will
indicate the first step. Parts (a), (b) and (d) of Proposition 3 are "gliding
hump" conclusions, and allow us to compute norms. Part (c) guarantees
that the inductive construction may be continued in §2.

Let e > 0, and {el > 0} a sequence such that 2 et < e. Let f(0,0) be the
initial node of §2, place f(0,0)G§, and let JV be an integer such that

(I-PN)Uxt{m = 0.

By Proposition 3, there exists /(1,0) > /(/(0,0)), f(l, 0) E §2, an integer M
and a segment So, with /(/(0,0)) E So satisfying

\\(l-PM)Uxt(m\\<e2,

and

Let r(l, 0) E §. Now let t0 be a node of §2 following So, and tl a node of
§2 following St(]Oy Again by Proposition 3, there exists f(l, 1) E §2,
/(1,1) > t09 an integer M' and a segment S*! following tx so that

and

The first level of § is completed by placing f(l, 1) E §.
Proceeding in this fashion, after standard perturbation arguments, we

may assume that for each t E §,

(7) (u -L 9Uxt)

= JYr (n+i ,O' t = t(n+
l o otherwise.
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With each t £ S, we associate a segment S't passing through t and the
support of Uxr The St'{nJ) are constructed in pairs as follows. Let tx be the
last node of ?f belonging to St{n2i) n 5r(n>2j-+1), *2 the *a s t n °de of 5" in
*r(n+MO n^(»+1,4/+1)» a n d '3 the last node of ?T in S,(fI+1>4/+2) n
Sr(rt+lf4l-+3). Let S/(n>20 be the maximal segment with last element t2 and
not containing tl9 and let 5/(w>2/+1) be the maximal segment having last
element f3 and not containing tx. Then there are no gaps (in ?T) between
the 5/, and by (7)

(8) (U 9Uxt)\
v ; W5'("") / 7 [0 otherwise.

To show that {Uxt}tB% is equivalent to {xt}tBS9 let {ani} be a finite
set of scalars. There exist segments Sl9...9Sk such that

and we may assume that each Sj is a union of segments St'. Furthermore,
there exist disjoint branches Bl,...,Bl such that each Sj is a subset of
some Br Then

by Proposition 1,

by the remark following (6),
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for some choice of disjoint segment S" containing the Sf,

^\\2an,Uxt(nJ)l by (7).

Thus for any scalar sequence {an J , we have

2
"y II ^^

2\\U\\
I Zian,iXt(n,i)

so that {x/(Wj/)} and {Uxt{ni)} are equivalent. Thus U acts as an isomor-
phism o n l = [{^Jred a nd ^ i s isometric to JT be Proposition 1.

To see that [{£/*,},<=§] is complemented, let P be the projection onto
[tXl/ed defined in the proof of Proposition 1, using the segments S{. The
argument that shows that {jtr}/eS and {Uxt}t^% are equivalent also shows
that S = P | [{Uxt}t^] is invertible. Then [{Uxt}t^] is complemented by
S~lP.

THEOREM 7. The James tree space JT is primary.

Proof. We use the Pelczynski decomposition method. Observe that
with B = {(w,0): n = 0,1,2,...}, we have

n=\ 2

From this it follows that JT is isomorphic to its square, since

JT « / © ( 2 © JT)/2 » / © JT © ( 2 © JT)/a

« JT © / © ( 2 © JT)/a « JT © JT.

Now, if JT = Y © Z, by Theorem 6 we may assume 7 » W © JT. Then

y « W® J T ^ M ©̂ JT© J T « 7 © JT

JT) / 2 ©/

© / ^ JT.
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