REDUCTION OF ELLIPTIC CURVES OVER IMAGINARY QUADRATIC NUMBER FIELDS

R. J. Stroeker

Abstract

It is shown that an elliptic curve defined over a complex quadratic field K, having good reduction at all primes, does not have a global minimal (Weierstrass) model. As a consequence of a theorem of Setzer it then follows that there are no elliptic curves over K having good reduction everywhere in case the class number of K is prime to 6 .

1. Introduction. An elliptic curve over a field K is defined to be a non-singular projective algebraic curve of genus 1 , furnished with a point defined over K. Any such curve may be given by an equation in the Weierstrass normal form:

$$
\begin{equation*}
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \tag{1.1}
\end{equation*}
$$

with coefficients a_{i} in K. In the projective plane \mathbf{P}_{K}^{2}, the point defined over K becomes the unique point at infinity, denoted by $\underline{0}$. Given such a Weierstrass equation for an elliptic curve E, we define, following Néron and Tate ([12], §1; [6], Appendix 1, p. 299):

$$
\begin{cases}b_{2}=a_{1}^{2}+4 a_{2}, & c_{4}=b_{2}^{2}-24 b_{4}, \tag{1.2}\\ b_{4}=a_{1} a_{3}+2 a_{4}, & c_{6}=-b_{2}^{3}+36 b_{2} b_{4}-216 b_{6} \\ b_{6}=a_{3}^{2}+4 a_{6}, \\ b_{8}=a_{1}^{2} a_{6}-a_{1} a_{3} a_{4}+4 a_{2} a_{6}+a_{2} a_{3}^{2}-a_{4}^{2}, \\ \Delta=-b_{2}^{2} b_{8}-8 b_{4}^{3}-27 b_{6}^{2}+9 b_{2} b_{4} b_{6}, \quad j=c_{4}^{3} / \Delta .\end{cases}
$$

The discriminant Δ, defined above, is non-zero if and only if the curve E is non-singular. In particular, we have

$$
\begin{equation*}
4 b_{8}=b_{2} b_{6}-b_{4}^{2} \quad \text { and } c_{4}^{3}-c_{6}^{2}=2^{6} 3^{3} \Delta . \tag{1.3}
\end{equation*}
$$

The various representations of an elliptic curve over K, with the same point at infinity, are related by transformations of the type

$$
\begin{align*}
& x=u^{2} x^{\prime}+r \tag{1.4}\\
& y=u^{3} y^{\prime}+u^{2} s x^{\prime}+t
\end{align*} \quad \text { with } r, s, t \in K \text { and } u \in K^{*} .
$$

Let E be an elliptic curve defined over a field K. An equation for E of type (1.1) is called minimal with respect to a discrete valuation ν of K iff $\nu\left(a_{i}\right) \geq 0$ for all i and $\nu(\Delta)$ minimal, subject to that condition. For each discrete valuation of K, there exists a minimal equation for E. This equation is unique up to a change of co-ordinates of the form (1.4) with r, $s, t \in R$ and u invertible in R. Here R stands for the valuation ring. An equation for an elliptic curve E defined over K is called a global minimal equation for E over K iff this equation is minimal with respect to all discrete valuations of K simultaneously. We have the following theorem due to Néron and Tate.
(1.5) Theorem. Let $\mathcal{\vartheta}_{K}$ be the ring of integers of an algebraic number field K. If ϑ_{K} is a principal ideal domain, then every elliptic curve defined over K has a global minimal equation over K.

It is not true, in general, that an elliptic curve defined over an algebraic number field K has a global minimal equation over K. Following Tate [13], define the minimal discriminant ideal for an elliptic curve E over a number field K by

$$
\Delta_{E}=\prod_{\text {finite } \nu} \mathfrak{p}_{\nu}^{\nu\left(\Delta_{\nu}\right)},
$$

where Δ_{ν} is the discriminant of a minimal equation for E at ν and \mathfrak{p}_{ν} is the prime ideal of Θ_{K} associated with ν. If a global minimal equation for E over θ_{K} exists, then Δ_{E} is principal, for it is generated by the discriminant of any global minimal equation.

For a discrete valuation ν of a field K, let R be the valuation ring, P the unique prime ideal of R and $k=R / P$ the residue class field. Assume ν is normalized and let $\pi \in R$ be a prime with $\nu(\pi)=1$. If E is an elliptic curve over K, let Γ be a minimal equation for E with respect to ν of type (1.1). Reducing the coefficients a_{i} of Γ modulo $P=\pi R$, one obtains an equation $\tilde{\Gamma}$ for a plane cubic curve \tilde{E} defined over k. This equation is clearly unique up to a transformation of the form (1.4) over k. If $\tilde{\Gamma}$ is non-singular (over \bar{k}) then \tilde{E} is an elliptic curve over k and $\tilde{\Gamma}$ is an equation for \tilde{E} over k. In that case $\tilde{\Delta} \neq 0$ or, equivalently, $\nu(\Delta)=0$. We say that E has good (or non-degenerate) reduction at ν. In case $\tilde{\Delta}=0$, i.e. $\nu(\Delta)>0$, then \tilde{E} is a rational curve and E has bad (or degenerate) reduction at ν. In particular, if $\nu(\Delta)>0$ and $\nu\left(c_{4}\right)=0$, then \tilde{E} has a node and we say that E has multiplicative reduction at ν; if $\nu(\Delta)>0$ and $\nu\left(c_{4}\right) \neq 0$, then \tilde{E} has a cusp and the reduction of E at ν is additive.
(1.6) Theorem (Tate). There is no elliptic curve defined over \mathbf{Q} with good reduction at all discrete valuations of \mathbf{Q}.

Proofs of this theorem may be found in [7] and [10], p. 32.
In this paper we will prove and discuss a generalization of Tate's result for elliptic curves defined over imaginary quadratic number fields. More precisely, the purpose of this paper is to prove
(1.7) Main Theorem. Let K be an imaginary quadratic number field and let E be an elliptic curve defined over K. If E has a global minimal equation over K, then E has bad reduction at ν for at least one discrete valuation ν of K.

In fact when E has everywhere good reduction over a number field K, then $\Delta_{E}=(1)$. The condition placed upon E in the Main Theorem (1.7), to the effect that E must have a global minimal equation over K, is not superfluous. This is shown by the following theorem, first formulated by Tate.
(1.8) Theorem. Let n be a rational integer prime to 6 and suppose $j^{2}-1728 j \pm n^{12}=0$. Then the elliptic curve with equation

$$
y^{2}+x y=x^{3}-\frac{36}{j-1728} x-\frac{1}{j-1728}
$$

over $\mathbf{Q}(j)$ has good reduction at every discrete valuation of $\mathbf{Q}(j)$.
For a proof we refer to [11] or [10], p. 31. See also Setzer [9], Theorem 4(b).

In this context we have the following theorem, which is a direct consequence of the Main Theorem (1.7) and a theorem of Setzer (cf. [9], Theorem 5).
(1.9) Theorem. Let K be an imaginary quadratic number field with class number prime to 6 . Then there are no elliptic curves over K having good reduction everywhere.

Indeed, when the class number of a number field K is prime to 6 , the condition ' Δ_{E} is principal' is equivalent to the existence of a global minimal model over K.

In Ishii [4] a similar but less general result is obtained.
Throughout the rest of this paper, K will stand for the imaginary quadratic number field $\mathbf{Q}(\sqrt{-m})$, where m is a squarefree positive integer. The symbol θ will always denote the ring of integers of K with basis $\{1, \omega\}$, i.e. $\mathcal{\theta}=\mathbf{Z}[\omega]$.
2. Proof of the main theorem in case $m \neq 1$ or 3 . Let E_{r} denote an elliptic curve, defined over K, with an equation of type

$$
\Gamma_{r}: x^{3}-y^{2}=r \quad\left(r \in K^{*}\right)
$$

As usual $E_{r}(K)$ will stand for the group of K-rational points of E_{r}; the group operation in $E_{r}(K)$ will be written additively.
(2.1) Lemma. If $r \in \mathbf{Q}$, then $(x, y)+(\bar{x}, \bar{y}) \in E_{r}(\mathbf{Q})$ for each point $(x, y) \in E_{r}(K)$.

Proof. Let $(x, y) \in E_{r}(K)$ and put $P=(x, y)+(\bar{x}, \bar{y})$. Then $P \in$ $E_{r}(K)$ because $r \in \mathbf{Q}$. Clearly, $\bar{P}=P$ and since $K \cap \mathbf{R}=\mathbf{Q}$, we conclude $P \in E_{r}(\mathbf{Q})$.

Some easy consequences of the group structure on E_{r} are laid down in the following formulas. A straightforward calculation shows their validity.

If $r \in \mathbf{Q},(x, y) \in E_{r}(K)$ and $(x, y)+(\bar{x}, \bar{y})=(p, q) \in E_{r}(\mathbf{Q})$, then

$$
\begin{cases}x+\bar{x}+p=\left(\frac{y-\bar{y}}{x-\bar{x}}\right)^{2} & \text { and } p \cdot \frac{y-\bar{y}}{x-\bar{x}}+\frac{x \bar{y}-\bar{x} y}{x-\bar{x}}+q=0 \tag{2.2}\\ 2 x+p=\left(3 x^{2} / 2 y\right)^{2} & \text { in case } \bar{x} \neq x, \\ (p, q)=\underline{0} & \text { in case } \bar{x}=x, \bar{y}=y \neq 0 \\ 2 \text { in case } \bar{x}=x, \bar{y}=-y .\end{cases}
$$

(2.3) Lemma. If $(x, y) \in E_{r}(K)$ with $r= \pm 2^{6} 3^{3}$ such that $x, y \in \mathcal{O}$ and $x \bar{x} \not \equiv 0(\bmod 2)$, then $x \in \mathbf{Z}$ and $y \notin \mathbf{Z}$.

Proof. Lemma (2.1) shows $(x, y)+(\bar{x}, \bar{y}) \in E_{r}(\mathbf{Q})$. Now $E_{r}(\mathbf{Q}) \cong \mathbf{Z}_{2}$ (cf. [3]) and thus $E_{r}(\mathbf{Q})=\{\underline{0},(\pm 12,0)\}$, where the \pm sign corresponds to that of r. Consequently, we have to consider two possibilities; first, if $(x, y)+(\bar{x}, \bar{y})=\underline{0}$ then $\bar{x}=x$ and $\bar{y}=-y$. If $y=0$, then x does not satisfy the condition $x \bar{x} \neq 0(\bmod 2)$. If $(x, y)+(\bar{x}, \bar{y})=(\pm 12,0)$, put $x=a+b \omega$ and $y=c+d \omega(a, b, c, d \in \mathbf{Z})$. Then clearly $b \neq 0$. We distinguish between the cases:
(i) $m \equiv 1$ or $2(\bmod 4)$;
(ii) $m \equiv 3(\bmod 4)$.

In case (i), $\omega=\sqrt{-m}$. Put $T=d / b$. We obtain from (2.2):
(i) $2 a \pm 12=T^{2}$;
(i) ${ }_{2} c=-T^{3}+3 a T$;
(i) $)_{3} m b^{2}=3 a^{2}-2 c T$.

Clearly, a and T are even because of (i) (note that $T \in \mathbf{Z}$). Hence $m b^{2} \equiv 0(\bmod 4)$. This follows from (i) $)_{3}$. Thus b is even, which implies $x \equiv 0(\bmod 2)$.

In case (ii), $\omega=\frac{1}{2}(1+\sqrt{-m})$. Again put $T=d / b$ and $a_{1}=2 a+b$, $c_{1}=2 c+d$. Formulas (2.2) give
(ii) $a_{1} \pm 12=T^{2}$;
(ii) ${ }_{2} c_{1}=-2 T^{3}+3 a_{1} T$;
(ii) ${ }_{3} m b^{2}=3 a_{1}^{2}-4 c_{1} T$.

Again $T \in \mathbf{Z}$ and a_{1}, b and T have the same parity as can be seen from (ii) ${ }_{1}$ and (ii) $)_{3}$. Moreover it follows from (ii) $)_{2}$ that a_{1} and c_{1} have the same parity. If a_{1}, b, c_{1} and T are even, then $a_{1} \equiv b \equiv 0(\bmod 4)$ as is clear from (ii) ${ }_{1}$ and (ii) $)_{3}$. Hence $4 x \bar{x}=a_{1}^{2}+m b^{2} \equiv 0(\bmod 8)$. And if a_{1}, b, c_{1} and T are odd, then $m \equiv 7(\bmod 8)$, which is a consequence of $(\mathrm{ii})_{3}$. Again $4 x \bar{x} \equiv 0(\bmod 8)$. We may conclude $(x, y)+(\bar{x}, \bar{y})=\underline{0}$ if $x \bar{x} \neq 0$ $(\bmod 2)$.
(2.4) Lemma. Let (1.1) be a global minimal equation for the elliptic curve E over K with $\nu(\Delta)=0$ for every discrete valuation ν of K. Further, let \mathfrak{p}_{2} be a prime ideal divisor of 2 in \mathcal{O}. Then \mathfrak{p}_{2} does not divide a_{1}.

Proof. Since $\nu(\Delta)=0$ for every discrete valuation of K, Δ is a unit in O. Suppose $\mathfrak{p}_{2} \mid a_{1}$. Then we see from (1.2) that $\mathfrak{p}_{2}^{2} \mid b_{2}$ and $\mathfrak{p}_{2} \mid b_{4}$ and hence $\mathfrak{p}_{2}^{3} \mid\left(\Delta+27 b_{6}^{2}\right)$. It is clear that \mathfrak{p}_{2} does not divide a_{3}. For $\mathfrak{p}_{2} \mid a_{3}$ implies $p_{2} \mid b_{6}$ and thus $p_{2} \mid \Delta$. However, Δ is a unit. From (1.2) we also obtain $b_{6}^{2} \equiv a_{3}^{4}(\bmod 8)$. We observe that we may restrict the values of the coefficients a_{1}, a_{2} and a_{3} to

$$
a_{1}, a_{3}=0,1, \omega \text { or } 1+\omega \quad \text { and } \quad a_{2}=0, \pm 1, \pm \omega \text { or } \pm 1 \pm \omega
$$

We consider the following cases separately:
(i) $m \equiv 1,2(\bmod 4)$.

The principal ideal (2) factors as \mathfrak{p}_{2}^{2}. Further, $b_{6}^{2} \equiv 1\left(\bmod \mathfrak{p}_{2}^{5}\right)$ because $a_{3}=1$ or ω in case m is odd and $a_{3}=1$ or $1+\omega$ if m is even. If \mathfrak{p}_{2}^{2} does not divide a_{1}, then $\Delta-1 \equiv \Delta+27 b_{6}^{2} \neq 0\left(\bmod \mathfrak{p}_{2}^{4}\right)$. But $\Delta-1$ $\equiv 0\left(\bmod \mathfrak{p}_{2}^{3}\right)$ implies $\Delta=1$, because Δ is a unit, contradiction. And if $\mathfrak{p}_{2}^{2} \mid a_{1}$ then $\Delta+27 b_{6}^{2} \equiv 0\left(\bmod \mathfrak{p}_{2}^{6}\right)$. But then $\Delta+3 \equiv 0\left(\bmod \mathfrak{p}_{2}^{5}\right)$ and this is clearly impossible.
(ii) $m \equiv 3(\bmod 8)$.

Now $\mathfrak{p}_{2}=(2)$. If $a_{3}=1$ then $b_{6}^{2} \equiv 1(\bmod 8)$ and hence $\Delta+3 \equiv 0$ $(\bmod 8)$, an impossibility. Further, if $a_{3}=\omega, 1+\omega$, then $b_{6}^{2} \equiv \omega, 1+\omega$ $(\bmod 2)$ and hence $\Delta \equiv \omega, 1+\omega(\bmod 2)$. This is contradictory in case $m \neq 3$. However, if $m=3$, then $b_{6}^{2} \equiv-\omega, \omega^{2}(\bmod 8)$ and this implies $\dot{\Delta} \equiv 3 \omega,-3 \omega^{2}(\bmod 8)$, again a contradiction.
(iii) $m \equiv 7(\bmod 8)$.

We now have (2) $=\mathfrak{p}_{2} \mathfrak{p}_{2}^{\prime}$ with $\mathfrak{p}_{2}=(2, \omega)$ and $\mathfrak{p}_{2}^{\prime}=(2, \bar{\omega})$. If $\mathfrak{p}_{2} \mid a_{1}$ then $a_{3}=1$ implies $b_{6}^{2} \equiv 1(\bmod 8)$ and $a_{3}=1+\omega$ gives $b_{6}^{2} \equiv 1$ $\left(\bmod \mathfrak{p}_{2}^{3}\right)$. Both cases are impossible. An analogous argument may be used in case $\mathfrak{p}_{2}^{\prime} \mid a_{1}$.

We are now in a position to prove the main theorem for $K=\mathbf{Q}(\sqrt{-m})$ with $m \neq 1$ and $m \neq 3$.

Suppose that E has good reduction at every discrete valuation of K. Let (1.1) be a global minimal equation for E. Then $\nu(\Delta)=0$ for every discrete valuation ν of K. Hence Δ is a unit of θ, i.e. $|\Delta|=1$ since $m \neq 1$ and $m \neq 3$. Now from (1.3) we have

$$
c_{4}^{3}-c_{6}^{2}= \pm 2^{6} 3^{3}
$$

and this yields $c_{4} \bar{c}_{4} \neq 0$ (mod 2) because of (2.4). Lemma (2.3) then shows that $c_{4} \in \mathbf{Z}$ and $c_{6} \notin \mathbf{Z}$. Thus $c_{6}=y \sqrt{-m}$ with $y \neq 0$ and $y \in \mathbf{Z}$, because $c_{6}^{2} \in \mathbf{Z}$. From (1.2) we obtain

$$
y \sqrt{-m} \equiv-a_{1}^{6} \quad(\bmod 4)
$$

Checking the possibilities $a_{1}=1, \omega$ and $1+\omega$, we find an impossible congruence in each case.

The proof of the main theorem as given above ($m \neq 1$ and $m \neq 3$) depends largely on the fact that the only units of θ are +1 and -1 . However, in $\mathbf{Z}[i]$ and $\mathbf{Z}[\rho]$, where $\rho=\frac{1}{2}(1+\sqrt{-3})$, we have the additional units $\pm i$ and $\pm \rho, \pm \rho^{2}$, respectively. Consequently, in order to complete the proof of the theorem, it suffices to show that no point $(x, y) \in \theta \times \theta$ of the curve with equation

$$
\begin{equation*}
x^{3}-y^{2}=\varepsilon 2^{6} 3^{3} \tag{2.5}
\end{equation*}
$$

where $\theta=\mathbf{Z}[i]$ and $\varepsilon= \pm i$ in case $K=\mathbf{Q}(i)$, and where $\theta=\mathbf{Z}[\rho]$ and $\varepsilon= \pm \rho, \pm \rho^{2}$ in case $K=\mathbf{Q}(\rho)$, comes from an elliptic curve with global minimal equation of the form (1.1) and $(x, y)=\left(c_{4}, c_{6}\right)$. This will be done in §3.
3. The exceptional cases. First proof. First, we consider $K=\mathbf{Q}(i)$. Let (x, y) be a solution of (2.5) with $\varepsilon= \pm i$ that comes from an elliptic curve over K with global minimal equation (1.1) such that $(x, y)=\left(c_{4}, c_{6}\right)$. Then (x, y) must satisfy

$$
\begin{equation*}
1+i+x, \quad 3\left|y \Rightarrow 3^{3}\right| y \tag{3.1}
\end{equation*}
$$

This follows immediately from Lemma (2.4) and (1.2). Now ($-x, i y$) is also a solution of (2.5) satisfying (3.1). So we need only consider solutions (x, y) of

$$
\begin{equation*}
x^{3}=y^{2}-3 i(24)^{2} \tag{3.2}
\end{equation*}
$$

(3.3) Lemma. If $\theta=\frac{1}{2}(1+i) \sqrt{6}$, then $\theta^{2}=3 i$ and the number field $\mathbf{Q}(\theta)$ has the following properties:
(1) The set $\{1, \theta, i, i \theta\}$ is an integer basis for $\mathbf{Q}(\theta)$.
(2) The principal ideals (2) and (3) factor as \mathfrak{p}_{2}^{4} and \mathfrak{p}_{3}^{2}, respectively.
(3) The class number of $\mathbf{Q}(\theta)$ equals 2 .
(4) The unit $\eta=1+i+\theta$ is fundamental.

The proof of this lemma is a straightforward exercise (cf. [2]).
We turn our attention to (3.2) and write

$$
\begin{equation*}
x^{3}=(y-24 \theta)(y+24 \theta) . \tag{3.4}
\end{equation*}
$$

The only possible prime divisor that $y+24 \theta$ and $y-24 \theta$ have in common is \mathfrak{p}_{3}, because of (3.1) and (3.3). We deduce that

$$
(y+24 \theta)=\mathfrak{p}_{3}^{a} \mathfrak{E}^{3},
$$

where $a=0,1$ or 2 and \mathfrak{U} is an integral ideal. Also

$$
(y-24 \theta)=\mathfrak{p}_{3}^{a} \mathfrak{A}^{\prime 3},
$$

where \mathfrak{A} and \mathfrak{A}^{\prime} are conjugate ideals. Multiplication yields

$$
\left.(x)^{3}=\mathfrak{p}_{3}^{2 a}\left(\mathfrak{H}_{\mathfrak{H}}\right)^{\prime}\right)^{3}
$$

hence $2 a \equiv 0(\bmod 3)$ and thus $a=0$. Since the class number of $\mathbf{Q}(\theta)$ equals 2 and \mathfrak{U}^{3} is a principal ideal, we deduce that \mathfrak{A} is principal. Then

$$
y+24 \theta=\varepsilon(a+b \theta)^{3},
$$

where ε is a unit and $a, b \in \mathbf{Z}[i]$. By Dirichlet's unit theorem ε can be expressed in the form $\zeta \eta^{k}$ with $k \in \mathbf{Z}$ and root of unity ζ. The only roots of unity in $\mathbf{Q}(\theta)$ are ± 1 and $\pm i$, all of which may be written as a cube.

Furthermore, the conjugation map $\boldsymbol{\theta} \mapsto-\boldsymbol{\theta}$ takes η into η^{-1}. Consequently, we need only consider

$$
\pm y+24 \theta=(1 \text { or } \eta)(a+b \theta)^{3}
$$

with $a, b \in \mathbf{Z}[i]$.
(1) $\pm y+24 \theta=(a+b \theta)^{3}$.

Equating coefficients of 1 and θ yields:

$$
\pm y=a^{3}+9 a b^{2} i \quad \text { and } \quad 24=3 a^{2} b+3 b^{3} i
$$

Then $b \mid 8$ and the solutions (x, y) are easily obtained. However, none of those satisfies (3.1).
(2) $\pm y+24 \theta=(1+i+\theta)(a+b \theta)^{3}$.

Equating coefficients of 1 and θ yields:

$$
\pm y=(1+i) a^{3}+9 i a^{2} b+9(-1+i) a b^{2}-9 b^{3}
$$

and

$$
24=a^{3}+3(1+i) a^{2} b+9 i a b^{2}+3(-1+i) b^{3}
$$

Clearly $3 \mid a$ and hence $3 \mid y$. However, $3^{3} \mid y$ implies $3^{3} \mid 24$. Hence a solution (x, y) of (2.5) cannot possibly satisfy (3.1). This completes the case $K=\mathbf{Q}(i)$.

Next we consider $K=\mathbf{Q}(\rho)$; we recall that $\rho=\frac{1}{2}(1+\sqrt{-3})$. Let (x, y) be a solution of (2.5) with $\varepsilon= \pm \rho, \pm \rho^{2}$, coming from an elliptic curve over $\mathbf{Q}(\rho)$ with a global minimal equation (1.1) and $(x, y)=\left(c_{4}, c_{6}\right)$. According to (1.2) and Lemma (2.4), (x, y) must satisfy

$$
\begin{equation*}
2 \nmid x, \quad(2 \rho-1)\left|y \Rightarrow(2 \rho-1)^{3}\right| y \tag{3.5}
\end{equation*}
$$

Clearly, also (\bar{x}, \bar{y}) solves (2.5) and satisfies (3.5). Since $\rho=-\bar{\rho}^{2}$ and $\bar{\rho}=-\rho^{2}$, we need only consider the equation

$$
\begin{equation*}
x^{3}-\sigma \rho 2^{6} 3^{3}=y^{2} \tag{3.6}
\end{equation*}
$$

with $\sigma= \pm 1$.
(3.7) Lemma. If $\zeta=\zeta_{9}=-\exp \pi i / 9$, then the cyclotomic field $\mathbf{Q}(\zeta)$ has the following properties:
(1) The set $\left\{1, \zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}, \zeta^{5}\right\}$ is an integer basis for $\mathbf{Q}(\zeta)$.
(2) The principal ideal (2) is prime and the ideal (3) factors as \mathfrak{p}_{3}^{6}.
(3) The class number of $\mathbf{Q}(\zeta)$ equals 1.
(4) The set $\left\{1+\zeta, 1+\zeta^{5}\right\}$ is a set of fundamental units.

The above statements are all well known. For (1) and (2), see [5], p. 39; for (3) see [14], Ch. 7, and for (4) see [1], p. 378.

We return to (3.6) and observe it may be written as

$$
y^{2}=(x+12 \sigma \zeta)\left(x+12 \sigma \zeta^{4}\right)\left(x+12 \sigma \zeta^{7}\right)
$$

Since 2 does not divide x, we deduce that

$$
\begin{equation*}
(x+12 \sigma \zeta)=\mathfrak{p}_{3}^{a} \mathfrak{A}^{2} \tag{3.8}
\end{equation*}
$$

with $a=0$ or 1 and integral ideal \mathfrak{A}. The conjugation maps $\zeta \mapsto \zeta^{4}$ and $\zeta \mapsto \zeta^{7}$ take ρ into ρ while \mathfrak{p}_{3} too remains unchanged. Hence from (3.8) we obtain the conjugate ideal equations

$$
\left(x+12 \sigma \zeta^{4}\right)=\mathfrak{p}_{3}^{a}\left(\mathfrak{H}{ }^{\prime}\right)^{2} \quad \text { and } \quad\left(x+12 \sigma \zeta^{7}\right)=\mathfrak{p}_{3}^{a}\left(\mathfrak{U}^{\prime \prime}\right)^{2}
$$

Then $(y)^{2}=\mathfrak{p}_{3}^{3 a}\left(\mathfrak{A} \mathfrak{A} \prime^{\prime} \mathfrak{A} \prime^{\prime \prime}\right)^{2}$ and, consequently, $3 a \equiv 0(\bmod 2)$ or $a=0$. As a result (3.8) becomes

$$
(x+12 \sigma \zeta)=\left(\alpha+\beta \zeta+\gamma \zeta^{2}\right)^{2} \quad \text { with } \alpha, \beta, \gamma \in \mathbf{Z}[\rho]
$$

and this gives in integers of $\mathbf{Q}(\zeta)$:

$$
\left\{\begin{array}{l}
x+12 \sigma \zeta=\tau \zeta^{a}(1+\zeta)^{b}\left(1+\zeta^{5}\right)^{c}\left(\alpha+\beta \zeta+\gamma \zeta^{2}\right)^{2} \tag{3.9}\\
x+12 \sigma \zeta^{4}=\tau \zeta^{4 a}\left(1+\zeta^{4}\right)^{b}\left(1+\zeta^{2}\right)^{c}\left(\alpha+\beta \zeta^{4}+\gamma \zeta^{8}\right)^{2} \\
x+12 \sigma \zeta^{7}=\tau \zeta^{7 a}\left(1+\zeta^{7}\right)^{b}\left(1+\zeta^{8}\right)^{c}\left(\alpha+\beta \zeta^{7}+\gamma \zeta^{5}\right)^{2}
\end{array}\right.
$$

where $\tau= \pm 1,0 \leq a, b, c \leq 1$ and $a, b, c \in \mathbf{Z}$. All this is a consequence of Dirichlet's unit theorem and the fact that the only roots of unity of $\mathbf{Q}(\zeta)$ are $\pm \zeta^{k}, k \in \mathbf{Z}$. Multiplication of the three equations (3.9) yields

$$
\begin{equation*}
y^{2}=\tau(-1)^{a+b} \rho^{a+2 b+c}\left(\alpha^{3}-\rho \beta^{3}+\rho^{2} \gamma^{3}+3 \rho \alpha \beta \gamma\right)^{2} \tag{3.10}
\end{equation*}
$$

We observe that we may assume $a=0$ in (3.9). For ζ can be written as a square and thus $\zeta^{a}, \zeta^{4 a}$, and $\zeta^{7 a}$, respectively, may be absorbed in the square on the right-hand side of the equations (3.9).

We investigate the four cases $(b, c)=(0,0),(1,0),(0,1)$ and $(1,1)$ separately.
(1) $b=c=0$.

Then (3.10) shows that $\tau=1$. Equating coefficients of $1, \zeta, \zeta^{2}$ in the first equation of (3.9) gives

$$
x=\alpha^{2}-2 \beta \gamma \rho, \quad 12 \sigma=2 \alpha \beta-\gamma^{2} \rho \quad \text { and } \quad 0=\beta^{2}+2 \alpha \gamma
$$

It is clear that $2 \nmid \alpha, 2 \mid \beta$ and $2 \mid \gamma$. Put $\beta=2 \beta_{1}$ and $\gamma=2 \gamma_{1}$. A common prime divisor of α and γ_{1} divides 3. Thus $\alpha \gamma_{1}=-\beta_{1}^{2}$ implies

$$
\alpha=\varepsilon_{1}(2 \rho-1)^{p} s^{2} \quad \text { and } \quad \gamma_{1}=\varepsilon_{2}(2 \rho-1)^{p} t^{2}
$$

where $p=0$ or 1 and $\varepsilon_{1}, \varepsilon_{2}$ are units such that $\varepsilon_{1} \varepsilon_{2}=-\delta^{2}$. Now, because of (3.5), we have

$$
x \equiv \alpha^{2}=(-3)^{p} \varepsilon_{1}^{2} s^{4} \quad(\bmod 8),
$$

which implies $p=0$. Further $\beta_{1}=\delta(2 \rho-1)^{p} s t=\delta s t$ and thus

$$
\begin{equation*}
3 \sigma=\alpha \beta_{1}-\gamma_{1}^{2} \rho=\varepsilon_{1} \delta^{-2} t\left\{(\delta s)^{3}+\rho\left(\varepsilon_{2} t\right)^{3}\right\} . \tag{3.11}
\end{equation*}
$$

Apparently $t \mid 3$ and hence we may write $t=\varepsilon(2 \rho-1)^{q}$ with $q=0,1$ or 2 . Substitution of these values of t in (3.11) gives a contradiction in all cases.
(2) $b=1, c=0$.

Now $\tau=-1$ as can be seen from (3.10), and we arrive at the equations

$$
\begin{aligned}
x & =-\alpha^{2}+2 \alpha \gamma \rho+\beta^{2} \rho+2 \beta \gamma \rho, \\
-12 \sigma & =\alpha^{2}+2 \alpha \beta-2 \beta \gamma \rho-\gamma^{2} \rho, \\
0 & =-\beta^{2}-2 \alpha \beta-2 \alpha \gamma+\gamma^{2} \rho .
\end{aligned}
$$

From the last two equations we find that $\alpha \equiv \beta \equiv \gamma \rho^{2}(\bmod 2)$. Elimination of α and β modulo 2 , reduces the last equation to $2 \gamma^{2} \rho^{2} \equiv 0(\bmod 4)$. And thus $2|\gamma, 2| \alpha$ and $2 \mid \beta$. The first equation then shows that $2 \mid x$.
(3) $b=0, c=1$.

Again $\tau=-1$. As before we find

$$
\begin{aligned}
x & =-\alpha^{2}-\gamma^{2}-2 \alpha \beta \rho^{2}+2 \beta \gamma \rho, \\
12 \sigma & =-2 \alpha \beta-\beta^{2} \rho^{2}+\gamma^{2} \rho-2 \alpha \gamma \rho^{2}, \\
0 & =-\alpha^{2} \rho+\beta^{2}+2 \alpha \gamma+2 \beta \gamma \rho^{2} .
\end{aligned}
$$

From the second and third equation we find that $\beta \equiv \gamma \rho(\bmod 2)$ and $\beta \equiv \alpha \rho^{2}(\bmod 2)$. Elimination of α and β modulo 2, reduces the last equation to $2 \gamma^{2} \equiv 0$ and $(\bmod 4)$. Consequently, $2|\gamma, 2| \alpha$ and $2 \mid \beta$. The first equation then shows that $2 \mid x$.
(4) $b=c=1$.

From (3.10) and (3.9) we obtain, respectively, $\tau=1$ and

$$
\begin{aligned}
x & =\alpha^{2} \rho-\beta^{2} \rho-\gamma^{2}+2 \alpha \beta \rho^{2}-2 \alpha \gamma \rho-2 \beta \gamma \rho^{2}, \\
12 \sigma & =\alpha^{2}+\beta^{2} \rho^{2}-\gamma^{2} \rho^{2}+2 \alpha \beta \rho+2 \alpha \gamma \rho^{2}-2 \beta \gamma \rho, \\
0 & =\alpha^{2} \rho-\beta^{2} \rho+\gamma^{2} \rho-2 \alpha \beta-2 \alpha \gamma \rho-2 \beta \gamma \rho^{2} .
\end{aligned}
$$

The second equation shows $\alpha+\beta \rho+\gamma \rho \equiv 0(\bmod 2)$, and the third shows $\alpha+\beta+\gamma \equiv 0(\bmod 2)$. Hence $2 \mid \alpha$ and $2 \mid(\beta+\gamma)$. The last equation then reduces to $2 \beta \gamma \equiv 0(\bmod 4)$ and hence $2 \mid \beta$ and $2 \mid \gamma$. Again the first equation shows $2 \mid x$.

This completes the case $K=\mathbf{Q}(\rho)$.
4. The exceptional cases. Second proof. We will give yet another proof of the Main Theorem (1.7) in the exceptional cases $K=\mathbf{Q}(i)$ and $K=\mathbf{Q}(\rho)$. This proof depends on the appropriate parts of the following theorem.
(4.1) Theorem. Let E be an elliptic curve defined over $K=\mathbf{Q}, \mathbf{Q}(i)$, $\mathbf{Q}(\sqrt{-2})$ or $\mathbf{Q}(\rho)$ with non-degenerate reduction at all discrete valuations of K outside 2. Then E has a point of order 2 rational over K.

Proof. Since the class number of K equals 1, an elliptic curve E over K has a global minimal equation (1.1) which coefficients a_{i} belonging to the ring of integers θ of K. Let Δ be the discriminant of this equation. A transformation (1.4) with $u=\frac{1}{2}, r=0, s=-\frac{1}{2} a_{1}$ and $t=-\frac{1}{2} a_{3}$ leads to an equation

$$
\begin{equation*}
y^{\prime 2}=x^{\prime 3}+a_{2}^{\prime} x^{\prime 2}+a_{4}^{\prime} x^{\prime}+a_{6}^{\prime} \tag{4.2}
\end{equation*}
$$

for E with $a_{i}^{\prime} \in \mathcal{O}$, which is minimal with respect to all discrete valuations of K outside 2. In fact $\Delta^{\prime}=2^{12} \Delta$. Assume the points $\left(x^{\prime}, 0\right)$ of order two on (4.2) are not rational over K, i.e. $x^{\prime} \notin K$. Then the polynomial $f(x)=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \in \Theta[x]$ is irreducible. If ξ is a root of $f(x)=0$ and $L=K(\xi)$, then L / K is unramified at all primes not dividing 2. This is because the discriminant of f divides Δ^{\prime}. Let M be the splitting field of the extension L / K. Then M / K is Galois and $[M: K]=3$ or 6 . Moreover M / K is unramified at all primes not dividing 2 (cf. [14], 4-10-9 and $4-10-10$, p. 178). Let N be the subfield of M corresponding to the subgroup of order 3 in the Galois group $G(M / K)$. In case $|G(M / K)|=6$, the extension N / K is only ramified at the single prime above 2 . For N / K is unramified everywhere else and N / K cannot be unramified at all primes by class field theory, since the class number of K equals 1 . This knowledge enables us to list all possible fields N for each of the given fields K :
(1) $K=\mathbf{Q} ; N=\mathbf{Q}, \mathbf{Q}(i), \mathbf{Q}(\sqrt{2})$ or $\mathbf{Q}(\sqrt{-2})$.
(2) $K=\mathbf{Q}(i) ; N=\mathbf{Q}(i), \mathbf{Q}(\alpha), \mathbf{Q}(\beta)$ or $\mathbf{Q}(\bar{\beta})$, where α and β are roots of $x^{4}+1=0$ and $x^{4}-2 x^{2}+2=0$, respectively.
(3) $K=\mathbf{Q}(\sqrt{-2}) ; N=\mathbf{Q}(\sqrt{-2}), \mathbf{Q}(\alpha), \mathbf{Q}(\gamma)$ or $\mathbf{Q}(\bar{\gamma})$, where α and γ are roots of $x^{4}+1=0$ and $x^{4}+2=0$, respectively.
(4) $K=\mathbf{Q}(\rho) ; N=\mathbf{Q}(\rho), \mathbf{Q}(\rho, i), \mathbf{Q}(\rho, \sqrt{2})$ or $\mathbf{Q}(\rho, \sqrt{-2})$.

All possible fields N have class number 1, as is easily established using the Minkowski bound in each case. Consequently, the only prime that ramifies in M / N is the single prime \mathfrak{p} above 2 . Now M / N is abelian and $G(M / N) \cong \mathbf{Z}_{3}$. By class field theory, to be more precise, by Artin's reciprocity theorem (cf. [5], 5.7 p. 164), the order of $G(M / N)$ divides the order of the ray class group modulo \mathfrak{p}^{n} for sufficiently large exponent n (cf. [5], p. 109). In its turn, the order of the ray class group is a divisor of

$$
h(N) \operatorname{Norm}_{N / \mathbf{Q}}\left(\mathfrak{p}^{n-1}\right)\left\{\operatorname{Norm}_{N / \mathbf{Q}}(\mathfrak{p})-1\right\}=2^{n-1}
$$

in case $K \neq \mathbf{Q}(\rho)$ and of

$$
h(N) \operatorname{Norm}_{N / \mathbf{Q}}\left(\mathfrak{p}^{n-1}\right)=4^{n-1}
$$

in case $K=\mathbf{Q}(\rho)$. Here $h(N)$ stands for the class number of N (cf. [5], 1.3 p. 111 and 1.6 p. 112). This contradicts the fact that $|G(M / N)|=3$. This completes the proof of the theorem.

We remark that Theorem (4.1) was proved by Ogg [7] in case $K=\mathbf{Q}$.

We return to the problem at hand. Suppose $K=\mathbf{Q}(i)$ or $K=\mathbf{Q}(\rho)$, and let E be an elliptic curve defined over K with good reduction everywhere. According to Theorem (4.1) E has a point of order two rational over K. Now E has a Weierstrass equation

$$
y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

with $a_{i} \in \mathcal{O}$ and $\Delta=\varepsilon 2^{12}$, where ε is a unit of \mathcal{O}. Transforming the point $(c, 0)$ of order two with $c \in \mathcal{O}$ to $(0,0)$ by means of (1.4), one obtains

$$
Y^{2}=X^{3}+A_{2} X^{2}+A_{4} X
$$

with $A_{i} \in \mathcal{O}$ for E. Expressing C_{4} and C_{6} in terms of A_{2} and A_{4} leads to the equation

$$
\begin{equation*}
A_{4}^{2}\left(A_{2}^{2}-4 A_{4}\right)=\varepsilon 2^{8} \quad(\operatorname{see}(1.3)) \tag{4.3}
\end{equation*}
$$

The last equation is easy to deal with, because the only possible prime divisor of A_{4} is the prime divisor of 2 . In fact it follows easily that no solution of (4.3) comes from an elliptic curve E defined over K having good reduction everywhere.
5. Acknowledgements. The author wishes to express his gratitude to F. Oort and H. W. Lenstra, Jr. for their assistance. Also a word of thanks is due to the referee for his constructive remarks.

References

[1] W. E. H. Berwick, Algebraic number fields with two independent units, Proc. London Math. Soc., 34 (1932), 360-378.
[2] Z. I. Borevich and I. R. Shafarevich, Number Theory, Pure and Appl. Math. Ser. Vol. 20, Academic Press, New York \& London, 1966.
[3] J. W. S. Cassels, The rational solutions of the Diophantine equation $y^{2}=x^{3}-D$, Acta Math. Stockh., 82 (1950), 243-273.
[4] Hidenori Ishii, The non-existence of elliptic curves with everywhere good reduction over certain imaginary quadratic number fields, J. Math. Soc. Japan, 31 (2) (1979), 273-279.
[5] G. J. Janusz, Algebraic Number Fields, Pure and Appl. Math. Ser. Vol. 55, Academic Press, New York \& London, 1973.
[6] S. Lang, Elliptic Functions, Addison-Wesley, 1973.
[7] A. P. Ogg, Abelian curves of 2-power conductor, Proc. Cambr. Phil. Soc., 62 (1966), 143-148.
[8] J.-P. Serre, Propriétés Galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math., 15 (1972), 259-331.
[9] B. Setzer, Elliptic curves over complex quadratic fields, Pacific J. Math., 74 (1) (1978), 235-250.
[10] R. J. Stroeker, Elliptic curves defined over imaginary quadratic number fields, Doctoral Dissertation, Amsterdam 1975.
[11] J. T. Tate, Letter to Serre, dated July 24th, 1971.
[12] \qquad , The arithmetic of elliptic curves, Invent. Math., 23 (1974), 179-206.
[13] , Algorithm for Determining the Type of Singular Fibre in an Elliptic Pencil, In: Modular Functions of One Variable IV, Lect. Notes Math. nr. 476, Springer-Verlag, 1975, 33-52.
[14] E. Weiss, Algebraic Number Theory, McGraw-Hill, 1963.
Received November 4, 1980.

Econometric Institute
ERASMUS University Rotterdam
P.O. Box 1738

3000 DR Rotterdam
The Netherlands

